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Overview

e Goal: Trust high-level logical propositions instead of executable
testing code

¢ Gain confidence that the right conjecture is being tested
¢ Gain confidence that the testing is thorough

e Means: Automatically map executable testing code (checkers)
to logical propositions
¢ Reasoning about probabilistic programs (generators)
> map them to sets of outcomes

e Evaluation: Application to a number of sizable case studies

¢ Modularity
¢ Scalability
¢ Minimal changes to existing code
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Property-Based Testing

 Popularized by QuickCheck in the FP community
e Achieves a high level of automation
¢ Randomly Generated Data
> No need to maintain test suites
¢ The programs are being tested against specifications

» No need for human oracle

e The user has to write
¢ Generators
> Fine-tuning
> Generation of used defined data types
¢ Checkers

> Programs that test the desired specification
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QuickChick

* Randomized property-based testing framework for Coq
¢ More precisely a port of QuickCheck in Coq

e Checkers need to be executable
¢ No way to directly refute proof goals

e Written in Gallina
e Uses extraction to OCaml for:

¢ Acquiring random seeds
¢+ Efficient execution
¢ Generation of numeric (nat and Z) and boolean values
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The value of counterexamples

¢ QuickChick returns counterexamples for falsifiable conjectures
¢ Support for shrinking
> try to isolate the part of the failing input that triggers the failure

e A counterexample could indicate:
¢ errors in program
> fix bug
¢ errors in specifications

» reformulate checker

¢ Valuable feedback to understand and fix errors
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But ...

How much confidence can we have about the program under test
adhering its specifications, when the testing cannot find any more
bugs?
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Reasons for inadequate testing

Bugs in generators

¢ May fail to cover sufficiently the input space
¢ Some counterexamples may never generated

e May fail to satisfy preconditions of conditional specifications
¢ A big portion of the generated data can be discarded

Bugs in checkers

e May fail to capture the desired specifications
¢ Too strong preconditions, faulty definitions, . . .
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VeriQuickChick

Idea

¢ Extend QuickChick so it automatically relates
checkers to Coq propositions that capture the
conjecture under test.

e Manually prove these propositions equivalent to
the desired high-level declarative specifications

EC

Guarantee

If we could enumerate the output space of the generators used to by
the checker without producing any counter examples then we would
have a proof by exhaustion for the desired high-level specification
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Strategy |

e Map generators to sets of outcomes, i.e. the sets of values that
have non-zero chance of being generated
¢ Use logical predicates to represent sets

» Anelementa : A belongs to a set that is represented by
P : A — Propifanonlyif P a

e Map checkers to logical propositions using the sets of outcomes
of the generators that they use
¢ If a generator G for type A is mappedto S : A — Prop then
forAll G fismappedtoV z, S o — f = = true
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Strategy |l

e Use the sets of outcomes semantics of generators to prove:
¢ soundness
> All the values that are generated satisfy a certain predicate
¢ completeness
> All the values that satisfy a certain predicate can be generated
¢ correctness

> soundness + completeness

e Use the logical predicates obtained from checkers to prove that
they correspond the desired declarative specification
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Generators

e Generators are written using a library of combinators (e.g. bind,
return, elements, frequency, . ..)
¢ Primitive combinators: they depend from the internal generator
representation
¢ Non-primitive combinators: they are built on top of other
combinators

¢ Overload combinators with two kinds of semantics
¢ actual generation semantics
¢ sets of outcomes semantics
e Abstract from the generator representation: Make generators
parametric in the generator type constructor

¢ Instantiate them with the set representation to map them to sets
of outcomes
¢ or with the actual generator representation to generate data
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Set Representation

| |Definition Pred (A: Type) : Type := A — Prop.

