
Testing Noninterference, Quickly

joint work with John Hughes, Benjamin C. Pierce,
Antal Spector-Zabusky, Dimitrios Vytiniotis,

Arthur Azevedo de Amorim, Leonidas Lampropoulos

Cătălin Hrițcu

CRASH/SAFE project

• Academic partners (16):

– University of Pennsylvania (11)

– Harvard University (4)

– Northeastern University (1)

• Industrial partners (24):

– BAE systems (21) + Clozure (3)

• Funded by DARPA
– Clean-Slate Design of Resilient, Adaptive, Secure Hosts

2

40!

Clean-slate co-design of net host

3

Clean-slate co-design of net host

4

Primary goal:
design and implement a
significantly more secure
architecture, without
backwards compatibility
concerns

Clean-slate co-design of net host

New stack:

• language

• system

• hardware

5

Primary goal:
design and implement a
significantly more secure
architecture, without
backwards compatibility
concerns

Clean-slate co-design of net host

New stack:

• language

• system

• hardware

6

Secondary goal:
verify that it’s secure
(whatever that means)

Primary goal:
design and implement a
significantly more secure
architecture, without
backwards compatibility
concerns





Design targeting security

7

language

system

hardware

Design targeting security

8

language

system

hardware

cool ideas

Design targeting security

9

language

system

hardware

cool ideas

cool ideas

cool ideas

Design targeting security

10

language

system

hardware

Design targeting security

11

language

system

hardware

fine-grained protection basic abstraction

Design targeting security

12

language

system

hardware V
er

if
ic

at
io

n

fine-grained protection basic abstraction

This talk

13

V
er

if
ic

at
io

n
 show how

property-based random testing
can aid design and serve as

a first step towards verification

COUNTEREXAMPLE-GUIDED
INFORMATION FLOW MACHINE DESIGN

14

A simple stack-and-memory machine

• values = integers

• stack = list of values

instruction stack before stack after memory

Push n stk n : stk

Pop n : stk stk

Add n : m : stk (n+m) : stk

Load a : stk mem[a] : stk

Store a : n : stk stk mem[a] := n

Halt stk ----

• memory = list of values

15

A simple information-flow machine

• values = labeled integers

• stack = list of values

instruction stack before stack after memory

Push n@X stk n@X : stk

Pop n@X : stk stk

Add n@X : m@Y :stk (n+m)@? : stk

Load a@X : stk mem[a] : stk

Store a@X : n@Y : stk stk mem[a] := n@?

Halt stk ----

• labels = L and H

• memory = list of values

16

A simple information-flow machine

• values = labeled integers

• stack = list of values

instruction stack before stack after memory

Push n@X stk n@X : stk

Pop n@X : stk stk

Add n@X : m@Y :stk (n+m)@L : stk

Load a@X : stk mem[a] : stk

Store a@X : n@Y : stk stk mem[a] := n@L

Halt stk ----

• labels = L and H

• memory = list of values

17

Noninterference (EENI)

• “secret inputs don’t affect public outputs”

– secret inputs = numbers labeled H in initial state

• initial state = empty stack, memory all 0@L,
instructions can contain secrets (Push 0@H)

– public outputs = memory labeled L in halted state

18

Noninterference (EENI)

• “secret inputs don’t affect public outputs”

– secret inputs = numbers labeled H in initial state

• initial state = empty stack, memory all 0@L,
instructions can contain secrets (Push 0@H)

– public outputs = memory labeled L in halted state

• more precisely:

– forall i1 i2, if i1 ≈ i2 and i1 →* h1 and i2 →* h2
 then mem(h1) ≈ mem(h2)

19

Noninterference (EENI)

• “secret inputs don’t affect public outputs”

– secret inputs = numbers labeled H in initial state

• initial state = empty stack, memory all 0@L,
instructions can contain secrets (Push 0@H)

– public outputs = memory labeled L in halted state

• more precisely:

– forall i1 i2, if i1 ≈ i2 and i1 →* h1 and i2 →* h2
 then mem(h1) ≈ mem(h2)

– n1@L ≈ n2@L iff n1=n2 n1@H ≈ n2@H always

20

READY TO SQUASH SOME BUGS?

