AltAutoMore Automation

Set Warnings "-notation-overridden,-parsing".
From Coq Require Import omega.Omega.
From LF Require Import IndProp.
Up to now, we've used the more manual part of Coq's tactic facilities. In this chapter, we'll learn more about some of Coq's powerful automation features.
As a simple illustration of the benefits of automation, let's consider another problem on regular expressions, which we formalized in IndProp. A given set of strings can be denoted by many different regular expressions. For example, App EmptyString re matches exactly the same strings as re. We can write a function that "optimizes" any regular expression into a potentially simpler one by applying this fact throughout the r.e. (Note that, for simplicity, the function does not optimize expressions that arise as the result of other optimizations.)
Fixpoint re_opt_e {T:Type} (re: reg_exp T) : reg_exp T :=
  match re with
  | App EmptyStr re2re_opt_e re2
  | App re1 re2App (re_opt_e re1) (re_opt_e re2)
  | Union re1 re2Union (re_opt_e re1) (re_opt_e re2)
  | Star reStar (re_opt_e re)
  | _re
  end.
We would like to show the equivalence of re's with their "optimized" form. One direction of this equivalence looks like this (the other is similar).
Lemma re_opt_e_match : T (re: reg_exp T) s,
    s =~ res =~ re_opt_e re.
Proof.
  intros T re s M.
  induction M
    as [| x'
        | s1 re1 s2 re2 Hmatch1 IH1 Hmatch2 IH2
        | s1 re1 re2 Hmatch IH | re1 s2 re2 Hmatch IH
        | re | s1 s2 re Hmatch1 IH1 Hmatch2 IH2].
  - (* MEmpty *) simpl. apply MEmpty.
  - (* MChar *) simpl. apply MChar.
  - (* MApp *) simpl.
    destruct re1.
    + apply MApp. apply IH1. apply IH2.
    + inversion Hmatch1. simpl. apply IH2.
    + apply MApp. apply IH1. apply IH2.
    + apply MApp. apply IH1. apply IH2.
    + apply MApp. apply IH1. apply IH2.
    + apply MApp. apply IH1. apply IH2.
  - (* MUnionL *) simpl. apply MUnionL. apply IH.
  - (* MUnionR *) simpl. apply MUnionR. apply IH.
  - (* MStar0 *) simpl. apply MStar0.
  - (* MStarApp *) simpl. apply MStarApp. apply IH1. apply IH2.
Qed.

Coq Automation

The amount of repetition in this last proof is rather annoying. And if we wanted to extend the optimization function to handle other, similar, rewriting opportunities, it would start to be a real problem.
So far, we've been doing all our proofs using just a small handful of Coq's tactics and completely ignoring its powerful facilities for constructing parts of proofs automatically. This section introduces some of these facilities, and we will see more over the next several chapters. Getting used to them will take some energy — Coq's automation is a power tool — but it will allow us to scale up our efforts to more complex definitions and more interesting properties without becoming overwhelmed by boring, repetitive, low-level details.

Tacticals

Tacticals is Coq's term for tactics that take other tactics as arguments — "higher-order tactics," if you will.

The try Tactical

If T is a tactic, then try T is a tactic that is just like T except that, if T fails, try T successfully does nothing at all (instead of failing).
Theorem silly1 : n, 1 + n = S n.
Proof. try reflexivity. (* this just does reflexivity *) Qed.

Theorem silly2 : (P : Prop), PP.
Proof.
  intros P HP.
  try reflexivity. (* just reflexivity would have failed *)
  apply HP. (* we can still finish the proof in some other way *)
Qed.
There is no real reason to use try in completely manual proofs like these, but it is very useful for doing automated proofs in conjunction with the ; tactical, which we show next.

