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The title of this talk is “Type-checking Zero-knowledge” ...



Zero-knowledge

However, I’m not going to talk about cryptography, or how 
zero-knowledge proofs are implemented. For me that’s 
black magic anyway.



encryption

signature

hash

designer’s toolbox

zero-knowledge

Security Protocols

Instead, I’m going to take a more abstract view [click], and 
investigate how zero-knowledge proofs can be used as 
building blocks for designing large security protocols. 
When designing security protocols it is often convenient to 
look at the di"erent cryptographic primitives as fully 
reliable black boxes, [click] that can be put together like 
the pieces of a puzzle in order to achieve the desired 
security goals.



Zero-knowledge Proofs

# Powerful primitives

• Prove the validity of a statement without revealing 
anything else

• For instance, prove to know an object with certain 

properties without revealing this witness

# Early constructions general, but terribly inefficient

• Very limited practical impact

# More recent research provided

• Efficient constructions for special classes of statements

• Constructions for non-interactive zero-knowledge

- The zero-knowledge proofs are very powerful and exciting 
cryptographic primitives. However, for the purpose of this talk, 
all you need to know about them is that they allow a prover to 
show the validity of a statement without revealing any other 
information than that the statement is true. For instance, one can 
prove the knowledge of an object with certain properties without 
revealing this witness.
- [click] The early constructions for zero-knowledge were very 
general, but also very ine$cient, so they had very limited 
practical impact.
- [click] However, the more recent research on zero-knowledge 
provided e$cient constructions for special classes of statements, 
as well as constructions for non-interactive zero-knowledge 
proofs



p2p (PseudoTrust)

e-voting (Civitas)

“trusted” computing (DAA)

Applications that use ZK
unique security features of ZK allows 

designing protocols fulfilling seemingly 
conflicting requirements

As a consequence, many emerging application areas use 
zero-knowledge proofs. I’m going to focus on 3 such 
areas: electronic voting, trusted computing and peer-to-
peer protocols. In all these areas the unique security 
features of zero-knowledge proofs allow the design of 
protocols that fulfill seemingly conflicting requirements
- For instance when designing electronic voting protocols we need to preserve the 
privacy of the voters (so that nobody is able to find out how any of the voters voted -- in 
order to prevent vote buying or coercion), but at the same time we want the whole 
election process to be verifiable (we want to allow anyone to independently double-check 
the correctness of the elections).
- In certain trusted computing protocols we want users to remotely attest that their 
platform is certified and has not been tampered, while preserving the anonymity of the 
users.
- Similarly, in the case of certain peer-to-peer protocols we want users to be able to 
exchange information in a trusted way, without revealing the identity of the users.

So zero-knowledge proofs are the critical building block 
for many such useful protocols.
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As a consequence, many emerging application areas use 
zero-knowledge proofs. I’m going to focus on 3 such 
areas: electronic voting, trusted computing and peer-to-
peer protocols. In all these areas the unique security 
features of zero-knowledge proofs allow the design of 
protocols that fulfill seemingly conflicting requirements
- For instance when designing electronic voting protocols we need to preserve the 
privacy of the voters (so that nobody is able to find out how any of the voters voted -- in 
order to prevent vote buying or coercion), but at the same time we want the whole 
election process to be verifiable (we want to allow anyone to independently double-check 
the correctness of the elections).
- In certain trusted computing protocols we want users to remotely attest that their 
platform is certified and has not been tampered, while preserving the anonymity of the 
users.
- Similarly, in the case of certain peer-to-peer protocols we want users to be able to 
exchange information in a trusted way, without revealing the identity of the users.

So zero-knowledge proofs are the critical building block 
for many such useful protocols.



