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CRASH/SAFE project 

• Academic partners (16): 

– University of Pennsylvania (11) 

– Harvard University (4) 

– Northeastern University (1) 

• Industrial partners (24): 

– BAE systems (21) + Clozure (3) 

• Funded by DARPA 
– Clean-Slate Design of Resilient, Adaptive, Secure Hosts 

2 

40! 



Clean-slate co-design of net host 
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Clean-slate co-design of net host 
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Primary goal: 
design and implement a 
significantly more secure 
architecture, without 
backwards compatibility 
concerns 



Clean-slate co-design of net host 

New stack: 

• language 

• system 

• hardware 
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Primary goal: 
design and implement a 
significantly more secure 
architecture, without 
backwards compatibility 
concerns 



Clean-slate co-design of net host 

New stack: 

• language 

• system 

• hardware 
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Secondary goal: 
verify that it’s secure 
(whatever that means) 

Primary goal: 
design and implement a 
significantly more secure 
architecture, without 
backwards compatibility 
concerns 

 

 



Design targeting security 
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system 

hardware 



Design targeting security 
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language 

system 

hardware 

fine-grained protection basic abstraction 



Design targeting security 
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fine-grained protection basic abstraction 



This talk 
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 show how 

property-based random testing 
can aid design and serve as 

a first step towards verification 



COUNTEREXAMPLE-GUIDED 
INFORMATION FLOW MACHINE DESIGN 
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A simple stack-and-memory machine 

• values = integers 

• stack = list of values 

instruction stack before stack after memory 

Push n stk n : stk 

Pop n : stk stk 

Add n : m : stk  (n+m) : stk 

Load a : stk mem[a] : stk 

Store a : n : stk stk mem[a] := n 

Halt stk ---- 

 

• memory = list of values 
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A simple information-flow machine 

• values = labeled integers 

• stack = list of values 

instruction stack before stack after memory 

Push n@X stk n@X : stk 

Pop n@X : stk stk 

Add n@X : m@Y :stk (n+m)@? : stk 

Load a@X : stk mem[a] : stk 

Store a@X : n@Y : stk stk mem[a] := n@? 

Halt stk ---- 

• labels = L and H 

• memory = list of values 
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A simple information-flow machine 

• values = labeled integers 

• stack = list of values 

instruction stack before stack after memory 

Push n@X stk n@X : stk 

Pop n@X : stk stk 

Add n@X : m@Y :stk (n+m)@L : stk 

Load a@X : stk mem[a] : stk 

Store a@X : n@Y : stk stk mem[a] := n@L 

Halt stk ---- 

• labels = L and H 

• memory = list of values 
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Noninterference (EENI) 

• “secret inputs don’t affect public outputs” 

– secret inputs = numbers labeled H in initial state 

• initial state = empty stack, memory all 0@L, 
instructions can contain secrets (Push 0@H) 

– public outputs = memory labeled L in halted state 
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Noninterference (EENI) 

• “secret inputs don’t affect public outputs” 

– secret inputs = numbers labeled H in initial state 

• initial state = empty stack, memory all 0@L, 
instructions can contain secrets (Push 0@H) 

– public outputs = memory labeled L in halted state 

• more precisely: 

– forall i1 i2, if  i1 ≈ i2 and i1 →* h1 and i2 →* h2 
                  then mem(h1) ≈ mem(h2) 
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Noninterference (EENI) 

• “secret inputs don’t affect public outputs” 

– secret inputs = numbers labeled H in initial state 

• initial state = empty stack, memory all 0@L, 
instructions can contain secrets (Push 0@H) 

– public outputs = memory labeled L in halted state 

• more precisely: 

– forall i1 i2, if  i1 ≈ i2 and i1 →* h1 and i2 →* h2 
                  then mem(h1) ≈ mem(h2) 

– n1@L ≈ n2@L iff n1=n2          n1@H ≈ n2@H always 
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READY TO SQUASH SOME BUGS? 
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(let’s assume we have a property-based random testing framework in place) 



Counterexample #1 
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memory stack next instruction 

[0@L] [] Push {0/1}@H 

[0@L] [{0/1}@H] Push 0@L 

[0@L] [0@L,{0/1}@H] Store 

[{0/1}@L] [] Halt 



Counterexample #1 
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memory stack next instruction 

[0@L] [] Push {0/1}@H 

[0@L] [{0/1}@H] Push 0@L 

[0@L] [0@L,{0/1}@H] Store 

[{0/1}@L] [] Halt 



Counterexample #1 
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instruction stack before stack after memory 