The ; Tactical (Simple Form)

In its most common form, the ; tactical takes two tactics as arguments. The compound tactic T;T' first performs T and then performs T' on each subgoal generated by T.
For example, consider the following trivial lemma:
Lemma foo : n, 0 <=? n = true.
Proof.
  intros.
  destruct n eqn:E.
    (* Leaves two subgoals, which are discharged identically...  *)
    - (* n=0 *) simpl. reflexivity.
    - (* n=Sn' *) simpl. reflexivity.
Qed.
We can simplify this proof using the ; tactical:
Lemma foo' : n, 0 <=? n = true.
Proof.
  intros.
  (* destruct the current goal *)
  destruct n;
  (* then simpl each resulting subgoal *)
  simpl;
  (* and do reflexivity on each resulting subgoal *)
  reflexivity.
Qed.
Using try and ; together, we can get rid of the repetition in the proof that was bothering us a little while ago.
Lemma re_opt_e_match' : T (re: reg_exp T) s,
    s =~ res =~ re_opt_e re.
Proof.
  intros T re s M.
  induction M
    as [| x'
        | s1 re1 s2 re2 Hmatch1 IH1 Hmatch2 IH2
        | s1 re1 re2 Hmatch IH | re1 s2 re2 Hmatch IH
        | re | s1 s2 re Hmatch1 IH1 Hmatch2 IH2];
    (* Do the simpl for every case here: *)
    simpl.
  - (* MEmpty *) apply MEmpty.
  - (* MChar *) apply MChar.
  - (* MApp *)
    destruct re1;
    (* Most cases follow by the same formula.
       Notice that apply MApp gives two subgoals:
       try apply H1 is run on both of them and
       succeeds on the first but not the second;
       apply H2 is then run on this remaining goal. *)

    try (apply MApp; try apply IH1; apply IH2).
    (* The interesting case, on which try... does nothing,
       is when re1 = EmptyStr. In this case, we have
       to appeal to the fact that re1 matches only the
       empty string: *)

    inversion Hmatch1. simpl. apply IH2.
  - (* MUnionL *) apply MUnionL. apply IH.
  - (* MUnionR *) apply MUnionR. apply IH.
  - (* MStar0 *) apply MStar0.
  - (* MStarApp *) apply MStarApp. apply IH1. apply IH2.
Qed.

The ; Tactical (General Form)

The ; tactical also has a more general form than the simple T;T' we've seen above. If T, T1, ..., Tn are tactics, then
      T; [T1 | T2 | ... | Tn]
is a tactic that first performs T and then performs T1 on the first subgoal generated by T, performs T2 on the second subgoal, etc.
So T;T' is just special notation for the case when all of the Ti's are the same tactic; i.e., T;T' is shorthand for:
      T; [T' | T' | ... | T']
(* We can use this mechanism to give a slightly neater version
of our optimization proof: *)


Lemma re_opt_e_match'' : T (re: reg_exp T) s,
    s =~ res =~ re_opt_e re.
Proof.
  intros T re s M.
  induction M
    as [| x'
        | s1 re1 s2 re2 Hmatch1 IH1 Hmatch2 IH2
        | s1 re1 re2 Hmatch IH | re1 s2 re2 Hmatch IH
        | re | s1 s2 re Hmatch1 IH1 Hmatch2 IH2];
    (* Do the simpl for every case here: *)
    simpl.
  - (* MEmpty *) apply MEmpty.
  - (* MChar *) apply MChar.
  - (* MApp *)
    destruct re1;
    try (apply MApp; [apply IH1 | apply IH2]). (* <=== *)
    inversion Hmatch1. simpl. apply IH2.
  - (* MUnionL *) apply MUnionL. apply IH.
  - (* MUnionR *) apply MUnionR. apply IH.
  - (* MStar0 *) apply MStar0.
  - (* MStarApp *) apply MStarApp; [apply IH1 | apply IH2]. (* <=== *)
Qed.

The repeat Tactical

The repeat tactical takes another tactic and keeps applying this tactic until it fails. Here is an example showing that 10 is in a long list using repeat.
Theorem In10 : In 10 [1;2;3;4;5;6;7;8;9;10].
Proof.
  repeat (try (left; reflexivity); right).
Qed.
The tactic repeat T never fails: if the tactic T doesn't apply to the original goal, then repeat still succeeds without changing the original goal (i.e., it repeats zero times).
Theorem In10' : In 10 [1;2;3;4;5;6;7;8;9;10].
Proof.
  repeat (left; reflexivity).
  repeat (right; try (left; reflexivity)).
Qed.
The tactic repeat T also does not have any upper bound on the number of times it applies T. If T is a tactic that always succeeds, then repeat T will loop forever (e.g., repeat simpl loops, since simpl always succeeds). While evaluation in Coq's term language, Gallina, is guaranteed to terminate, tactic evaluation is not! This does not affect Coq's logical consistency, however, since the job of repeat and other tactics is to guide Coq in constructing proofs; if the construction process diverges, this simply means that we have failed to construct a proof, not that we have constructed a wrong one.

