
Type-checking Zero-knowledge

CCS 2008, Alexandria - Virginia, October 2008

C!t!lin Hri!cu

Saarland University, Saarbrücken, Germany

Joint work with: Michael Backes and Matteo Maffei

The title of this talk is “Type-checking Zero-knowledge” ...

Zero-knowledge

However, I’m not going to talk about cryptography, or how
zero-knowledge proofs are implemented. For me that’s
black magic anyway.

encryption

signature

hash

designer’s toolbox

zero-knowledge

Security Protocols

Instead, I’m going to take a more abstract view [click], and
investigate how zero-knowledge proofs can be used as
building blocks for designing large security protocols.
When designing security protocols it is often convenient to
look at the di"erent cryptographic primitives as fully
reliable black boxes, [click] that can be put together like
the pieces of a puzzle in order to achieve the desired
security goals.

Zero-knowledge Proofs

Powerful primitives

• Prove the validity of a statement without revealing
anything else

• For instance, prove to know an object with certain

properties without revealing this witness

Early constructions general, but terribly inefficient

• Very limited practical impact

More recent research provided

• Efficient constructions for special classes of statements

• Constructions for non-interactive zero-knowledge

- The zero-knowledge proofs are very powerful and exciting
cryptographic primitives. However, for the purpose of this talk,
all you need to know about them is that they allow a prover to
show the validity of a statement without revealing any other
information than that the statement is true. For instance, one can
prove the knowledge of an object with certain properties without
revealing this witness.
- [click] The early constructions for zero-knowledge were very
general, but also very ine$cient, so they had very limited
practical impact.
- [click] However, the more recent research on zero-knowledge
provided e$cient constructions for special classes of statements,
as well as constructions for non-interactive zero-knowledge
proofs

p2p (PseudoTrust)

e-voting (Civitas)

“trusted” computing (DAA)

Applications that use ZK
unique security features of ZK allows

designing protocols fulfilling seemingly
conflicting requirements

As a consequence, many emerging application areas use
zero-knowledge proofs. I’m going to focus on 3 such
areas: electronic voting, trusted computing and peer-to-
peer protocols. In all these areas the unique security
features of zero-knowledge proofs allow the design of
protocols that fulfill seemingly conflicting requirements
- For instance when designing electronic voting protocols we need to preserve the
privacy of the voters (so that nobody is able to find out how any of the voters voted -- in
order to prevent vote buying or coercion), but at the same time we want the whole
election process to be verifiable (we want to allow anyone to independently double-check
the correctness of the elections).
- In certain trusted computing protocols we want users to remotely attest that their
platform is certified and has not been tampered, while preserving the anonymity of the
users.
- Similarly, in the case of certain peer-to-peer protocols we want users to be able to
exchange information in a trusted way, without revealing the identity of the users.

So zero-knowledge proofs are the critical building block
for many such useful protocols.

+

p2p (PseudoTrust)pseudonymity trust

!

e-voting (Civitas)privacy

!+

“trusted” computing (DAA)

verifiability

!+

anonymity remote attestation

As a consequence, many emerging application areas use
zero-knowledge proofs. I’m going to focus on 3 such
areas: electronic voting, trusted computing and peer-to-
peer protocols. In all these areas the unique security
features of zero-knowledge proofs allow the design of
protocols that fulfill seemingly conflicting requirements
- For instance when designing electronic voting protocols we need to preserve the
privacy of the voters (so that nobody is able to find out how any of the voters voted -- in
order to prevent vote buying or coercion), but at the same time we want the whole
election process to be verifiable (we want to allow anyone to independently double-check
the correctness of the elections).
- In certain trusted computing protocols we want users to remotely attest that their
platform is certified and has not been tampered, while preserving the anonymity of the
users.
- Similarly, in the case of certain peer-to-peer protocols we want users to be able to
exchange information in a trusted way, without revealing the identity of the users.

So zero-knowledge proofs are the critical building block
for many such useful protocols.