Store a@X : n@Y : stk stk mem[a] := n@Y 

Fixing bug in Store 

memory stack next instruction 

[0@L] [] Push {0/1}@H 

[0@L] [{0/1}@H] Push 0@L 

[0@L] [0@L,{0/1}@H] Store 

[{0/1}@L] [] Halt 



Counterexample #2 
memory stack next instruction 

[0@L,0@L] [] Push 1@L 

[0@L,0@L] [1@L] Push {0/1}@H 

[0@L,0@L] [{0/1}@H,1@L] Store 

[{1/0}@L,{0/1}@L] [] Halt 
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Counterexample #2 
memory stack next instruction 

[0@L,0@L] [] Push 1@L 

[0@L,0@L] [1@L] Push {0/1}@H 

[0@L,0@L] [{0/1}@H,1@L] Store 

[{1/0}@L,{0/1}@L] [] Halt 
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Counterexample #2 
memory stack next instruction 

[0@L,0@L] [] Push 1@L 

[0@L,0@L] [1@L] Push {0/1}@H 

[0@L,0@L] [{0/1}@H,1@L] Store 

[{1/0}@L,{0/1}@L] [] Halt 
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instruction stack before stack after memory 

Store a@X : n@Y : stk stk mem[a] := n@X⨆Y 

Fixing 2nd bug in Store 



Counterexample #3 
memory stack next instruction 

[0@L,0@L] [] Push 1@L 

[0@L,0@L] [0@L] Push {0/1}@H 

[0@L,0@L] [{0/1}@H,1@L] Store 

[{1@H/0@L},{0@L/1@H}] [] Halt 
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Counterexample #3 
memory stack next instruction 

[0@L,0@L] [] Push 1@L 

[0@L,0@L] [0@L] Push {0/1}@H 

[0@L,0@L] [{0/1}@H,1@L] Store 

[{1@H/0@L},{0@L/1@H}] [] Halt 
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Counterexample #3 
memory stack next instruction 

[0@L,0@L] [] Push 1@L 

[0@L,0@L] [0@L] Push {0/1}@H 

[0@L,0@L] [{0/1}@H,1@L] Store 

[{1@H/0@L},{0@L/1@H}] [] Halt 
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stack before side condition stack after memory 

a@X : n@Y : stk Y ≤ labOf(mem[a]) stk mem[a] := n@X⨆Y 

Fixing 3nd bug in Store 

No sensitive upgrade [Steve Zdancewic’s PhD, 2002] 



Counterexample #3 
memory stack next instruction 

[0@L,0@L] [] Push 1@L 

[0@L,0@L] [0@L] Push {0/1}@H 

[0@L,0@L] [{0/1}@H,1@L] Store 

[{1@H/0@L},{0@L/1@H}] [] Halt 
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stack before side condition stack after memory 

a@X : n@Y : stk Y ≤ labOf(mem[a]) stk mem[a] := n@X⨆Y 

Fixing 3nd bug in Store 

No sensitive upgrade [Steve Zdancewic’s PhD, 2002] 

*the real counterexample had Push 0@L as the first instruction 



Counterexample #4 
memory stack next instruction 

[0@L] [] Push 0@L 

[0@L] [0@L] Push {0/1}@H 

[0@L] [{0/1}@H,0@L] Add 

[0@L] [{0/1}@L] Push 0@L 

[0@L] [0@L,{0/1}@L] Store 

[{0/1}@L] [] Halt 
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Counterexample #4 
memory stack next instruction 

[0@L] [] Push 0@L 

[0@L] [0@L] Push {0/1}@H 

[0@L] [{0/1}@H,0@L] Add 

[0@L] [{0/1}@L] Push 0@L 

[0@L] [0@L,{0/1}@L] Store 

[{0/1}@L] [] Halt 
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Counterexample #4 
memory stack next instruction 

[0@L] [] Push 0@L 

[0@L] [0@L] Push {0/1}@H 

[0@L] [{0/1}@H,0@L] Add 

[0@L] [{0/1}@L] Push 0@L 

[0@L] [0@L,{0/1}@L] Store 

[{0/1}@L] [] Halt 
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Fixing bug in Add 
instruction stack before stack after memory 