Verifying Protocols Using ZK

# No verification tool for protocols using ZK

# Security protocols are hard to get right

# Automated verification can prevent errors

# Our goal

• To automatically analyze protocols using ZK

in an efficient and scalable way

# We built first type system for zero-knowledge

However, when we started this, there was no automated 
verification tool for protocols using ZK as primitive
- In general, security protocols are hard to get right, and 
automated verification can really help protocol designers 
prevent high-level errors
- So our goal was: to automatically analyze protocols using 
zero-knowledge proofs in an e!cient and scalable way
- In order to achieve this, we built the first type system for 
zero-knowledge



# Type-checking fully automated and efficient

# Compositional therefore scalable

Type System

 This code is safe  This code is safe



# Type-checking fully automated and efficient

# Compositional therefore scalable

# Predictable termination behavior

# User needs to provide annotations (no free lunch)

# in certain cases these can be automatically inferred

Type System

 The protocol is secure



Type-checking DAA
(Direct Anonymous Attestation)

In the reminder of this talk, I’m going to show how our type 
system works on an example;
and the example I chose is called the Direct Anonymous 
Attestation protocol, or DAA.



DAA (Direct Anonymous Attestation)

The user wants to authenticate a 
message m by proving that her platform 
has a valid TPM inside (attestation) ...

... but no other party should learn which 
TPM is used to authenticate m (anonymity)

[Brickell, Camenisch & Chen, CCS 2004]



ftpm 
(secret TPM identifier)

Issuer

Direct Anonymous Attestation (DAA)

!!! Mention: secret TPM identifier is also called “f value”



Blind signature on ftpm

Joining Protocol
The user receives a certificate of ftpm from the issuer

Issuer

Direct Anonymous Attestation (DAA)

!!! Mention: secret TPM identifier is also called “f value”



Verifier

sign(ftpm, kI)

Signing Protocol
The user proves the knowledge of a certificate for his 

secret TPM identifier ftpm ... without revealing it!

Zero-knowledge proof

Issuer

Direct Anonymous Attestation (DAA)

!!! Mention: secret TPM identifier is also called “f value”



Verifier

sign(ftpm, kI)

Zero-knowledge proof

Issuer

Direct Anonymous Attestation (DAA)

“the user knows a secret identifier and a certificate, 
and the certificate is a valid signature made by the 

issuer on the identifier”

!!! Mention: secret TPM identifier is also called “f value”



“the user knows a secret identifier and a certificate, 
and the certificate is a valid signature made by the 

issuer on the identifier”

sign(ftpm, kI)

Zero-knowledge proof

Idealization of Zero-knowledge

Prover Verifier
non-interactive

[Backes, Ma"ei & Unruh, S&P 2008] [Backes & Unruh, CSF 2008]

In order construct a formal specification of DAA in a process 
calculus (with the standard DY assumptions), we need a way 
to express zero knowledge proofs.



                           

sign(ftpm, kI)

Zero-knowledge proof

Idealization of Zero-knowledge

Prover Verifier

[Backes, Ma"ei & Unruh, S&P 2008] [Backes & Unruh, CSF 2008]

zkchk(α2,β1)=α1(ftpm, sign(ftpm, kI); vk(kI), m)

In order construct a formal specification of DAA in a process 
calculus (with the standard DY assumptions), we need a way 
to express zero knowledge proofs.



                           

sign(ftpm, kI)

Zero-knowledge proof

Idealization of Zero-knowledge

 secret 
witnesses

Prover Verifier

[Backes, Ma"ei & Unruh, S&P 2008] [Backes & Unruh, CSF 2008]

zkchk(α2,β1)=α1(ftpm, sign(ftpm, kI); vk(kI), m)

In order construct a formal specification of DAA in a process 
calculus (with the standard DY assumptions), we need a way 
to express zero knowledge proofs.