Exercise: 3 stars, standard (re_opt)

Consider this more powerful version of the regular expression optimizer.
Fixpoint re_opt {T:Type} (re: reg_exp T) : reg_exp T :=
  match re with
  | App re1 EmptySetEmptySet
  | App EmptyStr re2re_opt re2
  | App re1 EmptyStrre_opt re1
  | App re1 re2App (re_opt re1) (re_opt re2)
  | Union EmptySet re2re_opt re2
  | Union re1 EmptySetre_opt re1
  | Union re1 re2Union (re_opt re1) (re_opt re2)
  | Star EmptySetEmptyStr
  | Star EmptyStrEmptyStr
  | Star reStar (re_opt re)
  | EmptySetEmptySet
  | EmptyStrEmptyStr
  | Char xChar x
  end.

(* Here is an incredibly tedious manual proof of (one direction of) its correctness: *)

Lemma re_opt_match : T (re: reg_exp T) s,
    s =~ res =~ re_opt re.
Proof.
  intros T re s M.
  induction M
    as [| x'
        | s1 re1 s2 re2 Hmatch1 IH1 Hmatch2 IH2
        | s1 re1 re2 Hmatch IH | re1 s2 re2 Hmatch IH
        | re | s1 s2 re Hmatch1 IH1 Hmatch2 IH2].
  - simpl. apply MEmpty.
  - simpl. apply MChar.
  - simpl.
    destruct re1.
    + inversion IH1.
    + inversion IH1. simpl. destruct re2.
      * apply IH2.
      * apply IH2.
      * apply IH2.
      * apply IH2.
      * apply IH2.
      * apply IH2.
    + destruct re2.
      * inversion IH2.
      * inversion IH2. rewrite app_nil_r. apply IH1.
      * apply MApp. apply IH1. apply IH2.
      * apply MApp. apply IH1. apply IH2.
      * apply MApp. apply IH1. apply IH2.
      * apply MApp. apply IH1. apply IH2.
    + destruct re2.
      * inversion IH2.
      * inversion IH2. rewrite app_nil_r. apply IH1.
      * apply MApp. apply IH1. apply IH2.
      * apply MApp. apply IH1. apply IH2.
      * apply MApp. apply IH1. apply IH2.
      * apply MApp. apply IH1. apply IH2.
    + destruct re2.
      * inversion IH2.
      * inversion IH2. rewrite app_nil_r. apply IH1.
      * apply MApp. apply IH1. apply IH2.
      * apply MApp. apply IH1. apply IH2.
      * apply MApp. apply IH1. apply IH2.
      * apply MApp. apply IH1. apply IH2.
    + destruct re2.
      * inversion IH2.
      * inversion IH2. rewrite app_nil_r. apply IH1.
      * apply MApp. apply IH1. apply IH2.
      * apply MApp. apply IH1. apply IH2.
      * apply MApp. apply IH1. apply IH2.
      * apply MApp. apply IH1. apply IH2.
  - simpl.
    destruct re1.
    + inversion IH.
    + destruct re2.
      * apply IH.
      * apply MUnionL. apply IH.
      * apply MUnionL. apply IH.
      * apply MUnionL. apply IH.
      * apply MUnionL. apply IH.
      * apply MUnionL. apply IH.
    + destruct re2.
      * apply IH.
      * apply MUnionL. apply IH.
      * apply MUnionL. apply IH.
      * apply MUnionL. apply IH.
      * apply MUnionL. apply IH.
      * apply MUnionL. apply IH.
    + destruct re2.
      * apply IH.
      * apply MUnionL. apply IH.
      * apply MUnionL. apply IH.
      * apply MUnionL. apply IH.
      * apply MUnionL. apply IH.
      * apply MUnionL. apply IH.
    + destruct re2.
      * apply IH.
      * apply MUnionL. apply IH.
      * apply MUnionL. apply IH.
      * apply MUnionL. apply IH.
      * apply MUnionL. apply IH.
      * apply MUnionL. apply IH.
    + destruct re2.
      * apply IH.
      * apply MUnionL. apply IH.
      * apply MUnionL. apply IH.
      * apply MUnionL. apply IH.
      * apply MUnionL. apply IH.
      * apply MUnionL. apply IH.
  - simpl.
    destruct re1.
    + apply IH.
    + destruct re2.
      * inversion IH.
      * apply MUnionR. apply IH.
      * apply MUnionR. apply IH.
      * apply MUnionR. apply IH.
      * apply MUnionR. apply IH.
      * apply MUnionR. apply IH.
    + destruct re2.
      * inversion IH.
      * apply MUnionR. apply IH.
      * apply MUnionR. apply IH.
      * apply MUnionR. apply IH.
      * apply MUnionR. apply IH.
      * apply MUnionR. apply IH.
    + destruct re2.
      * inversion IH.
      * apply MUnionR. apply IH.
      * apply MUnionR. apply IH.
      * apply MUnionR. apply IH.
      * apply MUnionR. apply IH.
      * apply MUnionR. apply IH.
    + destruct re2.
      * inversion IH.
      * apply MUnionR. apply IH.
      * apply MUnionR. apply IH.
      * apply MUnionR. apply IH.
      * apply MUnionR. apply IH.
      * apply MUnionR. apply IH.
    + destruct re2.
      * inversion IH.
      * apply MUnionR. apply IH.
      * apply MUnionR. apply IH.
      * apply MUnionR. apply IH.
      * apply MUnionR. apply IH.
      * apply MUnionR. apply IH.
 - simpl.
    destruct re.
    + apply MEmpty.
    + apply MEmpty.
    + apply MStar0.
    + apply MStar0.
    + apply MStar0.
    + simpl.
      destruct re.
      * apply MStar0.
      * apply MStar0.
      * apply MStar0.
      * apply MStar0.
      * apply MStar0.
      * apply MStar0.
 - simpl.
   destruct re.
   + inversion IH1.
   + inversion IH1. inversion IH2. apply MEmpty.
   + apply star_app.
     * apply MStar1. apply IH1.
     * apply IH2.
   + apply star_app.
     * apply MStar1. apply IH1.
     * apply IH2.
   + apply star_app.
     * apply MStar1. apply IH1.
     * apply IH2.
   + apply star_app.
     * apply MStar1. apply IH1.
     * apply IH2.
Qed.