21

(let’s assume we have a property-based random testing framework in place)

Counterexample #1

22

memory stack next instruction

[0@L] [] Push {0/1}@H

[0@L] [{0/1}@H] Push 0@L

[0@L] [0@L,{0/1}@H] Store

[{0/1}@L] [] Halt

Counterexample #1

23

memory stack next instruction

[0@L] [] Push {0/1}@H

[0@L] [{0/1}@H] Push 0@L

[0@L] [0@L,{0/1}@H] Store

[{0/1}@L] [] Halt

Counterexample #1

24

instruction stack before stack after memory

Store a@X : n@Y : stk stk mem[a] := n@Y

Fixing bug in Store

memory stack next instruction

[0@L] [] Push {0/1}@H

[0@L] [{0/1}@H] Push 0@L

[0@L] [0@L,{0/1}@H] Store

[{0/1}@L] [] Halt

Counterexample #2
memory stack next instruction

[0@L,0@L] [] Push 1@L

[0@L,0@L] [1@L] Push {0/1}@H

[0@L,0@L] [{0/1}@H,1@L] Store

[{1/0}@L,{0/1}@L] [] Halt

25

Counterexample #2
memory stack next instruction

[0@L,0@L] [] Push 1@L

[0@L,0@L] [1@L] Push {0/1}@H

[0@L,0@L] [{0/1}@H,1@L] Store

[{1/0}@L,{0/1}@L] [] Halt

26

Counterexample #2
memory stack next instruction

[0@L,0@L] [] Push 1@L

[0@L,0@L] [1@L] Push {0/1}@H

[0@L,0@L] [{0/1}@H,1@L] Store

[{1/0}@L,{0/1}@L] [] Halt

27

instruction stack before stack after memory

Store a@X : n@Y : stk stk mem[a] := n@X⨆Y

Fixing 2nd bug in Store

Counterexample #3
memory stack next instruction

[0@L,0@L] [] Push 1@L

[0@L,0@L] [0@L] Push {0/1}@H

[0@L,0@L] [{0/1}@H,1@L] Store

[{1@H/0@L},{0@L/1@H}] [] Halt

28

Counterexample #3
memory stack next instruction

[0@L,0@L] [] Push 1@L

[0@L,0@L] [0@L] Push {0/1}@H

[0@L,0@L] [{0/1}@H,1@L] Store

[{1@H/0@L},{0@L/1@H}] [] Halt

29

Counterexample #3
memory stack next instruction

[0@L,0@L] [] Push 1@L

[0@L,0@L] [0@L] Push {0/1}@H

[0@L,0@L] [{0/1}@H,1@L] Store

[{1@H/0@L},{0@L/1@H}] [] Halt

30

stack before side condition stack after memory

a@X : n@Y : stk Y ≤ labOf(mem[a]) stk mem[a] := n@X⨆Y

Fixing 3nd bug in Store

No sensitive upgrade [Steve Zdancewic’s PhD, 2002]

Counterexample #3
memory stack next instruction

[0@L,0@L] [] Push 1@L

[0@L,0@L] [0@L] Push {0/1}@H

[0@L,0@L] [{0/1}@H,1@L] Store

[{1@H/0@L},{0@L/1@H}] [] Halt

31

stack before side condition stack after memory

a@X : n@Y : stk Y ≤ labOf(mem[a]) stk mem[a] := n@X⨆Y

Fixing 3nd bug in Store

No sensitive upgrade [Steve Zdancewic’s PhD, 2002]