                           

sign(ftpm, kI)

Zero-knowledge proof

Idealization of Zero-knowledge

 public 
messages 

Prover Verifier

[Backes, Ma"ei & Unruh, S&P 2008] [Backes & Unruh, CSF 2008]

zkchk(α2,β1)=α1(ftpm, sign(ftpm, kI); vk(kI), m)

In order construct a formal specification of DAA in a process 
calculus (with the standard DY assumptions), we need a way 
to express zero knowledge proofs.



chk(sign(ftpm, kI), vk(kI)) = ftpm

                           

sign(ftpm, kI)

Zero-knowledge proof

Idealization of Zero-knowledge

statement

Prover Verifier

[Backes, Ma"ei & Unruh, S&P 2008] [Backes & Unruh, CSF 2008]

zkchk(α2,β1)=α1(ftpm, sign(ftpm, kI); vk(kI), m)

α1α2 β1

In order construct a formal specification of DAA in a process 
calculus (with the standard DY assumptions), we need a way 
to express zero knowledge proofs.



chk(sign(ftpm, kI), vk(kI)) = ftpm

                           

sign(ftpm, kI)

Zero-knowledge proof

Idealization of Zero-knowledge

Prover Verifier

Verification:

[Backes, Ma"ei & Unruh, S&P 2008] [Backes & Unruh, CSF 2008]

zkchk(α2,β1)=α1(ftpm, sign(ftpm, kI); vk(kI), m)

α1α2 β1

In order construct a formal specification of DAA in a process 
calculus (with the standard DY assumptions), we need a way 
to express zero knowledge proofs.



chk(sign(ftpm, kI), vk(kI)) = ftpm

                           

sign(ftpm, kI)

Zero-knowledge proof

Idealization of Zero-knowledge

Prover Verifier

Verification: %
[Backes, Ma"ei & Unruh, S&P 2008] [Backes & Unruh, CSF 2008]

zkchk(α2,β1)=α1(ftpm, sign(ftpm, kI); vk(kI), m)

ftpmsign(ftpm, kI) vk(kI)

In order construct a formal specification of DAA in a process 
calculus (with the standard DY assumptions), we need a way 
to express zero knowledge proofs.



DAA Signing Protocol (simplified)

Prover Verifier

zkchk(α2,β1)=α1(ftpm, sign(ftpm, kI); vk(kI), m)

matching will
help typing

new kI

new ftpm

Prover | Verifier | Issuer

Prover = new m
out(c, zkchk(α2,β1)=α1(ftpm, sign(ftpm, kI); vk(kI), m))

Verifier = in(c, x).
let ym = verchk(α2,β1)=α1(x; vk(kI)) then

!!! DAA extremely simplified in my example -- just the 
signing protocol



Security Annotations

authorization policy
(in some logic)

Prover = new m
assume Send(ftpm, m) |
out(c, zkchk(α2,β1)=α1(ftpm, sign(ftpm, kI); vk(kI), m))

assume ∀m. (∃xf . Send(xf , m) ∧OkTPM(xf ) ⇒ Authenticate(m) |
new kI

new ftpm

Prover | Verifier | Issuer

Prover Verifier

zkchk(α2,β1)=α1(ftpm, sign(ftpm, kI); vk(kI), m)

Verifier = in(c, x).
let ym = verchk(α2,β1)=α1(x; vk(kI)) then
assert Authenticate(ym)

Safety
Asserts are entailed by 

the current assumes

!!! In the authorization policy “OkTPM(xf)” is assumed by 
the Issuer

!!! The property verified by our type system is that in all 
protocol runs the assertions are logically entailed by the 
current assumptions



Verifier = in(c, x).
let ym = verchk(α2,β1)=α1(x; vk(kI)) then

assume ∀m. (∃xf . Send(xf , m) ∧OkTPM(xf ) ⇒ Authenticate(m) |
new kI

new ftpm

Prover | Verifier | Issuer

Prover = new m
assume Send(ftpm, m) |
out(c, zkchk(α2,β1)=α1(ftpm, sign(ftpm, kI); vk(kI), m))

Basic Types

[Fournet, Gordon & Ma"eis, CSF 2007]

assert Authenticate(ym)

!!! When checking a signature with the corresponding 
verification key, we can actually infer that the signed 
message is of type Private and the OkTPM predicate holds 
for this message.

!!! However, in the DAA protocol we do not send the 
signature to the verifier so that he can directly check it. We 
only prove to know such a valid signature.