Add n@X : m@Y :stk (n+m)@(X⨆Y) : stk 



Counterexample #5 
memory stack next instruction 

[0@L,0@L] [] Push 1@L 

[0@L,0@L] [1@L] Push 0@L 

[0@L,0@L] [0@L,1@L] Store 

[1@L,0@L] [] Push {1/0}@H 

[1@L,0@L] [{1/0}@H] Load 

[1@L,0@L] [{0/1}@L] Push 0@L 

[1@L,0@L] [0@L,{0/1}@L] Store 

[{0/1}@L,0@L] [] Halt 
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Counterexample #5 
memory stack next instruction 

[0@L,0@L] [] Push 1@L 

[0@L,0@L] [1@L] Push 0@L 

[0@L,0@L] [0@L,1@L] Store 

[1@L,0@L] [] Push {1/0}@H 

[1@L,0@L] [{1/0}@H] Load 

[1@L,0@L] [{0/1}@L] Push 0@L 

[1@L,0@L] [0@L,{0/1}@L] Store 

[{0/1}@L,0@L] [] Halt 
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Counterexample #5 
memory stack next instruction 

[0@L,0@L] [] Push 1@L 

[0@L,0@L] [1@L] Push 0@L 

[0@L,0@L] [0@L,1@L] Store 

[1@L,0@L] [] Push {1/0}@H 

[1@L,0@L] [{1/0}@H] Load 

[1@L,0@L] [{0/1}@L] Push 0@L 

[1@L,0@L] [0@L,{0/1}@L] Store 

[{0/1}@L,0@L] [] Halt 
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Fixing bug in Load 
instruction stack before stack after memory 

Load a@X : stk mem[a]@X : stk 



HOW DID WE DO THIS? 
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Main ingredients 

• QuickCheck 

• Rephrasing preconditions 

• Clever program generation strategies 

• Shrinking counterexamples 

• Later one more: stronger properties 
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QuickCheck 

• Property-based random testing tool for Haskell 

• Property ~= Boolean Haskell expression 
– QC generates random instances for variables 

– implications treated a bit specially 
• failing precondition counted as “discard” 

• Default random generators using type-classes 
– uniformly at random 
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[Claessen & Hughes, ICFP 2000] 



QuickCheck 

• Property-based random testing tool for Haskell 

• Property ~= Boolean Haskell expression 
– QC generates random instances for variables 

– implications treated a bit specially 
• failing precondition counted as “discard” 

• Default random generators using type-classes 
– uniformly at random 

• Out of the box it doesn't work for us!  
– couldn’t find any bug; astronomic discard rate 
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[Claessen & Hughes, ICFP 2000] 



(Re)phrasing noninterference 

Original  
for random i1, 
for random i2, 
  if  i1 ≈ i2 
    and i1 →* h1 
    and i2 →* h2 
  then 
    mem(h1) ≈ mem(h2) 
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Rare 



(Re)phrasing noninterference 

Original  
for random i1, 
for random i2, 
  if  i1 ≈ i2 
    and i1 →* h1 
    and i2 →* h2 
  then 
    mem(h1) ≈ mem(h2) 

Much better  
for random i1, 
for random 
  ≈ variation i2 of i1, 
  if i1 →* h1 
    and i2 →* h2 
  then 
    mem(h1) ≈ mem(h2) 

 

43 

Rare 



44 

• How can we evaluate how good our testing is? 

– add bugs one at a time and see how fast they’re found 

– Mean Time to Find (MTTF) 

 



 

Bug MTTF 

1nd for Store 8s 

2st for Store ∞* 

3rd  for Store 47s 

Add 83s 

Load ∞* 

Push 4s 
45 

• How can we evaluate how good our testing is? 

– add bugs one at a time and see how fast they’re found 

– Mean Time to Find (MTTF) 

*not found in 300s 

from 
before 

new 



 

Naive generation 

Bug MTTF 

1nd for Store 8s 

2st for Store ∞* 

3rd  for Store 47s 

Add 83s 

Load ∞* 

Push 4s 
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• How can we evaluate how good our testing is? 

– add bugs one at a time and see how fast they’re found 

– Mean Time to Find (MTTF) 

*not found in 300s 

from 
before 

new 

bad 



Some statistics 

• new discard rate: 79% 

• average number of execution steps: 0.47 

• reasons for termination 
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0% 
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stack underflow halt load or store out 
of range 



Weighted distribution on instructions 

• increased chance of getting Push or Halt 
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Weighted distribution on instructions 

• increased chance of getting Push or Halt 

• average number of execution steps: 2.69 

• reasons for termination 
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0% 
5% 

10% 
15% 
20% 
25% 
30% 
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40% 

halt stack underflow load or store out of 
range 



Instruction sequences 

• generating useful instruction sequences more 
often (e.g. Push a; Store, where a is valid addr) 
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Instruction sequences 

• generating useful instruction sequences more 
often (e.g. Push a; Store, where a is valid addr) 

• average number of execution steps: 3.86 

• reasons for termination 
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Smart integers 

• generating valid code and data addr. more often 
– varying valid addr with high probability to other addr 
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Smart integers 

• generating valid code and data addr. more often 
– varying valid addr with high probability to other addr 

• average number of execution steps: 4.22 

• reasons for termination 
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They don’t just run longer ... 