*the real counterexample had Push 0@L as the first instruction

Counterexample #4
memory stack next instruction

[0@L] [] Push 0@L

[0@L] [0@L] Push {0/1}@H

[0@L] [{0/1}@H,0@L] Add

[0@L] [{0/1}@L] Push 0@L

[0@L] [0@L,{0/1}@L] Store

[{0/1}@L] [] Halt

32

Counterexample #4
memory stack next instruction

[0@L] [] Push 0@L

[0@L] [0@L] Push {0/1}@H

[0@L] [{0/1}@H,0@L] Add

[0@L] [{0/1}@L] Push 0@L

[0@L] [0@L,{0/1}@L] Store

[{0/1}@L] [] Halt

33

Counterexample #4
memory stack next instruction

[0@L] [] Push 0@L

[0@L] [0@L] Push {0/1}@H

[0@L] [{0/1}@H,0@L] Add

[0@L] [{0/1}@L] Push 0@L

[0@L] [0@L,{0/1}@L] Store

[{0/1}@L] [] Halt

34

Fixing bug in Add
instruction stack before stack after memory

Add n@X : m@Y :stk (n+m)@(X⨆Y) : stk

Counterexample #5
memory stack next instruction

[0@L,0@L] [] Push 1@L

[0@L,0@L] [1@L] Push 0@L

[0@L,0@L] [0@L,1@L] Store

[1@L,0@L] [] Push {1/0}@H

[1@L,0@L] [{1/0}@H] Load

[1@L,0@L] [{0/1}@L] Push 0@L

[1@L,0@L] [0@L,{0/1}@L] Store

[{0/1}@L,0@L] [] Halt

35

Counterexample #5
memory stack next instruction

[0@L,0@L] [] Push 1@L

[0@L,0@L] [1@L] Push 0@L

[0@L,0@L] [0@L,1@L] Store

[1@L,0@L] [] Push {1/0}@H

[1@L,0@L] [{1/0}@H] Load

[1@L,0@L] [{0/1}@L] Push 0@L

[1@L,0@L] [0@L,{0/1}@L] Store

[{0/1}@L,0@L] [] Halt

36

Counterexample #5
memory stack next instruction

[0@L,0@L] [] Push 1@L

[0@L,0@L] [1@L] Push 0@L

[0@L,0@L] [0@L,1@L] Store

[1@L,0@L] [] Push {1/0}@H

[1@L,0@L] [{1/0}@H] Load

[1@L,0@L] [{0/1}@L] Push 0@L

[1@L,0@L] [0@L,{0/1}@L] Store

[{0/1}@L,0@L] [] Halt

37

Fixing bug in Load
instruction stack before stack after memory

Load a@X : stk mem[a]@X : stk

HOW DID WE DO THIS?

38

Main ingredients

• QuickCheck

• Rephrasing preconditions

• Clever program generation strategies

• Shrinking counterexamples

• Later one more: stronger properties

39

QuickCheck

• Property-based random testing tool for Haskell

• Property ~= Boolean Haskell expression
– QC generates random instances for variables

– implications treated a bit specially
• failing precondition counted as “discard”

• Default random generators using type-classes
– uniformly at random

40

[Claessen & Hughes, ICFP 2000]

QuickCheck

• Property-based random testing tool for Haskell

• Property ~= Boolean Haskell expression
– QC generates random instances for variables

– implications treated a bit specially
• failing precondition counted as “discard”

• Default random generators using type-classes
– uniformly at random

• Out of the box it doesn't work for us! 
– couldn’t find any bug; astronomic discard rate

41

[Claessen & Hughes, ICFP 2000]

(Re)phrasing noninterference

Original 
for random i1,
for random i2,
 if i1 ≈ i2
 and i1 →* h1
 and i2 →* h2
 then
 mem(h1) ≈ mem(h2)

42

Rare

(Re)phrasing noninterference

Original 
for random i1,
for random i2,
 if i1 ≈ i2
 and i1 →* h1
 and i2 →* h2
 then
 mem(h1) ≈ mem(h2)

Much better 
for random i1,
for random
 ≈ variation i2 of i1,
 if i1 →* h1
 and i2 →* h2
 then
 mem(h1) ≈ mem(h2)

43

Rare

44

• How can we evaluate how good our testing is?

– add bugs one at a time and see how fast they’re found

– Mean Time to Find (MTTF)

Bug MTTF

1nd for Store 8s

2st for Store ∞*

3rd for Store 47s

Add 83s

Load ∞*

Push 4s
45

• How can we evaluate how good our testing is?

– add bugs one at a time and see how fast they’re found

– Mean Time to Find (MTTF)

*not found in 300s

from
before

new

Naive generation

Bug MTTF

1nd for Store 8s

2st for Store ∞*

3rd for Store 47s

Add 83s

Load ∞*

Push 4s
46

• How can we evaluate how good our testing is?

– add bugs one at a time and see how fast they’re found

– Mean Time to Find (MTTF)

*not found in 300s

from
before

new

bad

Some statistics

• new discard rate: 79%

• average number of execution steps: 0.47

• reasons for termination

47

0%

10%

20%

30%

40%

50%

60%

70%

80%

stack underflow halt load or store out
of range

Weighted distribution on instructions

• increased chance of getting Push or Halt

48

Weighted distribution on instructions

• increased chance of getting Push or Halt

• average number of execution steps: 2.69

• reasons for termination

49

0%
5%

10%
15%
20%
25%
30%
35%
40%

halt stack underflow load or store out of
range

Instruction sequences

• generating useful instruction sequences more
often (e.g. Push a; Store, where a is valid addr)

50

Instruction sequences

• generating useful instruction sequences more
often (e.g. Push a; Store, where a is valid addr)

• average number of execution steps: 3.86

• reasons for termination

51

0%
5%

10%
15%
20%
25%
30%
35%
40%

halt load or store
out of range

stack
underflow

sensitive
upgrade

Smart integers

• generating valid code and data addr. more often
– varying valid addr with high probability to other addr

52

Smart integers

• generating valid code and data addr. more often
– varying valid addr with high probability to other addr

• average number of execution steps: 4.22

• reasons for termination

53

0%

10%

20%

30%

40%

50%

halt stack
underflow

load or store
out of range

sensitive
upgrade

They don’t just run longer ...