Verifier = in(c, x).
let ym = verchk(α2,β1)=α1(x; vk(kI)) then

: Un

assume ∀m. (∃xf . Send(xf , m) ∧OkTPM(xf ) ⇒ Authenticate(m) |
new kI

new ftpm

Prover | Verifier | Issuer

Prover = new m
assume Send(ftpm, m) |
out(c, zkchk(α2,β1)=α1(ftpm, sign(ftpm, kI); vk(kI), m))

Basic Types

[Fournet, Gordon & Ma"eis, CSF 2007]

Type of 

messages known to 

the attacker

assert Authenticate(ym)

!!! When checking a signature with the corresponding 
verification key, we can actually infer that the signed 
message is of type Private and the OkTPM predicate holds 
for this message.

!!! However, in the DAA protocol we do not send the 
signature to the verifier so that he can directly check it. We 
only prove to know such a valid signature.



Verifier = in(c, x).
let ym = verchk(α2,β1)=α1(x; vk(kI)) then

: Un

: Private

assume ∀m. (∃xf . Send(xf , m) ∧OkTPM(xf ) ⇒ Authenticate(m) |
new kI

new ftpm

Prover | Verifier | Issuer

Prover = new m
assume Send(ftpm, m) |
out(c, zkchk(α2,β1)=α1(ftpm, sign(ftpm, kI); vk(kI), m))

Type of messages 

unknown to the attacker

Basic Types

[Fournet, Gordon & Ma"eis, CSF 2007]

assert Authenticate(ym)

!!! When checking a signature with the corresponding 
verification key, we can actually infer that the signed 
message is of type Private and the OkTPM predicate holds 
for this message.

!!! However, in the DAA protocol we do not send the 
signature to the verifier so that he can directly check it. We 
only prove to know such a valid signature.



Verifier = in(c, x).
let ym = verchk(α2,β1)=α1(x; vk(kI)) then

: Un

: SigKey(〈xf : Private〉{OkTPM(xf )})
: Private

assume ∀m. (∃xf . Send(xf , m) ∧OkTPM(xf ) ⇒ Authenticate(m) |
new kI

new ftpm

Prover | Verifier | Issuer

Prover = new m
assume Send(ftpm, m) |
out(c, zkchk(α2,β1)=α1(ftpm, sign(ftpm, kI); vk(kI), m))

Basic Types

[Fournet, Gordon & Ma"eis, CSF 2007]

Type of keys used 

to sign Private messages for which 

OkTPM holds

assert Authenticate(ym)

!!! When checking a signature with the corresponding 
verification key, we can actually infer that the signed 
message is of type Private and the OkTPM predicate holds 
for this message.

!!! However, in the DAA protocol we do not send the 
signature to the verifier so that he can directly check it. We 
only prove to know such a valid signature.



Verifier = in(c, x).
let ym = verchk(α2,β1)=α1(x; vk(kI)) then

: Un

: SigKey(〈xf : Private〉{OkTPM(xf )})
: Private

assume ∀m. (∃xf . Send(xf , m) ∧OkTPM(xf ) ⇒ Authenticate(m) |
new kI

new ftpm

Prover | Verifier | Issuer

Prover = new m
assume Send(ftpm, m) |
out(c, zkchk(α2,β1)=α1(ftpm, sign(ftpm, kI); vk(kI), m))

Basic Types

[Fournet, Gordon & Ma"eis, CSF 2007]

assert Authenticate(ym)

The type of the key allows us to “transfer” 
predicates from the prover to the verifier!

!!! When checking a signature with the corresponding 
verification key, we can actually infer that the signed 
message is of type Private and the OkTPM predicate holds 
for this message.

!!! However, in the DAA protocol we do not send the 
signature to the verifier so that he can directly check it. We 
only prove to know such a valid signature.



Verifier = in(c, x).
let ym = verchk(α2,β1)=α1(x; vk(kI)) then

: Un

: SigKey(〈xf : Private〉{OkTPM(xf )})
: Private

assume ∀m. (∃xf . Send(xf , m) ∧OkTPM(xf ) ⇒ Authenticate(m) |
new kI

new ftpm

Prover | Verifier | Issuer

Prover = new m
assume Send(ftpm, m) |
out(c, zkchk(α2,β1)=α1(ftpm, sign(ftpm, kI); vk(kI), m))

Basic Types

[Fournet, Gordon & Ma"eis, CSF 2007]

assert Authenticate(ym)

But, the verifier can’t use the key to check a 
certificate he never receives.

