
Softtware Verification Spring School, Aussois, May 7—11 2018

Security Verification and
cryptographic modelling in F*

Antoine Delignat-Lavaud
Catalin Hritcu
Danel Ahman

Everest*: Verified
Drop-in Replacements
for TLS/HTTPS

*t
h

e
 E

v
e
re

st
 V

E
R

if
ie

d
E
n

d
-t

o
-e

n
d

 S
e
cu

re
 T

ra
n

sp
o

rt

Services & Applications

ServersClients

cURL WebKit IIS ApacheSkype NginxEdge

HTTPS Ecosystem

4

TLS

X.509

HTTPS

RSA SHA

ECDH

Network buffers

Untrusted network (TCP, UDP, …)

Crypto Algorithms

4Q

Services & Applications

ASN.1
Certification

Authority

ServersClients

cURL WebKit IIS ApacheSkype NginxEdge

Buffer overflows
Incorrect state machines
Lax certificate parsing
Weak or poorly implemented crypto
Side channels

Implicit security goals
Dangerous APIs
Flawed standards

OpenSSL, SChannel, NSS, …
Monthly security patches

5

TLS

X.509

HTTPS

RSA SHA

ECDH

Network buffers

Untrusted network (TCP, UDP, …)

Crypto Algorithms

4Q

Services & Applications

ASN.1
Certification

Authority

ServersClients

cURL WebKit IIS ApacheSkype NginxEdge

Crypto

failures

2007 2008 2009 2010 2011 2012 2013 2014

2015 2016

Protocol

weaknesses

Implementation

bugs

EarlyCCS

Heartbleed

POODLE

Triple

Handshake

SKIP

FREAK

Logjam

SLOTH DROWN

Renegotiation

Attack

ECDHE Cross-

protocol AttackBEAST

(Rogaway 02)

Lucky13

RC4MD5

OpenSSL entropy

CRIME

RSA 512 bit SHA1

Crypto failures

A Timeline of Recent PKI Failures

2006 2007 2008 2009 2010 2011 2012 2013

2014 2015

HashClash rogue

CA

(MD5 collision)

Stevens et al.

Flame malware

NSA/GCHQ attack

against Windows

CA Bleichenbacher’s

e=3 attack on

PKCS#1 signatures

512 bit

Korean

School CAs

TÜRKTRUST

BERSerk

(MSR—Inria)

DigiNotar hack

Usage-unrestricted

VeriSign certificates

ANSSIComodo hack Trustwave
VeriSign

NetDiscovery

Debian OpenSSL entropy bug

Basic constraints not enforced (recurring catastrophic bug)

OpenSSL

null prefix

The SHAppening

DROWN

KeyUsag

e

Name constraints failures

VeriSign hack

OpenSSL

CVE-2015-

1793

GnuTLS X509v1

Formatting & semantics

CA failures

Side Channel Challenge (Attacks)

2000 … 2006 2007 2008 2009 2010 2011 2012 2013 2014

Protocol-level
side channels

Traffic analysis Timing attacks against
cryptographic primitives

Memory & Cache

TLS messages may reveal
information about the
internal protocol state or
the application data

Combined analysis of the
time and length
distributions of packets
leaks information about the
application

A remote attacker may learn
information about crypto
secrets by timing execution
time for various inputs

Memory access patterns
may expose secrets, in
particular because caching
may expose sensitive data
(e.g. by timing)

• Hello message contents
(e.g. time in nonces,
SNI)

• Alerts (e.g. decryption
vs. padding alerts)

• Record headers

• CRIME/BREACH
(adaptive chosen
plaintext attack)

• User tracking
• Auto-complete input

theft

• Bleichenbacher attacks
against PKCS#1
decryption and
signatures

• Timing attacks against
RC4 (Lucky 13)