2

3 |Definition set_eq {A} (ml m2 : Pred A) :=V A, ml A < m2A.
4

5 | Infix " +— " :=set_eq.

e Very compact set representation

¢ Easily models infinite sets
¢ Proof-oriented: facilitates reasoning for set membership

e Primitive combinators need to be implemented differently for
each type constructor
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Type classes to the rescue

O ® N o6 U A W N —

Class GenMonad (M : Type — Type) :=

{

bindGen: V {A B: Type}, MA — (A— MB)— MB;

returnGen: V {A : Type}, A — MA;

fmapGen: V {A B: Type}, (A — B)— MA— MB;

choose: V {A : Type} {Random A}, A * A — MA;

sized: V {A: Type}, (nat — MA) —» MA;

suchThatMaybe: V {A : Type}, M A — (A — bool) —
M (option A);

All the primitive combinators are included in the type class
Both generator type constructors are instances of this type class
The set of outcome definitions of the primitive combinators is
axiomatic

The methods of the type class are implicitly parameterized by
the type constructor and the corresponding instance
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Axioms

returnGena = {z |z=ua}

bindGen G f

Il
—~
&

139, Gg A fgat«— ] fyg
geG

fmapGen fG = {z |39, Gg N z=f g}

choose (lo,hi) = {z |lo<z<hi}

sized f = { =z |E|n,fn93}<—>Ufn
neN

suchThatMaybe g P = {z |z = None V
Jy, x =Somey N gy N Py}
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Non-primitive combinators

e Non-primitive combinators are built on top of the interface
provided by the type class

¢ We move the definitions of non-primitive combinators inside a
section in which we assume in context a type constructor which
is instance of the AbstractGen type class.

¢ No modification to their code is required

e Primitive combinators used are automatically instantiated with
the type constructor and the instance assumed in context
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Non-primitive combinators

Example

g
Section Utilities.
Context {Gen : Type — Type}

|

2

3 {H : GenMonad Gen}.

4

5 Definition oneof {A : Type} (def: Gen A) (gs : list (Gen A))
6 Gen A =

7 bindGen (choose (0, length gs — 1)) (funn =

8 nth def gs n).

9

13 | End Utilities.

-
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Lemma Library for Non-primitive Combinators

¢ Using the sets of outcomes semantics we prove correctness for
each non-primitive generator combinator

e These lemmas can be used in proofs about user defined
generators that use the combinators

¢ less proof duplication and reusability
¢ independence from the implementation of combinators
¢ compositional and more robust proofs
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Lemma Library for Non-primitive Combinators

Examples

0 O NN W N —

o X wwm - o

17

Lemma vector0f_equiv:
vV {A : Type} (k : nat) (g : Pred B),
vectorOf k g «+— funl = (lengthl=kAVx Inxl— gx).

Lemma 1istOf_equiv:
V {A : Type} (g : Pred A),
list0f g +— funl= (V¥ x,Inx1— gx).

Lemma elements_equiv:
vV {A} (1: list A) (def : A),
(elements def 1) «— (fune = InelV (1 =nil A e = def)).

Lemma frequency_equiv:
vV {A} (1 : list (nat * Pred A)) (def : Pred A),
(frequency def 1) «+—
fun e = (3 (n: nat) (g : Pred A),
In(n, g 1 Age An<>0) V
((1=nil VVx Inx1l — fstx=0) Adef e).
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Checkers

e Checkers are essentially generators of testing results

e We map them to a proposition that holds iff all the results that
belong to the sets of outcomes are successful

¢ The result of a test input is successful if it is equal with the
expected

e The simplest form of checkers are boolean predicates

e More complex checkers can be written by utilizing property
combinators
¢ change the expected outcome, change default generators,
instrumentation
¢ We provide a library of correctness lemmas
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Checkers

e Checkers are represented internally with the type operator
Property.

|{befinitionproperty(Gen: Type — Type) := Gen QProp. }

e We use the function semProperty to map them to logical
propositions

Definition semProperty (P : Property Pred) : Prop := J

2 VvV gp, P qp — success gp = true.
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Testable type class

©® N o A W N -

e Testable type class provides a canonical way of turning types

that can be tested into a Property

¢ Anything testable can be mapped to a proposition

Class Testable {Gen :

{

.

Definition semTestable {A : Type} {_ :

property: A — Property Gen

Prop =
semProperty (property a).