Verifying Protocols Using ZK

No verification tool for protocols using ZK

Security protocols are hard to get right

Automated verification can prevent errors

Our goal

• To automatically analyze protocols using ZK

in an efficient and scalable way

We built first type system for zero-knowledge

However, when we started this, there was no automated
verification tool for protocols using ZK as primitive
- In general, security protocols are hard to get right, and
automated verification can really help protocol designers
prevent high-level errors
- So our goal was: to automatically analyze protocols using
zero-knowledge proofs in an e!cient and scalable way
- In order to achieve this, we built the first type system for
zero-knowledge

Type-checking fully automated and efficient

Compositional therefore scalable

Type System

 This code is safe This code is safe

Type-checking fully automated and efficient

Compositional therefore scalable

Predictable termination behavior

User needs to provide annotations (no free lunch)

in certain cases these can be automatically inferred

Type System

 The protocol is secure

Type-checking DAA
(Direct Anonymous Attestation)

In the reminder of this talk, I’m going to show how our type
system works on an example;
and the example I chose is called the Direct Anonymous
Attestation protocol, or DAA.

DAA (Direct Anonymous Attestation)

The user wants to authenticate a
message m by proving that her platform
has a valid TPM inside (attestation) ...

... but no other party should learn which
TPM is used to authenticate m (anonymity)

[Brickell, Camenisch & Chen, CCS 2004]

ftpm
(secret TPM identifier)

Issuer

Direct Anonymous Attestation (DAA)

!!! Mention: secret TPM identifier is also called “f value”

Blind signature on ftpm

Joining Protocol
The user receives a certificate of ftpm from the issuer

Issuer

Direct Anonymous Attestation (DAA)

!!! Mention: secret TPM identifier is also called “f value”

Verifier

sign(ftpm, kI)

Signing Protocol
The user proves the knowledge of a certificate for his

secret TPM identifier ftpm ... without revealing it!

Zero-knowledge proof

Issuer

Direct Anonymous Attestation (DAA)

!!! Mention: secret TPM identifier is also called “f value”

Verifier

sign(ftpm, kI)

Zero-knowledge proof

Issuer

Direct Anonymous Attestation (DAA)

“the user knows a secret identifier and a certificate,
and the certificate is a valid signature made by the

issuer on the identifier”

!!! Mention: secret TPM identifier is also called “f value”

“the user knows a secret identifier and a certificate,
and the certificate is a valid signature made by the

issuer on the identifier”

sign(ftpm, kI)

Zero-knowledge proof

Idealization of Zero-knowledge

Prover Verifier
non-interactive

[Backes, Ma"ei & Unruh, S&P 2008] [Backes & Unruh, CSF 2008]

In order construct a formal specification of DAA in a process
calculus (with the standard DY assumptions), we need a way
to express zero knowledge proofs.

sign(ftpm, kI)

Zero-knowledge proof

Idealization of Zero-knowledge

Prover Verifier

[Backes, Ma"ei & Unruh, S&P 2008] [Backes & Unruh, CSF 2008]

zkchk(α2,β1)=α1(ftpm, sign(ftpm, kI); vk(kI), m)

In order construct a formal specification of DAA in a process
calculus (with the standard DY assumptions), we need a way
to express zero knowledge proofs.

sign(ftpm, kI)

Zero-knowledge proof

Idealization of Zero-knowledge

 secret
witnesses

Prover Verifier

[Backes, Ma"ei & Unruh, S&P 2008] [Backes & Unruh, CSF 2008]

zkchk(α2,β1)=α1(ftpm, sign(ftpm, kI); vk(kI), m)

In order construct a formal specification of DAA in a process
calculus (with the standard DY assumptions), we need a way
to express zero knowledge proofs.

sign(ftpm, kI)

Zero-knowledge proof

Idealization of Zero-knowledge

 public
messages

Prover Verifier

[Backes, Ma"ei & Unruh, S&P 2008] [Backes & Unruh, CSF 2008]

zkchk(α2,β1)=α1(ftpm, sign(ftpm, kI); vk(kI), m)