• OpenSSL key recovery in
virtual machines

• Cache timing attacks
against AES

AES cache timing

Bleichenbacher

CRIME Lucky13 DROWN ->

Remote timing
attacks are practical

BREACH

Tag size

Side-
channel

leaks in Web
applications

ECDSA
timing

Vaudenay

TLS

X.509

HTTPS

RSA SHA

ECDH

Network buffers

Untrusted network (TCP, UDP, …)

Crypto Algorithms

AES

Services & Applications

ASN.1
Certification

Authority

ServersClients

cURL WebKit IIS ApacheSkype NginxEdge

Verified Components for the HTTPS Ecosystem

Redmond

Paris (INRIA)

Cambridge

Chris

Hawblitzel

Cédric

Fournet

Antoine

Delignat-Lavaud

Karthik

Bhargavan

Bryan Parno

Markulf

Kohlweiss

Jean Karim

Zinzindohoue

Santiago

Zanella-

Beguelin

Nik Swamy

Jonathan

Protzenko

Aseem

Rastogi

Bangalore

Leonardo

de Moura

Catalin Hritcu

Nadim

Kobeissi

Tahina

Ramanandro

Barry Bond

Pittsburgh (CMU)

Kenji

Maillard

Benjamin

Beurdouche

Christoph

Wintersteiger

Patrice

Godefroid

Danel Ahman

Victor

Dumitrescu

By implementing
standardized components
and proving them secure,
we validate both their
design and our code.

kreMLin

source code, specs, security definitions,

crypto games & constructions, proofs…

interop with rest of
TLS/HTTPS ecosystem

verify all properties

(using automated provers)

then erase all proofs

extract low-level code,

with good performance &

(some) side-channel protection

production code

C/C++

A high performance server for

HTTP, reverse proxy, mail,…

We replace OpenSSL with miTLS & its crypto:

the modified server supports TLS 1.3

with tickets and 0-RTT requests.

We integrate miTLS & its verified crypto

with Internet Explorer.

We run TLS 1.3 sessions with 0RTT

without changing their application code.

Modelling concrete
cryptographic security in F*

This plain interface
says nothing about
the security of
MACs!

This ideal
interface
uses a log to
specify security

Great for F*
verification.

Unrealistic:
tags can be
guessed

𝒃

𝑭

𝑨 𝑭 𝒃

𝑨 |𝑷𝒓 𝑨() = 𝒃 − 𝟏/𝟐|

𝝐 Adv A ≤ 𝝐

Our ideal interface
reflects the security of a
chosen-message game
[Goldwasser’88]

The MAC scheme is
𝝐-UF-CMA-secure
against a class of probabilistic,
computationally bounded
attackers when the game
returns true with probability
at most 𝝐.

UF-CMA programmed in F*

protocol adversary
typed against
RPC interface

concrete system

RPC
protocol

Mac

sample protocol
typed against
ideal MAC interface

Ideal
filter

log-based error correction
making VERIFY returns
false on forgeries

Ideal MAC

Mac

Any p.p.t.
adversary

RPC
protocol

Any p.p.t.
adversary

real interfacereal interface

ideal system

secure RPC

concrete algorithm
assumed UF-CMA computationally

safe too,
with probability 𝟏 − 𝝐

perfectly safe
by typing

≈𝜖

U
F-

C
M

A

ad
ve

rs
ar

y

Authenticated
Encryption

We rely on
type abstraction:

Ideal encryption
never accesses
the plaintext, is
info-theoretically
secure.

We program this game in F*
parameterized by a real
scheme AE and the flag b

We capture its security
using types to keep track of
the content of the log

Same modelling
& verification approach
concrete security: each lossy step
documented by a game and a reduction
(or an assumption) on paper

Standardized complications
- multiple algorithms and

constructions
(crypto agility)

- multiple keys

- conditional security
(crypto strength, compromise)

- wire format, fragmentation, padding

- stateful (stream encryption)

Poor TLS track record
- Many implementation flaws

- Attacks on weak cryptography
(MD5, SHA1, …)

- Attacks on weak constructions
(MAC-Encode-then-Encrypt)

- Attacks on compression

- Persistent side channels

- Persistent truncation attacks

Key 2 Key 3

Key 3Key 1Key 0 (1 sided)