Type — Type} (A : Type) : Type :=

Testable A} (a : A)
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Lemma Library for Checker Combinators |

© N o AW N —

forAll and implication Lemmas

Lemma semForAll:
vV {A prop: Type} {H1 : Testable prop} {H2 : Show A} (gen : Pred A)
(f: A — prop),
semProperty (forAll gen f) <> Va: A, gen a — semTestable (f a).

Lemma semImplication:
vV {prop : Type} {H: Testable prop} (p : prop) (b : bool),
semProperty (b ==>p) <+ b =true — semTestable p.
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Lemma Library for Checker Combinators ||

Lemmas for specific testable types

s B
Lemma semBool:
V (b : bool), semTestableb <> b= true.

Lemma semFun:
V {A prop: Type} {H1 : Show A} {H2 : Arbitrary A} {H3 : Testable prop}
(f : A — prop),
semTestable f <+ V (a: A), arbitrary a — semTestable (f a).

© VW ® N O U AW N —

arbitrary here is a generator for elements of type A. It
s a method of the Arbitrary type class that provides a
common interface for generation. Testable type class

use by default these generators to derive a Property
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Lemma Library for Checker Combinators l|

VO NV A W N —

)

Identity Lemmas

Some combinators do not affect the testing outcome. They are used
for instrumentation purposes.

~
Lemma semCallback_id:

V {prop : Type} {H : Testable prop} (cb : Callback) (p : prop),
semProperty (callback cb p) <+ semTestable p.

Lemma semWhenFail_id:
V {prop : Type} {H : Testable prop} (s : String.string) (p : prop),
semProperty (whenFail s p) <> semTestable p.

Lemma semPrintTestCase_id:
vV {prop: Type} {H: Testable prop} (s: String.string) (p : prop),
semProperty (printTestCase s p) <> semTestable p.
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Red-Black Trees

A w oo -

A self-balancing data structure

Binary trees with an additional color label to each node

Inductive color := Red | Black.
Inductive tree :=
| Leaf : tree
| Node : color — tree — nat — tree — tree.

The should preserve the following invariants
¢ The root is always black
¢ The leaves are empty and black
¢ For each node the path to each possible leaf has the same
number of black nodes
¢ Red nodes can only have black children

If the invariants are preserved then the longest path from the
root is at most two times longer that the shortest

The insert method should preserve the invariant
¢ We want to test that!
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The Red-Black Invariant

~
Inductive is_redblack: tree — color — nat — Prop:=

| IsRB_leaf: V ¢, is_redblack Leaf c 0

| IsRB_r: Vn tl tr h,
is_redblack tl Red h — is_redblack tr Redh —
is_redblack (Node Red tl n tr) Black h

| IsRB_b: V ¢ n tl tr h,
is_redblack tl Black h — is_redblack tr Blackh —
is_redblack (Node Black t1 n tr) c (S h).

® N o LA W N —

e is_redblack t c h means that t is a subtree of a
well-formed RB tree

¢ in color-context c (the color of the parent node)
¢ with black-height t (# black nodes in each path to a leaf)

o A tree t satisfies the RB invariant iff:

exists h, is_redblack t h Red
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The Red-Black Invariant

e insert should preserve the invariant:

Vxth, is_redblack h Red t —
Jh/, is_redblack h' Red (insert z t)

¢ In order to be able to test this we need

¢ A decision procedure to determine whether a tree satisfies the
RB invariant
¢ A generator for RB trees
» Should generate only trees that satisfy the invariant
> Filtering out ill-formed RB trees is not an option
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Executable Definitions

© N o U AW N —

N oo X wi =0 v

We need a decisional procedure to determine whether a tree

satisfies the RB invariant.

Fixpoint is_redblack_dec (t : tree) (c: color) : bool :=

match t

with

| Leaf = true
| Node ¢' tl _ tr =
match ¢' with

end
end.