Worse, ZK don’t necessarily rely on keys!

!!! When checking a signature with the corresponding 
verification key, we can actually infer that the signed 
message is of type Private and the OkTPM predicate holds 
for this message.

!!! However, in the DAA protocol we do not send the 
signature to the verifier so that he can directly check it. We 
only prove to know such a valid signature.



Typing Zero-knowledge Proofs

Our solution:
User gives a type to each statement proved by ZK

!!! Don’t panic ... this is the only ZK type I’m going to 
show !!!
- For each statement in the protocol the user needs to 
annotate such a type
- The logical formula that is going to be transfered by the 
proof - where the private messages are existentially 
quantified



Typing Zero-knowledge Proofs

Type of 
public messages

Prover Verifier

ZKchk(α2,β1)=α1 (〈yk : VerKey(. . .), ym : Un〉{∃xf , xs.Send(xf , ym) ∧ OkTPM(xf )})

zkchk(α2,β1)=α1(ftpm, sign(ftpm, kI); vk(kI), m)

!!! Don’t panic ... this is the only ZK type I’m going to 
show !!!
- For each statement in the protocol the user needs to 
annotate such a type
- The logical formula that is going to be transfered by the 
proof - where the private messages are existentially 
quantified



Typing Zero-knowledge Proofs

Logical formula where
the secret witnesses are 
existentially quantified

Prover Verifier

ZKchk(α2,β1)=α1 (〈yk : VerKey(. . .), ym : Un〉{∃xf , xs.Send(xf , ym) ∧ OkTPM(xf )})

zkchk(α2,β1)=α1(ftpm, sign(ftpm, kI); vk(kI), m)

!!! Don’t panic ... this is the only ZK type I’m going to 
show !!!
- For each statement in the protocol the user needs to 
annotate such a type
- The logical formula that is going to be transfered by the 
proof - where the private messages are existentially 
quantified



Type-checking the Prover

 Type of public messages

Γ = . . .
kI : SigKey(〈xf : Private〉{OkTPM(xf )}),
m : Un,
. . .
OkTPM(ftpm),
Send(ftpm, m)

ZKchk(α2,β1)=α1

(
〈yk : VerKey(〈x : Private〉{OkTPM(x)}), ym : Un〉

{∃xf , xs.Send(xf , ym) ∧ OkTPM(xf )}

)

Prover = . . .
out(c, zkchk(α2,β1)=α1(ftpm, sign(ftpm, kI); vk(kI), m))

!!! Begin !!! Since type-checking is compositional we are 
going to check the prover and the verifier independently. 
We start with the prover.

!!! the type system ensures that the formula in the ZK type 
is entailed in the prover’s environment



Type-checking the Prover

 Logical formula entailed
 Type of public messages

Γ = . . .
kI : SigKey(〈xf : Private〉{OkTPM(xf )}),
m : Un,
. . .
OkTPM(ftpm),
Send(ftpm, m)

ZKchk(α2,β1)=α1

(
〈yk : VerKey(〈x : Private〉{OkTPM(x)}), ym : Un〉

{∃xf , xs.Send(xf , ym) ∧ OkTPM(xf )}

)

Prover = . . .
out(c, zkchk(α2,β1)=α1(ftpm, sign(ftpm, kI); vk(kI), m))%

!!! Begin !!! Since type-checking is compositional we are 
going to check the prover and the verifier independently. 
We start with the prover.

!!! the type system ensures that the formula in the ZK type 
is entailed in the prover’s environment



Type-checking the Verifier

Γ = . . .
kI : SigKey(〈xf : Private〉{OkTPM(xf )}),
. . .
∀m.((∃xf .Send(xf , m) ∧OkTPM(xf ) ⇒ Authenticate(m)),

ZKchk(α2,β1)=α1

(
〈yk : VerKey(〈x : Private〉{OkTPM(x)}), ym : Un〉

{∃xf , xs.Send(xf , ym) ∧ OkTPM(xf )}

)

assert Authenticate(ym)

If verification succeeds, can we assume the formula in ZK type?