• Smarter generation finds bugs much faster 

• Mean Time to Find (MTTF) 
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Bug Naive Smarter 

1st for Store 7660.07ms  0.31ms 

2nd for Store ∞  32227.10ms 

3rd  for Store 47365.97ms  0.12ms 

Add 83247.01ms  30.05ms  

Load ∞ 2258.93ms 

Push 3552.54ms 0.07ms 



Generation by execution 

55 

• try to generate instruction seq that doesn’t crash 

• maintain a current state 
– generate instr(s) that make sense in current state 

– run instr(s) to obtain new current state 

– fully precise for straight-line code 

• jumps forward easy, jumps backward harder 
– look ahead 2 steps before committing to jump 

– current state still not always accurate 

• give Halt more weight as execution gets longer 



Statistics for generation by execution 
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• average number of execution steps: 

• 11.6 for original program, 11.26 for variation 

• reasons for termination (original + variation) 

 

 

0% 

20% 

40% 

60% 

80% 

100% 

halt + halt halt + load or store 
out of range 
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upgrade 



Generation by execution finds bugs faster 
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Bug Naive Smarter By Exec 

1st for Store 7660.07ms  0.31ms  0.02ms 

2nd for Store ∞  32227.10ms 1233.51ms 

3rd  for Store 47365.97ms  0.12ms  0.25ms 

Add 83247.01ms  30.05ms   0.87ms 

Load ∞ 2258.93ms  4.03ms 

Push 3552.54ms 0.07ms  0.01ms 

Arith. mean ∞ 5752.76ms  206.45ms 

Geom. mean ∞  13.33ms  0.77ms 

tests / second  24129  7915  3284 

discard rate 79%  59%  4% 

28x 

17x 



Adding control flow 

• jumps & procedures 

– machine more interesting from IFC pov 

• stack also serves as call stack 

• 14 bugs = 6 old bugs + 8 new bugs 

• GenByExec 

– finds 13 of them in 0.22ms to 69s 

– misses one completely: 
not protecting call stack is unsound 
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Counterexample to Load bug 

memory stack next instruction 

[0@L,0@L] [] Push 1@L 

[0@L,0@L] [1@L] Push 0@L 

[0@L,0@L] [0@L,1@L] Store 

[1@L,0@L] [] Push {1/0}@H 

[1@L,0@L] [{1/0}@H] Load 

[1@L,0@L] [{0/1}@L] Push 0@L 

[1@L,0@L] [0@L,{0/1}@L] Store 

[{0/1}@L,0@L] [] Halt 

59 

takes 155ms to find now; 433 tests (average) 



Counterexample to Load bug 

memory stack next instruction 

[0@L,0@L] [] Push 1@L 

[0@L,0@L] [1@L] Push 0@L 

[0@L,0@L] [0@L,1@L] Store 

[1@L,0@L] [] Push {1/0}@H 

[1@L,0@L] [{1/0}@H] Load 

[1@L,0@L] [{0/1}@L] Push 0@L 

[1@L,0@L] [0@L,{0/1}@L] Store 

[{0/1}@L,0@L] [] Halt 

60 

setting up 

observing 

bug 

takes 155ms to find now; 433 tests (average) 



Stronger noninterference 

Current  
for random i1, 
for random 
  ≈ variation i2 of i1, 
  if i1 →* h1 
    and i2 →* h2 
  then 
    mem(h1) ≈ mem(h2) 
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Stronger noninterference 

Current  
for random i1, 
for random 
  ≈ variation i2 of i1, 
  if i1 →* h1 
    and i2 →* h2 
  then 
    mem(h1) ≈ mem(h2) 

Better  
for random q1, 
for random 
  ≈ variation q2 of q1, 
  if q1 →* h1 
    and q2 →* h2 
  then 
    h1 ≈ h2 
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Stronger noninterference 