In order construct a formal specification of DAA in a process
calculus (with the standard DY assumptions), we need a way
to express zero knowledge proofs.

chk(sign(ftpm, kI), vk(kI)) = ftpm

sign(ftpm, kI)

Zero-knowledge proof

Idealization of Zero-knowledge

statement

Prover Verifier

[Backes, Ma"ei & Unruh, S&P 2008] [Backes & Unruh, CSF 2008]

zkchk(α2,β1)=α1(ftpm, sign(ftpm, kI); vk(kI), m)

α1α2 β1

In order construct a formal specification of DAA in a process
calculus (with the standard DY assumptions), we need a way
to express zero knowledge proofs.

chk(sign(ftpm, kI), vk(kI)) = ftpm

sign(ftpm, kI)

Zero-knowledge proof

Idealization of Zero-knowledge

Prover Verifier

Verification:

[Backes, Ma"ei & Unruh, S&P 2008] [Backes & Unruh, CSF 2008]

zkchk(α2,β1)=α1(ftpm, sign(ftpm, kI); vk(kI), m)

α1α2 β1

In order construct a formal specification of DAA in a process
calculus (with the standard DY assumptions), we need a way
to express zero knowledge proofs.

chk(sign(ftpm, kI), vk(kI)) = ftpm

sign(ftpm, kI)

Zero-knowledge proof

Idealization of Zero-knowledge

Prover Verifier

Verification: %
[Backes, Ma"ei & Unruh, S&P 2008] [Backes & Unruh, CSF 2008]

zkchk(α2,β1)=α1(ftpm, sign(ftpm, kI); vk(kI), m)

ftpmsign(ftpm, kI) vk(kI)

In order construct a formal specification of DAA in a process
calculus (with the standard DY assumptions), we need a way
to express zero knowledge proofs.

DAA Signing Protocol (simplified)

Prover Verifier

zkchk(α2,β1)=α1(ftpm, sign(ftpm, kI); vk(kI), m)

matching will
help typing

new kI

new ftpm

Prover | Verifier | Issuer

Prover = new m
out(c, zkchk(α2,β1)=α1(ftpm, sign(ftpm, kI); vk(kI), m))

Verifier = in(c, x).
let ym = verchk(α2,β1)=α1(x; vk(kI)) then

!!! DAA extremely simplified in my example -- just the
signing protocol

Security Annotations

authorization policy
(in some logic)

Prover = new m
assume Send(ftpm, m) |
out(c, zkchk(α2,β1)=α1(ftpm, sign(ftpm, kI); vk(kI), m))

assume ∀m. (∃xf . Send(xf , m) ∧OkTPM(xf) ⇒ Authenticate(m) |
new kI

new ftpm

Prover | Verifier | Issuer

Prover Verifier

zkchk(α2,β1)=α1(ftpm, sign(ftpm, kI); vk(kI), m)

Verifier = in(c, x).
let ym = verchk(α2,β1)=α1(x; vk(kI)) then
assert Authenticate(ym)

Safety
Asserts are entailed by

the current assumes

!!! In the authorization policy “OkTPM(xf)” is assumed by
the Issuer

!!! The property verified by our type system is that in all
protocol runs the assertions are logically entailed by the
current assumptions

Verifier = in(c, x).
let ym = verchk(α2,β1)=α1(x; vk(kI)) then

assume ∀m. (∃xf . Send(xf , m) ∧OkTPM(xf) ⇒ Authenticate(m) |
new kI

new ftpm

Prover | Verifier | Issuer

Prover = new m
assume Send(ftpm, m) |
out(c, zkchk(α2,β1)=α1(ftpm, sign(ftpm, kI); vk(kI), m))

Basic Types

[Fournet, Gordon & Ma"eis, CSF 2007]

assert Authenticate(ym)

!!! When checking a signature with the corresponding
verification key, we can actually infer that the signed
message is of type Private and the OkTPM predicate holds
for this message.

!!! However, in the DAA protocol we do not send the
signature to the verifier so that he can directly check it. We
only prove to know such a valid signature.