(* Use the automation tools described so far to shorten the proof. *)

Lemma re_opt_match' : T (re: reg_exp T) s,
    s =~ res =~ re_opt re.
Proof.
(* FILL IN HERE *) Admitted.
(* Do not modify the following line: *)
Definition manual_grade_for_re_opt : option (nat*string) := None.

A Few More Handy Tactics

By the way, here are some miscellaneous tactics that you may find convenient as we continue.
  • clear H: Delete hypothesis H from the context.
  • rename... into...: Change the name of a hypothesis in the proof context. For example, if the context includes a variable named x, then rename x into y will change all occurrences of x to y.
  • subst x: Find an assumption x = e or e = x in the context, replace x with e throughout the context and current goal, and clear the assumption.
  • subst: Substitute away all assumptions of the form x = e or e = x.
We'll see examples as we go along.

Defining New Tactics

Coq also provides several ways of "programming" tactic scripts.
  • Coq has a built-in language called Ltac with primitives that can examine and modify the proof state. The full details are a bit too complicated to get into here (and it is generally agreed that Ltac is not the most beautiful part of Coq's design!), but they can be found in the reference manual and other books on Coq. Simple use cases are not too difficult.
  • There is also an OCaml API, which can be used to build tactics that access Coq's internal structures at a lower level, but this is seldom worth the trouble for ordinary Coq users.
Here is a simple Ltac example:
Ltac impl_and_try c := simpl; try c.
This defines a new tactical called simpl_and_try that takes one tactic c as an argument and is defined to be equivalent to the tactic simpl; try c. Now writing "simpl_and_try reflexivity." in a proof will be the same as writing "simpl; try reflexivity."

Decision Procedures

So far, the automation we have considered has primarily been useful for removing repetition. Another important category of automation consists of built-in decision procedures for specific kinds of problems. There are several of these, but the omega tactic is the most important to start with.