Handshake

AppData

Alert

Plaintext

Handshake

AppData

Alert

Plaintext Key 1

Write channel

Read channel

Key 2

TLS 1.3 gets rid of weak
constructions, encrypts
parts of the handshake,
introduces plenty of
auxiliary keys

AppData
ct = 0x17

Handshake
ct = 0x16

Alert
ct = 0x15

…

plaintext

plaintext 000…ct

ciphertext
App

Dat

a

TLS

1.0

cipherlen

(ℓ + 1)

format parse

ℓ + 1

encrypt decrypt5

ta

g

Record

LHSE

StAE

AEAD

PRF MAC
Verified

Crypto

library

Generic AEAD

construction

Stream Encryption with

sequence numbers

Length-Hiding (padded)

Multiplexed Streams

Sequence of streams

keyed by Handshake

ChaCha2

0
AES

Poly130

5
GHAS

H

Handshake/Alert Application

fragments: d0, d1, d2keys:

k0, k1,…

Generic

We model record-layer
security using a game at
every level of the
construction.

We make code-based
security assumptions on
the crypto primitives
(PRF, MAC)

We obtain security
guarantees at the top-
level API for the TLS
record layer

Client Server

decrypt
encrypt TLS record layer

#2
#1

random

sampling

Client Server

decrypt

ideal encryption log

#0

#1

encrypt table

lookup#2
#1

T

a

g

PRFAEAD Key

IV || 0

Authentication key

PRF

IV || 1

PRF

IV || n

…

……
lengths of

plaintext and

additional data

Ciphertext

(tag)

……

One-time Pad for the

MAC

…

Ciphers (IND-PRF)

Assumed for AES and Chacha20

One-Time MACs (INT-CMA1)

For both GF128 or Poly1305,
we get strong probabilistic security.

Ciphers (IND-PRF)

Modelling:
we use a variant with specialized
oracles for each usage of the resulting
blocks

- as one-time MAC key materials

- as one-time pad for encryption

- as one-time pad for decryption

One-Time MACs (INT-CMA1)

Construction:
authenticated materials and their
lengths are encoded as coefficients of a polynomial
in a field (GF128 or 2^130 -5)

The MAC is the polynomial evaluated
at a random point, then masked.

We get strong probabilistic security.

Given

• a cipher, modelled as
a pseudo-random function

• a field for computing one-time MACs

• injective message encodings

We program and verify a generic
authenticated stream encryption
with associated data.

We show

• safety

• functional correctness

• security (reduction to PRF assumption)

• concrete security bounds for the
3 main record ciphersuites of TLS

AEAD

Stream

Encryption

TLS record

protection

TLS API

LHAE

AES128

AES256

Poly1305

Cipher

IND-

PRF

AES

CBC

Chacha20 GHASH

1-Time MAC

IND-1CMA

AEAD.Encoding

AEAD.Invariant

arithmetic correctness

(field computations)

functional correctness

(low-level assembly)

abstraction

& agility

security

idealization

injectivity

loops & stateful invariants

(reasoning on ideal logs)

TLS-specific mechanisms

• fragmentation

• content multiplexing

• length-hiding, padding

• re-keying

• 0-RTT, 0.5-RTT

many kinds of proofs

not just code safety!

TLS FFI

StatefulLHAE.html
StatefulPlain.html
StatefulPlain.html
StatefulPlain.html
LHAE.html
MAC.html
MAC.html
MAC.html
MAC.html
MAC.html
MAC.html
MAC.html
StatefulLHAE.html
StatefulLHAE.html
StatefulLHAE.html
StatefulLHAE.html
StatefulPlain.html

AEAD

Stream

Encryption

IND-

PRF

IND-1CMA

AEAD.Encoding

AEAD.Invariant

Probabilistic proof

(on paper) in abstract

field + F* verification
Standard

crypto

assumptio

n

F* type-based verification on code

formalizing game-based reduction

Theorem: the 3 main record ciphersuites for TLS
1.2 and 1.3 are secure, except with probabilities