Verifier = in(c, x).
let ym = verchk(α2,β1)=α1(x; vk(kI)) then

: Un

assume ∀m. (∃xf . Send(xf , m) ∧OkTPM(xf) ⇒ Authenticate(m) |
new kI

new ftpm

Prover | Verifier | Issuer

Prover = new m
assume Send(ftpm, m) |
out(c, zkchk(α2,β1)=α1(ftpm, sign(ftpm, kI); vk(kI), m))

Basic Types

[Fournet, Gordon & Ma"eis, CSF 2007]

Type of

messages known to

the attacker

assert Authenticate(ym)

!!! When checking a signature with the corresponding
verification key, we can actually infer that the signed
message is of type Private and the OkTPM predicate holds
for this message.

!!! However, in the DAA protocol we do not send the
signature to the verifier so that he can directly check it. We
only prove to know such a valid signature.

Verifier = in(c, x).
let ym = verchk(α2,β1)=α1(x; vk(kI)) then

: Un

: Private

assume ∀m. (∃xf . Send(xf , m) ∧OkTPM(xf) ⇒ Authenticate(m) |
new kI

new ftpm

Prover | Verifier | Issuer

Prover = new m
assume Send(ftpm, m) |
out(c, zkchk(α2,β1)=α1(ftpm, sign(ftpm, kI); vk(kI), m))

Type of messages

unknown to the attacker

Basic Types

[Fournet, Gordon & Ma"eis, CSF 2007]

assert Authenticate(ym)

!!! When checking a signature with the corresponding
verification key, we can actually infer that the signed
message is of type Private and the OkTPM predicate holds
for this message.

!!! However, in the DAA protocol we do not send the
signature to the verifier so that he can directly check it. We
only prove to know such a valid signature.

Verifier = in(c, x).
let ym = verchk(α2,β1)=α1(x; vk(kI)) then

: Un

: SigKey(〈xf : Private〉{OkTPM(xf)})
: Private

assume ∀m. (∃xf . Send(xf , m) ∧OkTPM(xf) ⇒ Authenticate(m) |
new kI

new ftpm

Prover | Verifier | Issuer

Prover = new m
assume Send(ftpm, m) |
out(c, zkchk(α2,β1)=α1(ftpm, sign(ftpm, kI); vk(kI), m))

Basic Types

[Fournet, Gordon & Ma"eis, CSF 2007]

Type of keys used

to sign Private messages for which

OkTPM holds

assert Authenticate(ym)

!!! When checking a signature with the corresponding
verification key, we can actually infer that the signed
message is of type Private and the OkTPM predicate holds
for this message.

!!! However, in the DAA protocol we do not send the
signature to the verifier so that he can directly check it. We
only prove to know such a valid signature.

Verifier = in(c, x).
let ym = verchk(α2,β1)=α1(x; vk(kI)) then

: Un

: SigKey(〈xf : Private〉{OkTPM(xf)})
: Private

assume ∀m. (∃xf . Send(xf , m) ∧OkTPM(xf) ⇒ Authenticate(m) |
new kI

new ftpm

Prover | Verifier | Issuer

Prover = new m
assume Send(ftpm, m) |
out(c, zkchk(α2,β1)=α1(ftpm, sign(ftpm, kI); vk(kI), m))

Basic Types

[Fournet, Gordon & Ma"eis, CSF 2007]

assert Authenticate(ym)

The type of the key allows us to “transfer”
predicates from the prover to the verifier!

!!! When checking a signature with the corresponding
verification key, we can actually infer that the signed
message is of type Private and the OkTPM predicate holds
for this message.

!!! However, in the DAA protocol we do not send the
signature to the verifier so that he can directly check it. We
only prove to know such a valid signature.