The Omega Tactic

The omega tactic implements a decision procedure for a subset of first-order logic called Presburger arithmetic. It is based on the Omega algorithm invented by William Pugh [Pugh 1991].
If the goal is a universally quantified formula made out of
  • numeric constants, addition (+ and S), subtraction (- and pred), and multiplication by constants (this is what makes it Presburger arithmetic),
  • equality (= and ) and ordering (), and
  • the logical connectives , , ¬, and ,
then invoking omega will either solve the goal or fail, meaning that the goal is actually false. (If the goal is not of this form, omega will also fail.)
Note that we needed the import Require Import Omega at the top of this file.
Example silly_presburger_example : m n o p,
  m + nn + oo + 3 = p + 3 →
  mp.
Proof.
  intros. omega.
Qed.

Search Tactics

Another very important category of automation tactics helps us construct proofs by searching for relevant facts These tactics include the auto tactic for backwards reasoning, automated forward reasoning via the Ltac hypothesis matching machinery, and deferred instantiation of existential variables using eapply and eauto. Using these features together with Ltac's scripting facilities will enable us to make our proofs startlingly short! Used properly, they can also make proofs more maintainable and robust to changes in underlying definitions. A deeper treatment of auto and eauto can be found in the UseAuto chapter in Programming Language Foundations.

The constructor tactic.

A simple first example of a search tactic is constructor, which tries to find a constructor c (from some Inductive definition in the current environment) that can be applied to solve the current goal. If one is found, behave like apply c.
Example constructor_example: (n:nat),
    even (n+n).
Proof.
  induction n; simpl.
  - constructor. (* applies ev_0 *)
  - rewrite plus_comm. simpl. constructor. (* applies ev_SS *) auto.
Qed.
This saves us from needing to remember the names of our constructors. Warning: if more than one constructor can apply, constructor picks the first one (in the order in which they were defined in the Inductive) which is not necessarily the one we want!

The auto Tactic

Thus far, our proof scripts mostly apply relevant hypotheses or lemmas by name, and one at a time.
Example auto_example_1 : (P Q R: Prop),
  (PQ) → (QR) → PR.
Proof.
  intros P Q R H1 H2 H3.
  apply H2. apply H1. assumption.
Qed.
The auto tactic frees us from this drudgery by searching for a sequence of applications that will prove the goal:
Example auto_example_1' : (P Q R: Prop),
  (PQ) → (QR) → PR.
Proof.
  auto.
Qed.
The auto tactic solves goals that are solvable by any combination of
  • intros and
  • apply (of hypotheses from the local context, by default).
Using auto is always "safe" in the sense that it will never fail and will never change the proof state: either it completely solves the current goal, or it does nothing.
Here is a more interesting example showing auto's power:
Example auto_example_2 : P Q R S T U : Prop,
  (PQ) →
  (PR) →
  (TR) →
  (STU) →
  ((PQ) → (PS)) →
  T
  P
  U.
Proof. auto. Qed.
Proof search could, in principle, take an arbitrarily long time, so there are limits to how far auto will search by default.
Example auto_example_3 : (P Q R S T U: Prop),
  (PQ) →
  (QR) →
  (RS) →
  (ST) →
  (TU) →
  P
  U.
Proof.
  (* When it cannot solve the goal, auto does nothing *)
  auto.
  (* Optional argument says how deep to search (default is 5) *)
  auto 6.
Qed.
When searching for potential proofs of the current goal, auto considers the hypotheses in the current context together with a hint database of other lemmas and constructors. Some common lemmas about equality and logical operators are installed in this hint database by default.
Example auto_example_4 : P Q R : Prop,
  Q
  (QR) →
  P ∨ (QR).
Proof. auto. Qed.
If we want to see which facts auto is using, we can use info_auto instead.
Example auto_example_5: 2 = 2.
Proof.
  (* auto subsumes reflexivity because eq_refl is in hint database *)
  info_auto.
Qed.
We can extend the hint database just for the purposes of one application of auto by writing "auto using ...".
Lemma le_antisym : n m: nat, (nmmn) → n = m.
Proof. intros. omega. Qed.

Example auto_example_6 : n m p : nat,
  (np → (nmmn)) →
  np
  n = m.
Proof.
  intros.
  auto using le_antisym.
Qed.
Of course, in any given development there will probably be some specific constructors and lemmas that are used very often in proofs. We can add these to the global hint database by writing
      Hint Resolve T.
at the top level, where T is a top-level theorem or a constructor of an inductively defined proposition (i.e., anything whose type is an implication). As a shorthand, we can write
      Hint Constructors c.
to tell Coq to do a Hint Resolve for all of the constructors from the inductive definition of c.
It is also sometimes necessary to add
      Hint Unfold d.
where d is a defined symbol, so that auto knows to expand uses of d, thus enabling further possibilities for applying lemmas that it knows about.
It is also possible to define specialized hint databases that can be activated only when needed. See the Coq reference manual for more.
Hint Resolve le_antisym.