𝑞𝑒 is the number of encrypted records;

𝑞𝑑 is the number of chosen-ciphertext decryptions;

𝑞𝑏 is the total number of blocks for the PRF

StatefulLHAE.html
StatefulPlain.html
MAC.html
StatefulLHAE.html
StatefulLHAE.html
StatefulLHAE.html

Verified High-Assurance
Crypto Libraries

TLS

X.509

HTTPS

RSA SHA

ECDH

Network buffers

Crypto Algorithms

4Q

ASN.1

kreMLin

Verified

source code

1. Compile restricted subset
of verified source code
to efficient C/C++ ; or

2. Use a DSL for
portable verified
assembly code

Authenticate data by

1. Encoding it as a polynomial in the prime field 2130 − 5

2. Evaluating it at a random point: the first part of the key 𝑘
3. Masking the result using the second part of the key 𝑚

Security?

If the sender and the receiver disagree on the data

then the difference of their polynomials is not null.

Its evaluation at a random is 0 with probability
2130

Sample F* code:

the spec for the

multiplicative MAC

used in TLS 1.3

Its verified optimized

implementation for x64

takes 3K+ LOCs

A typical 64-bit arithmetic implementation:

1. Represent elements of the prime field for p = 2130 − 5
using 3 limbs holding 42 + 44 + 44 bits in 64-bit registers

2. Use 𝑎. 2130 + 𝑏 % 𝑝 = 𝑎 + 4𝑎 + 𝑏 % 𝑝 for reductions

3. Unfold loop

Low*: a subset of F* for safe C-style programming

Supports compilation to C, in nearly 1-1 correspondence,

for auditability of our generated code

Features a C-like view of memory (pointer arithmetic with verified safety)

KreMLin: a new compiler
from Low* to C (ICFP’17)

•

Readability, transparency
(code review)

Adoption, maintenance

•

•

•
Monomorphization of dependent types
Data types to flat tagged unions
Compilation of pattern matching
From expressions to statements (hoisting)
Name-disambiguation (C’s block-scoping)
Inlining (in-scope closures, stackInline)

•

As fast as best hand-written

portable C implementations

Vale: extensible, automated assembly language

verification (Usenix’17)

machine model (F*)

type reg = r0 | r1 | ...
type ins =

Mov(dst:reg, src:reg)
| Add(dst:reg, src:reg)
| Neg(dst:reg)
…

instructions

eval(Mov(dst, src), …) = …
eval(Add(dst, src), …) = …
eval(Neg(dst), …) = …
…

semantics

print(Mov(dst, src), …) =
“mov “ + (…dst) + (…src)

print(Add(dst, src), …) = …
…

code generation

Vale source code

procedure mov(…)
requires …
ensures …

{ … }

procedure add(…)
…

machine interface

procedure quadruple(…)
requires 0 <= r0 < 230;
ensures r1 == r0 * 4;

{
mov(r1, r0);
add(r1, r0);
add(r1, r1);

}

program[Mov(r1, r0),
Add(r1, r0),
Add(r1, r1)]

lemma_mov(…);
lemma_add(…);
lemma_add(…);

code proof

Trusted
Computing
Base

mem[eax] ==
SHA(mem[ebx])

crypto spec

functional correctness &

side-channel protection

Vale Poly1305

procedure poly1305_reduce()

…

{

…

And64(rax, d3);

Mov64(h2, d3);

Shr64(d3, 2);

And64(h2, 3);

Add64Wrap(rax, d3);

Add64Wrap(h0, rax);

Adc64Wrap(h1, 0);

Adc64Wrap(h2, 0);

…

}

Bug! This carry was originally missing!