Verifier = in(c, x).
let ym = verchk(α2,β1)=α1(x; vk(kI)) then

: Un

: SigKey(〈xf : Private〉{OkTPM(xf)})
: Private

assume ∀m. (∃xf . Send(xf , m) ∧OkTPM(xf) ⇒ Authenticate(m) |
new kI

new ftpm

Prover | Verifier | Issuer

Prover = new m
assume Send(ftpm, m) |
out(c, zkchk(α2,β1)=α1(ftpm, sign(ftpm, kI); vk(kI), m))

Basic Types

[Fournet, Gordon & Ma"eis, CSF 2007]

assert Authenticate(ym)

But, the verifier can’t use the key to check a
certificate he never receives.

Worse, ZK don’t necessarily rely on keys!

!!! When checking a signature with the corresponding
verification key, we can actually infer that the signed
message is of type Private and the OkTPM predicate holds
for this message.

!!! However, in the DAA protocol we do not send the
signature to the verifier so that he can directly check it. We
only prove to know such a valid signature.

Typing Zero-knowledge Proofs

Our solution:
User gives a type to each statement proved by ZK

!!! Don’t panic ... this is the only ZK type I’m going to
show !!!
- For each statement in the protocol the user needs to
annotate such a type
- The logical formula that is going to be transfered by the
proof - where the private messages are existentially
quantified

Typing Zero-knowledge Proofs

Type of
public messages

Prover Verifier

ZKchk(α2,β1)=α1 (〈yk : VerKey(. . .), ym : Un〉{∃xf , xs.Send(xf , ym) ∧ OkTPM(xf)})

zkchk(α2,β1)=α1(ftpm, sign(ftpm, kI); vk(kI), m)

!!! Don’t panic ... this is the only ZK type I’m going to
show !!!
- For each statement in the protocol the user needs to
annotate such a type
- The logical formula that is going to be transfered by the
proof - where the private messages are existentially
quantified

Typing Zero-knowledge Proofs

Logical formula where
the secret witnesses are
existentially quantified

Prover Verifier

ZKchk(α2,β1)=α1 (〈yk : VerKey(. . .), ym : Un〉{∃xf , xs.Send(xf , ym) ∧ OkTPM(xf)})

zkchk(α2,β1)=α1(ftpm, sign(ftpm, kI); vk(kI), m)

!!! Don’t panic ... this is the only ZK type I’m going to
show !!!
- For each statement in the protocol the user needs to
annotate such a type
- The logical formula that is going to be transfered by the
proof - where the private messages are existentially
quantified

Type-checking the Prover

 Type of public messages

Γ = . . .
kI : SigKey(〈xf : Private〉{OkTPM(xf)}),
m : Un,
. . .
OkTPM(ftpm),
Send(ftpm, m)

ZKchk(α2,β1)=α1

(
〈yk : VerKey(〈x : Private〉{OkTPM(x)}), ym : Un〉

{∃xf , xs.Send(xf , ym) ∧ OkTPM(xf)}

)

Prover = . . .
out(c, zkchk(α2,β1)=α1(ftpm, sign(ftpm, kI); vk(kI), m))

!!! Begin !!! Since type-checking is compositional we are
going to check the prover and the verifier independently.
We start with the prover.

!!! the type system ensures that the formula in the ZK type
is entailed in the prover’s environment

Type-checking the Prover

 Logical formula entailed
 Type of public messages

Γ = . . .
kI : SigKey(〈xf : Private〉{OkTPM(xf)}),
m : Un,
. . .
OkTPM(ftpm),
Send(ftpm, m)

ZKchk(α2,β1)=α1

(
〈yk : VerKey(〈x : Private〉{OkTPM(x)}), ym : Un〉

{∃xf , xs.Send(xf , ym) ∧ OkTPM(xf)}

)

Prover = . . .
out(c, zkchk(α2,β1)=α1(ftpm, sign(ftpm, kI); vk(kI), m))%

!!! Begin !!! Since type-checking is compositional we are
going to check the prover and the verifier independently.
We start with the prover.