• Smarter generation finds bugs much faster

• Mean Time to Find (MTTF)

54

Bug Naive Smarter

1st for Store 7660.07ms 0.31ms

2nd for Store ∞ 32227.10ms

3rd for Store 47365.97ms 0.12ms

Add 83247.01ms 30.05ms

Load ∞ 2258.93ms

Push 3552.54ms 0.07ms

Generation by execution

55

• try to generate instruction seq that doesn’t crash

• maintain a current state
– generate instr(s) that make sense in current state

– run instr(s) to obtain new current state

– fully precise for straight-line code

• jumps forward easy, jumps backward harder
– look ahead 2 steps before committing to jump

– current state still not always accurate

• give Halt more weight as execution gets longer

Statistics for generation by execution

56

• average number of execution steps:

• 11.6 for original program, 11.26 for variation

• reasons for termination (original + variation)

0%

20%

40%

60%

80%

100%

halt + halt halt + load or store
out of range

halt + sensitive
upgrade

Generation by execution finds bugs faster

57

Bug Naive Smarter By Exec

1st for Store 7660.07ms 0.31ms 0.02ms

2nd for Store ∞ 32227.10ms 1233.51ms

3rd for Store 47365.97ms 0.12ms 0.25ms

Add 83247.01ms 30.05ms 0.87ms

Load ∞ 2258.93ms 4.03ms

Push 3552.54ms 0.07ms 0.01ms

Arith. mean ∞ 5752.76ms 206.45ms

Geom. mean ∞ 13.33ms 0.77ms

tests / second 24129 7915 3284

discard rate 79% 59% 4%

28x

17x

Adding control flow

• jumps & procedures

– machine more interesting from IFC pov

• stack also serves as call stack

• 14 bugs = 6 old bugs + 8 new bugs

• GenByExec

– finds 13 of them in 0.22ms to 69s

– misses one completely:
not protecting call stack is unsound

58

Counterexample to Load bug

memory stack next instruction

[0@L,0@L] [] Push 1@L

[0@L,0@L] [1@L] Push 0@L

[0@L,0@L] [0@L,1@L] Store

[1@L,0@L] [] Push {1/0}@H

[1@L,0@L] [{1/0}@H] Load

[1@L,0@L] [{0/1}@L] Push 0@L

[1@L,0@L] [0@L,{0/1}@L] Store

[{0/1}@L,0@L] [] Halt

59

takes 155ms to find now; 433 tests (average)

Counterexample to Load bug

memory stack next instruction

[0@L,0@L] [] Push 1@L

[0@L,0@L] [1@L] Push 0@L

[0@L,0@L] [0@L,1@L] Store

[1@L,0@L] [] Push {1/0}@H

[1@L,0@L] [{1/0}@H] Load

[1@L,0@L] [{0/1}@L] Push 0@L

[1@L,0@L] [0@L,{0/1}@L] Store

[{0/1}@L,0@L] [] Halt

60

setting up

observing

bug

takes 155ms to find now; 433 tests (average)

Stronger noninterference

Current 
for random i1,
for random
 ≈ variation i2 of i1,
 if i1 →* h1
 and i2 →* h2
 then
 mem(h1) ≈ mem(h2)

61

Stronger noninterference

Current 
for random i1,
for random
 ≈ variation i2 of i1,
 if i1 →* h1
 and i2 →* h2
 then
 mem(h1) ≈ mem(h2)

Better 
for random q1,
for random
 ≈ variation q2 of q1,
 if q1 →* h1
 and q2 →* h2
 then
 h1 ≈ h2

62

Stronger noninterference

Current 
for random i1,
for random
 ≈ variation i2 of i1,
 if i1 →* h1
 and i2 →* h2
 then
 mem(h1) ≈ mem(h2)

Better 
for random q1,
for random
 ≈ variation q2 of q1,
 if q1 →* h1
 and q2 →* h2
 then
 h1 ≈ h2

63

q - quasi initial = arbitrary, but labOf(pc)≠H
 (control not affected by secrets) ≈ equates all H states

Counterexamples to Load bug

64

memory stack next instruction

[0@L,1@L] [] Push {0/1}@H

[0@L,1@L] [{0/1}@H] Load

[0@L,1@L] [{0/1}@L] Halt

used to take 155ms to find; 433 tests
 now it takes 6ms to find; 12 tests (average)

memory stack next instruction

[0@L,1@L] [{1/0}@H] Load

[0@L,1@L] [{1/0}@L] Halt

This finds all bugs, including ...