procedure poly1305_reduce() returns(ghost hOut:int)

let

n := 0x1_0000_0000_0000_0000;

p := 4 * n * n - 5;

hIn := (n * n) * d3 + n * h1 + h0;

d3 @= r10; h0 @= r14; h1 @= rbx; h2 @= rbp;

modifies

rax; r10; r14; rbx; rbp; efl;

requires

d3 / 4 * 5 < n;

rax == n - 4;

ensures

hOut % p == hIn % p;

hOut == (n * n) * h2 + n * h1 + h0;

h2 < 5;

{

lemma_BitwiseAdd64();

lemma_poly_bits64();

And64(rax, d3)…Adc64Wrap(h2, 0);

ghost var h10 := n * old(h1) + old(h0);

hOut := h10 + rax + (old(d3) % 4) * (n * n);

lemma_poly_reduce(n, p, hIn, old(d3), h10, rax, hOut); }

And64(rax, d3);

Mov64(h2, d3);

Shr64(d3, 2);

And64(h2, 3);

Add64Wrap(rax, d3);

Add64Wrap(h0, rax);

Adc64Wrap(h1, 0);

Adc64Wrap(h2, 0);

OpenSSL Vale

• AES: OpenSSL with SIMD, AES-NI

• Poly1305 and SHA-256: OpenSSL

non-SIMD assembly language

(same assembly for OpenSSL, Vale)

58

Low
*

Compose the secret-
independent trace theorems of

Low* and Vale

Reconcile the memory
models of Low* and Vale

Low* has a structured memory model

(Each of these regions maps references to values)

Vale memory is a flat array of bytes

Enhance the Low* memory model to also
have a flat array of bytes view and
update it, transparently

Reflect changes performed by the Vale
code in the structured view, allowing for
temporary inconsistencies

Compose the two specs

Goals: End-to-end functional correctness and side-channel resistance

TLS 1.3 Handshake
(Outline)

TLS

RSA SHA

ECDH

Crypto Algorithms

AES

Client Server

Negotiation

Signing

Certificates

TLS API

Record Layer

Protection

Application (HTTPS etc)
Network (TCP)

Key

Schedule

Messages Extensions

Session Log

syntax: parse/format

flights digests

Configuratio

n

OD

H

Has

h

config

& mode shares

keys

HMAC PRF

State

machine

Handshake

Extensions.html
RSA.html
Cert.html
Handshake.html
PRF.html
PRF.html
Handshake.html
Cert.html
Cert.html
Cert.html
Cert.html
Cert.html
Handshake.html

Most of the RFC,
most of the code.

Correctness?
Metaprogramming in F*

Performance?
Intermediate copies
considered harmful.

Security?
Handshake digest
computed on the fly

Example: ClientHello
message

Example: HandshakeLog.recv

high-level formatter
val formatCH:
clientHello ->
bytes

high-level parser
val parseCH:
bytes ->
option clientHello

inverse properties
val injCH:
clientHello ->
Lemma …

high-level type
type clientHello =
| ClientHello:
pv: protocolVersion ->
id: vlbytes1 0 32 ->
cs: seq ciphersuite {…} -> …

low-level validator
val validateCH:
len: UInt32.t ->
input: lbuffer len ->
Stack (option (erased clientHello * UInt32.t))
(requires fun h0 -> live input)
(ensures fun h0 result h1 ->
h0 = h1 /\ match result with
| Some (ch, pos) ->
pos <= len /\
format ch = buffer.read input h0 0..pos-1

| None -> True)

low-level serializer
val serializeCH:
output: buffer ->
len: UInt32.t -> pv: … -> … ->
Heap (option UInt32.t) …
(ensures fun h0 result h1 ->

modifies h0 output.[0..len-1] h1 /\
match result with
| Some pos -> … //idem

erased specification

low-level in-place

code extracted to C

Circular problem: secure
negotiation relies on the
crypto algorithms and keys
being negotiated

Flexibility vs security

New design (draft#17)

Backward compatibility

TLS 1.3 (Full Handshake)
ClientHello
+ key_share -------->

ServerHello
+ key_share

{EncryptedExtensions}
{CertificateRequest*}

{Certificate*}
{CertificateVerify*}

{Finished}
<-------- [Application Data*]