!!! the type system ensures that the formula in the ZK type
is entailed in the prover’s environment

Type-checking the Verifier

Γ = . . .
kI : SigKey(〈xf : Private〉{OkTPM(xf)}),
. . .
∀m.((∃xf .Send(xf , m) ∧OkTPM(xf) ⇒ Authenticate(m)),

ZKchk(α2,β1)=α1

(
〈yk : VerKey(〈x : Private〉{OkTPM(x)}), ym : Un〉

{∃xf , xs.Send(xf , ym) ∧ OkTPM(xf)}

)

assert Authenticate(ym)

If verification succeeds, can we assume the formula in ZK type?

In general not, the proof can come from untyped adversary!

Verifier = in(c, x).
let ym = verchk(α2,β1)=α1(x; vk(kI)) then

!!! TODO: relate this to signatures? there checking the
signature with the verification key of the sender gives you
strong guarantees ... we would like to have the same for zk,
but it doesn’t seem evident how to do that

Type-checking the Verifier

Conceptual issue
How can we know whether the zero-

knowledge proof comes from an honest
participant or from the adversary?!

ZKchk(α2,β1)=α1

(
〈yk : VerKey(〈x : Private〉{OkTPM(x)}), ym : Un〉

{∃xf , xs.Send(xf , ym) ∧ OkTPM(xf)}

)

chk(xs, vk(kI)) = xf

Type-checking the Verifier

Γ = . . .
kI : SigKey(〈xf : Private〉{OkTPM(xf)}),
. . .
∀m.((∃xf .Send(xf , m) ∧OkTPM(xf) ⇒ Authenticate(m)),

ZKchk(α2,β1)=α1

(
〈yk : VerKey(〈x : Private〉{OkTPM(x)}), ym : Un〉

{∃xf , xs.Send(xf , ym) ∧ OkTPM(xf)}

)

assert Authenticate(ym)

β1α2 α1

xs

vk(kI)

xf

The statement
instantiated with the matched

messages is valid
(by the semantics)

Verifier = in(c, x).
let ym = verchk(α2,β1)=α1(x; vk(kI)) then

chk(xs, vk(kI)) = xf

Type-checking the Verifier

Γ = . . .
kI : SigKey(〈xf : Private〉{OkTPM(xf)}),
. . .
∀m.((∃xf .Send(xf , m) ∧OkTPM(xf) ⇒ Authenticate(m)),

ZKchk(α2,β1)=α1

(
〈yk : VerKey(〈x : Private〉{OkTPM(x)}), ym : Un〉

{∃xf , xs.Send(xf , ym) ∧ OkTPM(xf)}

)

assert Authenticate(ym)

xs vk(kI) xf

The statement
instantiated with the matched

messages is valid
(by the semantics)

Verifier = in(c, x).
let ym = verchk(α2,β1)=α1(x; vk(kI)) then

chk(xs, vk(kI)) = xf

Type-checking the Verifier

Γ = . . .
kI : SigKey(〈xf : Private〉{OkTPM(xf)}),
. . .
∀m.((∃xf .Send(xf , m) ∧OkTPM(xf) ⇒ Authenticate(m)),

ZKchk(α2,β1)=α1

(
〈yk : VerKey(〈x : Private〉{OkTPM(x)}), ym : Un〉

{∃xf , xs.Send(xf , ym) ∧ OkTPM(xf)}

)

assert Authenticate(ym)

xs vk(kI) xf
The type of vk(kI) gives

us the type of xf (existentially
quantified)

Verifier = in(c, x).
let ym = verchk(α2,β1)=α1(x; vk(kI)) then

xf : Private

chk(xs, vk(kI)) = xf

Type-checking the Verifier

Γ = . . .
kI : SigKey(〈xf : Private〉{OkTPM(xf)}),
. . .
∀m.((∃xf .Send(xf , m) ∧OkTPM(xf) ⇒ Authenticate(m)),

ZKchk(α2,β1)=α1

(
〈yk : VerKey(〈x : Private〉{OkTPM(x)}), ym : Un〉

{∃xf , xs.Send(xf , ym) ∧ OkTPM(xf)}

)

assert Authenticate(ym)

xs vk(kI) xf

Verifier = in(c, x).
let ym = verchk(α2,β1)=α1(x; vk(kI)) then

The prover is
honest, since he knows a
message of type Private!