Example auto_example_6' : n m p : nat,
  (np → (nmmn)) →
  np
  n = m.
Proof.
  intros.
  auto. (* picks up hint from database *)
Qed.

Definition is_fortytwo x := (x = 42).

Example auto_example_7: x,
  (x ≤ 42 ∧ 42 ≤ x) → is_fortytwo x.
Proof.
  auto. (* does nothing *)
Abort.

Hint Unfold is_fortytwo.

Example auto_example_7' : x,
  (x ≤ 42 ∧ 42 ≤ x) → is_fortytwo x.
Proof. info_auto. Qed.

Exercise: 3 stars, advanced (pumping_redux)

Use auto, omega, and any other useful tactics from this chapter to shorten your proof (or the "official" solution proof) of the Pumping Lemma exercise from IndProp.
Import Pumping.
Lemma pumping : T (re : reg_exp T) s,
  s =~ re
  pumping_constant relength s
  s1 s2 s3,
    s = s1 ++ s2 ++ s3
    s2 ≠ [] ∧
    m, s1 ++ napp m s2 ++ s3 =~ re.
Proof.
(* FILL IN HERE *) Admitted.
(* Do not modify the following line: *)
Definition manual_grade_for_pumping_redux : option (nat*string) := None.

The eapply and eauto variants

To close the chapter, we'll introduce one more convenient feature of Coq: its ability to delay instantiation of quantifiers. To motivate this feature, consider again this simple example:
Example trans_example1: a b c d,
    ab + b*c
    (1+c)*bd
    ad.
Proof.
  intros a b c d H1 H2.
  apply le_trans with (b+ b*c). (* <-- We must supply the intermediate value *)
  + apply H1.
  + simpl in H2. rewrite mult_comm. apply H2.
Qed.
In the first step of the proof, we had to explicitly provide a longish expression to help Coq instantiate a "hidden" argument to the le_trans constructor. This was needed because the definition of le_trans...
    le_trans : m n o : natm ≤ n → n ≤ o → m ≤ o 
is quantified over a variable, n, that does not appear in its conclusion, so unifying its conclusion with the goal state doesn't help Coq find a suitable value for this variable. If we leave out the with, this step fails ("Error: Unable to find an instance for the variable n").
We already know one way to avoid an explicit with clause, namely to provide H1 as the (first) explicit argument to le_trans. But here's another way, using the eapply tactic:
Example trans_example1': a b c d,
    ab + b*c
    (1+c)*bd
    ad.
Proof.
  intros a b c d H1 H2.
  eapply le_trans. (* 1 *)
  + apply H1. (* 2 *)
  + simpl in H2. rewrite mult_comm. apply H2.
Qed.
The eapply H tactic behaves just like apply H except that, after it finishes unifying the goal state with the conclusion of H, it does not bother to check whether all the variables that were introduced in the process have been given concrete values during unification.
If you step through the proof above, you'll see that the goal state at position 1 mentions the existential variable ?n in both of the generated subgoals. The next step (which gets us to position 2) replaces ?n with a concrete value. When we start working on the second subgoal (position 3), we observe that the occurrence of ?n in this subgoal has been replaced by the value that it was given during the first subgoal.
Several of the tactics that we've seen so far, including , constructor, and auto, have e... variants. For example, here's a proof using eauto:
Example trans_example2: a b c d,
    ab + b*c
    b + b*cd
    ad.
Proof.
  intros a b c d H1 H2.
  info_eauto using le_trans.
Qed.
The eauto tactic works just like auto, except that it uses eapply instead of apply.
Pro tip: One might think that, since eapply and eauto are more powerful than apply and auto, it would be a good idea to use them all the time. Unfortunately, they are also significantly slower — especially eauto. Coq experts tend to use apply and auto most of the time, only switching to the e variants when the ordinary variants don't do the job.
(* Fri 30 Aug 2019 02:44:48 PM CEST *)