Black =
(black_height_dec tl == black_height_dec tr) &&
is_redblack_dec tl Black && is_redblack_dec tr Black
Red =
match ¢ with
| Black =
(black_height_dec t1l == black_height_dec tr) &&
is_redblack_dec t1l Red && is_redblack_dec tr Red
| Red = false
end
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Executable Definitions

Does it correspond to the inductive definition? Yes!

| | Lemma is_redblack_exP :
2 V (t : tree) (c : color),
3 reflect (3 n, is_redblackt c n) (is_redblack_dec t c).
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Red-black Tree Generator

~
Section Generators.

Context {Gen : Type — Type}
{H: GenMonad Gen}.

Definition genColor := elements Red [Red; Black].

Fixpoint genRBTree_height (b : nat) (c : color) :=
match h with
| 0 =
match ¢ with
| Red = returnGen Leaf
| Black = oneof (returnGen Leaf)
[returnGen Leaf;

bindGen arbitraryNat (fun n =
returnGen (Node Red Leaf n Leaf))]

® N o U AW N —

G X W = oo

end
| Sh= ..
end.

S ®» 3 o

Definition genRBTree := sized (fun h = genRBTree_height h Red).

NN
- o

End Generators.
N\

N
[N
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Correctness for Red-black Tree Generator

We want to prove that the generator generates only trees that
satisfy the RB invariant and also that it can generate all the possible
trees that satisfy the RB invariant.

| | Lemma genRBTree_correct:
2 genRBTree +— (funt = Jh, is_redblack t Red h).

We need an intermediate lemma

I | Lemma genRBTree_height_correct:
2 Vch,
3 (genRBTree_height hc) <— (funt = is_redblack t ch).
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Checker

We can now write the checker for the property:

-

Section Checker.

Context {Gen : Type — Type}
{H: GenMonad Gen}.

Definition insert_is_redblack_checker : Property Gen :=
forAll arbitraryNat (fun n =
forAll genRBTree (fun t =
is_redblack_dec t Red ==> is_redblack_dec (insert n t) Red)).

© Vv ® N O U AW N —

End Checker.
N\ J
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Correctness for Checker

.. and prove that it indeed tests the right thing

Definition insert_is_redblack :=

V x s h, is_redblack s Red h — Jh', is_redblack (insert x s) Red h'

Lemma insert_is_redblack_checker_correct:

I
2
3
4
5 semProperty insert_is_redblack_checker <+ insert_is_redblack.
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Conclusion

e We provide a mechanism to verify that a conjecture under test
conforms to a high-level specification
¢ We facilitate reasoning for probabilistic programs
¢ set of outcomes abstraction

e We proved high-level specifications about combinators
¢ Proofs: 600 LOC
¢ First step towards a fully verified PB testing framework
e We applied our methods to verify complex generators used to
test an IFC machine

¢ Generators: 350 LOC / Proofs: 900 LOC
¢ ability to verify existing code

¢ scalability

¢ modularity

¢ Although reduced, manual effort is still required for the proofs

45/47



Future Work

¢ Remove the axioms by proving that the sets of outcomes of
primitive combinators are indeed the those we assume

¢ Fully verified PB testing framework
¢ This would require deeper integration in Coq

» Reasoning about random seed and generators of numeric and
boolean values

e Verification of a framework for synthesizing generators from
specifications
¢ automation + formal guarantees
e Facilitate reasoning for the underlying probability distibutions
¢ instantiate generators with probability monad
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Thank You!

Questions?
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Checkers (internals) |

A w N =

~
Record Result :=

MkResult {
ok : option bool; (* Testing outcome *)
expect : bool; (* Ezpected outcome *)
(* Other fields used for tracing *)
}

Inductive Rose (A : Type) : Type :=
MkRose : A — Lazy (list (Rose A)) — Rose A.

Record QProp : Type := MkProp

{
).

Definition Property (Gen : Type — Type) := Gen QProp.

unProp : Rose Result




Checkers (internals) Il

g
Definition resultSuccessful (r : Result) : bool :=

match r with
| MkResult (Some res) expected _ _ _ _ =
res == expected
| _ = true
end.

Definition success qp =
match qp with
| MkProp (MkRose res _) = resultSuccessful res
end.

Definition semProperty (P : Property Pred) : Prop :=

V gp, P gqp — success gp = true.

.
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