{Certificate*}
{CertificateVerify*}
{Finished} -------->

<-------- [NewSessionTicket]
[Application Data] <-------> [Application Data]

TLS 1.3 (PSK Handshake with 0RTT)
ClientHello
+ key_share*
+ psk_key_exchange_modes
+ pre_shared_key
(Application Data*) -------->

ServerHello
+ pre_shared_key

+ key_share*
{EncryptedExtensions}

{Finished}
<-------- [Application Data*]

(EndOfEarlyData)
{Finished} -------->
[Application Data] <-------> [Application Data]

TLS 1.3 (incorrect key share)
ClientHello
+ key_share -------->

<-------- HelloRetryRequest
ClientHello
+ key_share --------> ...

TLS 1.2 (Full Handshake)
ClientHello -------->

ServerHello
Certificate*

ServerKeyExchange*
CertificateRequest*

<-------- ServerHelloDone
Certificate*
ClientKeyExchange
CertificateVerify*
[ChangeCipherSpec]
Finished -------->

[ChangeCipherSpec]
<-------- Finished

Application Data <-------> Application Data

TLS 1.2 (Abbreviated Handshake)

ClientHello -------->
ServerHello

[ChangeCipherSpec]
<-------- Finished

[ChangeCipherSpec]
Finished -------->
Application Data <-------> Application Data

Start

sent Hello

start 0-RTT

WaitServerHello

WaitFinished1

sent CCS1

WaitFinished2

Complete

sent Finished1

WaitCCS2

sent Finished2

Complete

x

sent Hello2

WaitServerHello2

ReceivedHelloRetryRequest

boxes represent
successive flightsoutput

input
key changes

WaitCCS1

sent CCS2

sent
Finished2

.

WaitFinished1

TLS 1.2

TLS 1.2 resumption

TLS 1.3
retry

TLS 1.3

TLS 1.2
renegotiation

gray states need
not be represented

Client

WaitServerHelloDone

sent Rekey1

WaitRekey2

TLS 1.3
rekeying

sent ServerHelloDone

WaitCCS1

Start

SentServerHello

send Finished1
start 0.5-RTT

WaitFinished2
sent CCS2

sent
Finished2

X

Complete

Received
ClientHello

WaitFinished1

sent HelloRetryRequest

WaitClientHello2

x

sent CCS1

WaitFinished2

Complete

sent Finished1

WaitCCS2

TLS 1.2

resumption

TLS 1.3
retry

TLS 1.3

Serve
r

TLS 1.2
renegotiation

key materials

new secret

prior secret

pre-shared key

Extrac
t

Expan
d

derived secret

Caption:
two kinds of key derivation steps

Diffie-Hellman
shared secret (𝒈𝒙𝒚)

early secret
handshake

secret

master
secret

Encryption

Export
(QUIC)

Integrity

pre-shared keys
for future sessions

Export
(QUIC)

Handshake Integrity

Encryption

EncryptionIntegrity

pre-shared key Diffie-Hellman
shared secret (𝒈𝒙𝒚)

early secret
handshake

secret

master
secret

Encryption

Export
(QUIC)

Integrity

pre-shared keys
for future sessions

Export
(QUIC)

Handshake Integrity

Encryption

EncryptionIntegrity

Our (fresh) crypto model
precisely reflects F* code modularity,
involves a security definition for each color,
supports agility and key compromise.

1. Simple specification

2. Fast exponentiation: square & multiply

3. Blinded implementation

(for side-channel resistance)

Everest: verified drop-in replacements
for the HTTPS ecosystem

• complex, critical, verifiable

• close collaboration: crypto, system, compilers, verification

• new tools: F*, KreMLin, Vale

• safety, functional correctness & crypto security
for standard-compliant system code

Code, papers, details at

https://project-everest.github.io
https://github.com/project-everest
https://mitls.org
https://www.fstar-lang.org

https://project-everest.github.io/
https://github.com/project-everest
https://mitls.org/
https://fstarlang.org/