xf : Private

chk(xs, vk(kI)) = xf

Type-checking the Verifier

Γ = . . .
kI : SigKey(〈xf : Private〉{OkTPM(xf)}),
. . .
∀m.((∃xf .Send(xf , m) ∧OkTPM(xf) ⇒ Authenticate(m)),

ZKchk(α2,β1)=α1

(
〈yk : VerKey(〈x : Private〉{OkTPM(x)}), ym : Un〉

{∃xf , xs.Send(xf , ym) ∧ OkTPM(xf)}

)

assert Authenticate(ym)

xs vk(kI) xf

We can now exploit the
formula in the ZK type

Verifier = in(c, x).
let ym = verchk(α2,β1)=α1(x; vk(kI)) then

xf : Private

chk(xs, vk(kI)) = xf

Type-checking the Verifier

Γ = . . .
kI : SigKey(〈xf : Private〉{OkTPM(xf)}),
. . .
∀m.((∃xf .Send(xf , m) ∧OkTPM(xf) ⇒ Authenticate(m)),

ZKchk(α2,β1)=α1

(
〈yk : VerKey(〈x : Private〉{OkTPM(x)}), ym : Un〉

{∃xf , xs.Send(xf , ym) ∧ OkTPM(xf)}

)

assert Authenticate(ym)

xs vk(kI) xf

∃xf , xs.Send(xf , ym) ∧OkTPM(xf)

Verifier = in(c, x).
let ym = verchk(α2,β1)=α1(x; vk(kI)) then

%

xf : Private

Take Home

ZK proofs are given dependent types where the
witnesses are existentially quantified

The prover can only prove statements for which the
formula in the ZK type holds

The verifier can assume the formula in the ZK type

• if the formula is entirely derived from the proved
statement (most often much too weak)

• if he can somehow infer that the proof was
constructed by an honest prover (type-checked)

--- removed:
- we statically infer this by looking at the statement and the type of the matched public
messages
- use fact that adversary doesn’t know Private msg.

Implementation

Type-checker written in O’Caml (~5000 LOC)

Uses automatic prover for discharging FOL formulas

Extensible - very easy to add arbitrary primitives + types

Efficient - the complete analysis of DAA takes 0.7s

Available under the Apache License:
http://www.infsec.cs.uni-sb.de/projects/zk-typechecker/

Kudos to Stefan Lorenz, Kim Pecina and Thorsten Tarrach

- we implemented our type system in O’Caml and use first-
order theorem prover to discharge proof obligations
- the type-checker is extensible, so it’s very easy to add to
extend it with arbitrary cryptographic primitives and base
types
- the analysis of the complete DAA protocol takes less than
a second (not just the small simplified fragment I
presented in this talk)
- the implementation is available under the Apache license
-- you can also find this link on my website
- last but not least, I would like to thank the students who
helped us with the implementation

Ongoing Work

Type-checking a model of Civitas

• Remote electronic voting system
[Clarkson, Chong & Myers, S&P 2008]

Type-checking implementations of protocols

that employ zero-knowledge

• Trying to extend [Bengtson et al., CSF 2008]

Improving security despite compromise

• Execute original protocol, but add zero-knowledge
to prove correct behavior to remote parties

Idealizing interactive zero-knowledge proofs

and analyzing the protocols that use them

THANK YOU!

Currently we are working on various extensions of this work ...
- We are verifying the protocol used by the Civitas remote
electronic voting system using our type-checker
- We are trying to apply some of the same ideas of our type
system to verifying real implementations of security protocols
that employ zero-knowledge proofs
- We are also working on an automatic transformation to
improve the security of protocols against corrupted
participants. (The main idea is to use zero-knowledge to prove
correct behavior to remote parties.)
- Finally, we are looking at ways to idealize interactive zero-
knowledge proofs and to analyze the security of the
protocols that use such proofs. (The hope here is that one can
capture communication patterns using session types for
instance.)