In general not, the proof can come from untyped adversary!

Verifier = in(c, x).
let ym = verchk(α2,β1)=α1(x; vk(kI)) then

!!! TODO: relate this to signatures? there checking the 
signature with the verification key of the sender gives you 
strong guarantees ... we would like to have the same for zk, 
but it doesn’t seem evident how to do that



Type-checking the Verifier

Conceptual issue
How can we know whether the zero-

knowledge proof comes from an honest 
participant or from the adversary?!

ZKchk(α2,β1)=α1

(
〈yk : VerKey(〈x : Private〉{OkTPM(x)}), ym : Un〉

{∃xf , xs.Send(xf , ym) ∧ OkTPM(xf )}

)



chk(xs, vk(kI)) = xf

Type-checking the Verifier

Γ = . . .
kI : SigKey(〈xf : Private〉{OkTPM(xf )}),
. . .
∀m.((∃xf .Send(xf , m) ∧OkTPM(xf ) ⇒ Authenticate(m)),

ZKchk(α2,β1)=α1

(
〈yk : VerKey(〈x : Private〉{OkTPM(x)}), ym : Un〉

{∃xf , xs.Send(xf , ym) ∧ OkTPM(xf )}

)

assert Authenticate(ym)

β1α2 α1

xs

vk(kI)

xf

The statement 
instantiated with the matched 

messages is valid
(by the semantics)

Verifier = in(c, x).
let ym = verchk(α2,β1)=α1(x; vk(kI)) then



chk(xs, vk(kI)) = xf

Type-checking the Verifier

Γ = . . .
kI : SigKey(〈xf : Private〉{OkTPM(xf )}),
. . .
∀m.((∃xf .Send(xf , m) ∧OkTPM(xf ) ⇒ Authenticate(m)),

ZKchk(α2,β1)=α1

(
〈yk : VerKey(〈x : Private〉{OkTPM(x)}), ym : Un〉

{∃xf , xs.Send(xf , ym) ∧ OkTPM(xf )}

)

assert Authenticate(ym)

xs vk(kI) xf

The statement 
instantiated with the matched 

messages is valid
(by the semantics)

Verifier = in(c, x).
let ym = verchk(α2,β1)=α1(x; vk(kI)) then



chk(xs, vk(kI)) = xf

Type-checking the Verifier

Γ = . . .
kI : SigKey(〈xf : Private〉{OkTPM(xf )}),
. . .
∀m.((∃xf .Send(xf , m) ∧OkTPM(xf ) ⇒ Authenticate(m)),

ZKchk(α2,β1)=α1

(
〈yk : VerKey(〈x : Private〉{OkTPM(x)}), ym : Un〉

{∃xf , xs.Send(xf , ym) ∧ OkTPM(xf )}

)

assert Authenticate(ym)

xs vk(kI) xf
The type of vk(kI) gives 

us the type of xf (existentially 
quantified)

Verifier = in(c, x).
let ym = verchk(α2,β1)=α1(x; vk(kI)) then

xf : Private



chk(xs, vk(kI)) = xf

Type-checking the Verifier

Γ = . . .
kI : SigKey(〈xf : Private〉{OkTPM(xf )}),
. . .
∀m.((∃xf .Send(xf , m) ∧OkTPM(xf ) ⇒ Authenticate(m)),

ZKchk(α2,β1)=α1

(
〈yk : VerKey(〈x : Private〉{OkTPM(x)}), ym : Un〉

{∃xf , xs.Send(xf , ym) ∧ OkTPM(xf )}

)

assert Authenticate(ym)

xs vk(kI) xf

Verifier = in(c, x).
let ym = verchk(α2,β1)=α1(x; vk(kI)) then

The prover is 
honest, since he knows a 
message of type Private!