Current  
for random i1, 
for random 
  ≈ variation i2 of i1, 
  if i1 →* h1 
    and i2 →* h2 
  then 
    mem(h1) ≈ mem(h2) 

Better  
for random q1, 
for random 
  ≈ variation q2 of q1, 
  if q1 →* h1 
    and q2 →* h2 
  then 
    h1 ≈ h2 
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q - quasi initial = arbitrary, but labOf(pc)≠H 
                    (control not affected by secrets)       ≈ equates all H states 



Counterexamples to Load bug 

64 

memory stack next instruction 

[0@L,1@L] [] Push {0/1}@H 

[0@L,1@L] [{0/1}@H] Load 

[0@L,1@L] [{0/1}@L] Halt 

used to take 155ms to find; 433 tests 
     now it takes 6ms to find; 12 tests  (average) 

memory stack next instruction 

[0@L,1@L] [{1/0}@H] Load 

[0@L,1@L] [{1/0}@L] Halt 



This finds all bugs, including ... 

65 

it takes 16s to find this one (average) 

memory stack next 
instruction 

[] [ARet (3,False)@L,0@L,ARet (4,True)@L] Push {3/2}@H 

[] [{3/2}@H,ARet (3,False)@L,0@L,ARet (4,True)@L] Jump 

execution 1 continues ... 

[] [ARet (3,False)@L,0@L,ARet (4,True)@L] Return False 

[] [0@L,ARet (4,True)@L] Return False 

[] [0@L] Halt 

execution 2 continues ... 

[] [ARet (3,False)@L,0@L,ARet (4,True)@L] Pop 

[] [0@L,ARet (4,True)@L] Return False 

[] [0@H] Halt 



Even stronger noninterference 

EENI SNI 

LLNI 

SSNI 
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Even stronger noninterference 

EENI SNI 

LLNI 

SSNI 

what we actually want 

for successfully 
terminating 

programs 

for server loops 
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Even stronger noninterference 

EENI SNI 

LLNI 

SSNI 

what we actually want 

for successfully 
terminating 

programs 

for server loops 

what’s 
easier 
to test 
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Even stronger noninterference 

EENI SNI 

LLNI 

SSNI 

what we actually want 

for successfully 
terminating 

programs 

for server loops 

what’s 
easier 
to test 

what we can prove 
by induction 
(“unwinding conditions”) 
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Single-step noninterference (SSNI) 

L 

Lhalt 

* 

easiest to test and suitable for proof (“unwinding conditions”) 

L 

L 

* 

* 

H 

H 

L 

L 

H 

H 

H 



SSNI finds each bug in under 17ms 

71 

EENI (with all 
improvements) 

SSNI 

Arith. mean MTTF 1526.75ms 2.01ms 

Geom. mean MTTF 46.48ms 0.47ms 

tests/s 2391 18407 

discard rate 69% 9% 



SSNI finds each bug in under 17ms 

72 

EENI (with all 
improvements) 

SSNI 

Arith. mean MTTF 1526.75ms 2.01ms 

Geom. mean MTTF 46.48ms 0.47ms 

tests/s 2391 18407 

discard rate 69% 9% 

Tradeoff: 
SSNI requires discovering stronger invariants 
invariants of real SAFE machine are very complicated 



Why shrink counterexamples? 
memory stack next instruction 

[0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L] [] Push {0/15}@H 

[0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L] [{0/15}@H] Load 

[0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L] [0@L] Pop 

[0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L] [] Push -5@L 

[0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L] [-5@L] Push 17@L 

[0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L] [17@L,-5@L] Push 0@L 

[0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L] [0@L,17@L,-5@L] Store 

[17@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L] [-5@L] Push 1@L 

[17@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L] [1@L,-5@L] Store 

[17@L,-5@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L] [] Push {21/3}@H 

[17@L,-5@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L] [{21/3}@H] Push 2@L 

[17@L,-5@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L] [2@L,{21/3}@H] Load 

[17@L,-5@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L] [0@L,{21/3}@H] Pop 

[17@L,-5@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L] [{21/3}@H] Push 1{/0}@H 

[17@L,-5@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L] [1{/0}@H,{21/3}@H] Push 8@L 

[17@L,-5@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L] [8@L,1{/0}@H,{21/3}@H] Store 

[17@L,-5@L,0@L,0@L,0@L,0@L,0@L,0@L,1{/0}@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L] [{21/3}@H] Push {9/17}@H 

[17@L,-5@L,0@L,0@L,0@L,0@L,0@L,0@L,1{/0}@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L] [{9/17}@H,{21/3}@H] Push {3/0}@H 

