
Writing and Verifying
Functional Programs in Coq

Cătălin Hrițcu

Inria Paris

1



This course
1. Logic and proofs

2. Functional programming

3. Program verification

• Using the Coq proof assistant

• Curry-Howard correspondence

–proofs = purely functional programs

–bridge between logic and computer science
2



Logic and proofs

• Foundation of mathematics and computer science

– formal proofs with respect to inference rules

• This course: constructive higher-order logic

– constructive, aka intuitionistic logic:
• a proposition is true if one can construct a proof

• philosophically rejects excluded middle (P ∨ ¬P, classical logic)

– higher-order: can quantify over propositions (∀P. P), 
predicates (∀Q x. Q x), relations (∀R x y. R x y), ...

3



Logic and computer science

• Logic and CS greatly influenced on each other, e.g.:

– automated theorem provers (e.g., SAT and SMT solvers)

– proof assistants: Coq, Isabelle, HOL family, F*, ACL2, etc.

• interactively constructed, machine-checked proofs

• addictive, gamification of proofs

• This course: Coq proof assistant

– developed at Inria since 1983 (in OCaml)

– Curry-Howard: proofs = purely functional programs

4



Functional programming

• Try to write computations as pure functions

– without side-effects, such as mutating the heap

• sorting a list in place (imperative) vs into a new list (functional)

– Coq is purely functional = zero side-effects

• all computations are mathematical functions (terminating)

– Functional programming languages like OCaml, Haskell, ...

• try to reduce and/or control side-effects 

• make it easy to write pure functions

5



Functional programming in practice

• Functional programming languages have practical success

– Facebook (OCaml, Haskell), Docker (OCaml), Twitter (Scala)

– Financial industry: Jane Street (OCaml), banks (Haskell, ...)

– Blockchains: Tezos (OCaml), Cardano (Haskell, Rust), ...

• Not yet mainstream, but ...

– Functional programmers earn more (Stack Overflow survey)

– Many ideas already been adopted by mainstream languages:

generics and Lambdas in Java/C#, Google's Map-Reduce, ...

– Makes formal verification and informal reasoning easier

6



Formal verification in proof assistants

• Machine-checked proofs of mathematical theorems
– the 4-color and Feit-Thompson theorems (Coq+SSReflect)

– Hales' proof of Kepler conjecture (HOL Light and Isabelle)

• Formally verified programs
– Proving mathematically that a program satisfies a specification

– the CompCert compiler (Coq)

– the seL4 operating system (Isabelle/HOL)

– the Everest HTTPS stack: EverCrypt, EverParse, miTLS (F*)

– hot topic: verification of smart contracts

7



This course

• Write purely functional programs in Coq
– natural numbers, lists, regular expressions, ...

• Verify these programs by proving theorems about them
– case analysis, induction, inversion, ...

• Curry-Howard correspondence
– proofs = purely functional programs

• Logical Foundations -- book written entirely in Coq

• Ask questions, interact

• Exercises, materials, website

8