xf : Private



chk(xs, vk(kI)) = xf

Type-checking the Verifier

Γ = . . .
kI : SigKey(〈xf : Private〉{OkTPM(xf )}),
. . .
∀m.((∃xf .Send(xf , m) ∧OkTPM(xf ) ⇒ Authenticate(m)),

ZKchk(α2,β1)=α1

(
〈yk : VerKey(〈x : Private〉{OkTPM(x)}), ym : Un〉

{∃xf , xs.Send(xf , ym) ∧ OkTPM(xf )}

)

assert Authenticate(ym)

xs vk(kI) xf

We can now exploit the 
formula in the ZK type

Verifier = in(c, x).
let ym = verchk(α2,β1)=α1(x; vk(kI)) then

xf : Private



chk(xs, vk(kI)) = xf

Type-checking the Verifier

Γ = . . .
kI : SigKey(〈xf : Private〉{OkTPM(xf )}),
. . .
∀m.((∃xf .Send(xf , m) ∧OkTPM(xf ) ⇒ Authenticate(m)),

ZKchk(α2,β1)=α1

(
〈yk : VerKey(〈x : Private〉{OkTPM(x)}), ym : Un〉

{∃xf , xs.Send(xf , ym) ∧ OkTPM(xf )}

)

assert Authenticate(ym)

xs vk(kI) xf

∃xf , xs.Send(xf , ym) ∧OkTPM(xf )

Verifier = in(c, x).
let ym = verchk(α2,β1)=α1(x; vk(kI)) then

%

xf : Private



Take Home

# ZK proofs are given dependent types where the 
witnesses are existentially quantified

# The prover can only prove statements for which the 
formula in the ZK type holds

# The verifier can assume the formula in the ZK type

• if the formula is entirely derived from the proved 
statement (most often much too weak)

• if he can somehow infer that the proof was 
constructed by an honest prover (type-checked)

--- removed:
- we statically infer this by looking at the statement and the type of the matched public 
messages
- use fact that adversary doesn’t know Private msg.



Implementation

# Type-checker written in O’Caml (~5000 LOC)

# Uses automatic prover for discharging FOL formulas

# Extensible - very easy to add arbitrary primitives + types

# Efficient - the complete analysis of DAA takes 0.7s 

# Available under the Apache License:
http://www.infsec.cs.uni-sb.de/projects/zk-typechecker/

# Kudos to Stefan Lorenz, Kim Pecina and Thorsten Tarrach

- we implemented our type system in O’Caml and use first-
order theorem prover to discharge proof obligations
- the type-checker is extensible, so it’s very easy to add to 
extend it with arbitrary cryptographic primitives and base 
types
- the analysis of the complete DAA protocol takes less than 
a second (not just the small simplified fragment I 
presented in this talk)
- the implementation is available under the Apache license  
-- you can also find this link on my website
- last but not least, I would like to thank the students who 
helped us with the implementation



Ongoing Work

# Type-checking a model of Civitas

• Remote electronic voting system
[Clarkson, Chong & Myers, S&P 2008]

# Type-checking implementations of protocols 

that employ zero-knowledge

• Trying to extend [Bengtson et al., CSF 2008]

# Improving security despite compromise

• Execute original protocol, but add zero-knowledge 
to prove correct behavior to remote parties 

# Idealizing interactive zero-knowledge proofs 

and analyzing the protocols that use them

THANK YOU!

Currently we are working on various extensions of this work ...
- We are verifying the protocol used by the Civitas remote 
electronic voting system using our type-checker
- We are trying to apply some of the same ideas of our type 
system to verifying real implementations of security protocols 
that employ zero-knowledge proofs
- We are also working on an automatic transformation to 
improve the security of protocols against corrupted 
participants. (The main idea is to use zero-knowledge to prove 
correct behavior to remote parties.)
- Finally, we are looking at ways to idealize interactive zero-
knowledge proofs and to analyze the security of the 
protocols that use such proofs. (The hope here is that one can 
capture communication patterns using session types for 
instance.)