[17@L,-5@L,0@L,0@L,0@L,0@L,0@L,0@L,1{/0}@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L] [{3/0}@H,{9/17}@H,{21/3}@H] Load 

[17@L,-5@L,0@L,0@L,0@L,0@L,0@L,0@L,1{/0}@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L] [{0/17}@L,{9/17}@H,{21/3}@H] Store 

[{9/17}@L,-5@L,0@L,0@L,0@L,0@L,0@L,0@L,1{/0}@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,{0/17}@L,0@L,0@L,0@L] [{21/3}@H] Push 3@L 

[{9/17}@L,-5@L,0@L,0@L,0@L,0@L,0@L,0@L,1{/0}@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,{0/17}@L,0@L,0@L,0@L] [3@L,{21/3}@H] Push 1@H 

[{9/17}@L,-5@L,0@L,0@L,0@L,0@L,0@L,0@L,1{/0}@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,{0/17}@L,0@L,0@L,0@L] [1@H,3@L,{21/3}@H] Load 

[{9/17}@L,-5@L,0@L,0@L,0@L,0@L,0@L,0@L,1{/0}@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,{0/17}@L,0@L,0@L,0@L] [-5@L,3@L,{21/3}@H] Pop 

[{9/17}@L,-5@L,0@L,0@L,0@L,0@L,0@L,0@L,1{/0}@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,{0/17}@L,0@L,0@L,0@L] [3@L,{21/3}@H] Push 1@L 

[{9/17}@L,-5@L,0@L,0@L,0@L,0@L,0@L,0@L,1{/0}@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,{0/17}@L,0@L,0@L,0@L] [1@L,3@L,{21/3}@H] Push 19@L 

[{9/17}@L,-5@L,0@L,0@L,0@L,0@L,0@L,0@L,1{/0}@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,{0/17}@L,0@L,0@L,0@L] [19@L,1@L,3@L,{21/3}@H] Halt 
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Shrinking 

• greedy search for smaller counterexample 

• lots of different tricks/heuristics/black magic: 

– shrinking variations together 

– smart shrinking (optimizes order to gain speed) 

– double shrinking (take two steps in one) 

• domain-specific knowledge crucial 

• future: experimentally assess our shrinking 
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Potential extensions 

• estimate expected error in our experiments 

• evaluate against other testing techniques 

– we blow symbolic execution out of the water 

– still need to try exhaustive and narrowing based 
testing (SmallCheck, Lazy SmallCheck, EasyCheck) 

• test other IFC mechanisms 

– high-level languages: Breeze and LIO 

– static type systems 
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Beyond noninterference 

• testing other properties: 

– general relational ones (program logics) 

– some results on testing refinement / simulation 

– semantics preserving translations 
(exception handling mechanisms) 

• All Your IFCException Are Belong To Us 
talk on Monday at 8:45am at Oakland 2013 

76 



More potential future work on testing 

• how to make random testing as repeatable as 
unit testing? 
– how to save all bugs without turning code into 

spaghetti? 

– or how to add bugs automatically? 
• missing checks + taints are rather easy 

• generic random testing framework for Coq 
– testing Coq very much behind wrt Isabelle 

– we don't need much beyond extraction to get started 

• random testing: from art to science 
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Beyond testing 

78 

more abstract machine with 
built-in IFC (executable spec) 

more concrete machine 
running protection server code 

correctness of 
implementation 

noninterference 

more concrete  
noninterference 

+ 

I showed you how to test (a simplified version of) this 
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more abstract machine with 
built-in IFC (executable spec) 

more concrete machine 
running protection server code 

correctness of 
implementation 

noninterference 

more concrete  
noninterference 

+ 

I showed you how to test (a simplified version of) this 

We actually also tested this part 



Beyond testing 

80 

more abstract machine with 
built-in IFC (executable spec) 

more concrete machine 
running protection server code 

correctness of 
implementation 

noninterference 

more concrete  
noninterference 

+ 

We proved all this in Coq (for this 10 instr. machine; 

Testing is a great prelude to formal verification 

real machine 10x more complex though) 



Conclusion 

• property-based random testing 
– is a lot of fun 

– can inform and greatly speed up design process 

– can serve as 1st step towards formal verification 
• concentrate more energy on proving things that are 

correct or nearly correct; finding the right invariants 

– is not push-button 
• but some general tricks help a lot 

• incorporating domain knowledge crucial: 
about the system and the property 
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