65

it takes 16s to find this one (average)

memory stack next
instruction

[] [ARet (3,False)@L,0@L,ARet (4,True)@L] Push {3/2}@H

[] [{3/2}@H,ARet (3,False)@L,0@L,ARet (4,True)@L] Jump

execution 1 continues ...

[] [ARet (3,False)@L,0@L,ARet (4,True)@L] Return False

[] [0@L,ARet (4,True)@L] Return False

[] [0@L] Halt

execution 2 continues ...

[] [ARet (3,False)@L,0@L,ARet (4,True)@L] Pop

[] [0@L,ARet (4,True)@L] Return False

[] [0@H] Halt

Even stronger noninterference

EENI SNI

LLNI

SSNI

66

Even stronger noninterference

EENI SNI

LLNI

SSNI

what we actually want

for successfully
terminating

programs

for server loops

67

Even stronger noninterference

EENI SNI

LLNI

SSNI

what we actually want

for successfully
terminating

programs

for server loops

what’s
easier
to test

68

Even stronger noninterference

EENI SNI

LLNI

SSNI

what we actually want

for successfully
terminating

programs

for server loops

what’s
easier
to test

what we can prove
by induction
(“unwinding conditions”)

69

Single-step noninterference (SSNI)

L

Lhalt

*

easiest to test and suitable for proof (“unwinding conditions”)

L

L

*

*

H

H

L

L

H

H

H

SSNI finds each bug in under 17ms

71

EENI (with all
improvements)

SSNI

Arith. mean MTTF 1526.75ms 2.01ms

Geom. mean MTTF 46.48ms 0.47ms

tests/s 2391 18407

discard rate 69% 9%

SSNI finds each bug in under 17ms

72

EENI (with all
improvements)

SSNI

Arith. mean MTTF 1526.75ms 2.01ms

Geom. mean MTTF 46.48ms 0.47ms

tests/s 2391 18407

discard rate 69% 9%

Tradeoff:
SSNI requires discovering stronger invariants
invariants of real SAFE machine are very complicated

Why shrink counterexamples?
memory stack next instruction

[0@L,0@L] [] Push {0/15}@H

[0@L,0@L] [{0/15}@H] Load

[0@L,0@L] [0@L] Pop

[0@L,0@L] [] Push -5@L

[0@L,0@L] [-5@L] Push 17@L

[0@L,0@L] [17@L,-5@L] Push 0@L

[0@L,0@L] [0@L,17@L,-5@L] Store

[17@L,0@L] [-5@L] Push 1@L

[17@L,0@L] [1@L,-5@L] Store

[17@L,-5@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L] [] Push {21/3}@H

[17@L,-5@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L] [{21/3}@H] Push 2@L

[17@L,-5@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L] [2@L,{21/3}@H] Load

[17@L,-5@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L] [0@L,{21/3}@H] Pop

[17@L,-5@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L] [{21/3}@H] Push 1{/0}@H

[17@L,-5@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L] [1{/0}@H,{21/3}@H] Push 8@L

[17@L,-5@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L] [8@L,1{/0}@H,{21/3}@H] Store

[17@L,-5@L,0@L,0@L,0@L,0@L,0@L,0@L,1{/0}@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L] [{21/3}@H] Push {9/17}@H

[17@L,-5@L,0@L,0@L,0@L,0@L,0@L,0@L,1{/0}@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L] [{9/17}@H,{21/3}@H] Push {3/0}@H

[17@L,-5@L,0@L,0@L,0@L,0@L,0@L,0@L,1{/0}@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L] [{3/0}@H,{9/17}@H,{21/3}@H] Load

[17@L,-5@L,0@L,0@L,0@L,0@L,0@L,0@L,1{/0}@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L] [{0/17}@L,{9/17}@H,{21/3}@H] Store

[{9/17}@L,-5@L,0@L,0@L,0@L,0@L,0@L,0@L,1{/0}@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,{0/17}@L,0@L,0@L,0@L] [{21/3}@H] Push 3@L

[{9/17}@L,-5@L,0@L,0@L,0@L,0@L,0@L,0@L,1{/0}@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,{0/17}@L,0@L,0@L,0@L] [3@L,{21/3}@H] Push 1@H

[{9/17}@L,-5@L,0@L,0@L,0@L,0@L,0@L,0@L,1{/0}@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,{0/17}@L,0@L,0@L,0@L] [1@H,3@L,{21/3}@H] Load

[{9/17}@L,-5@L,0@L,0@L,0@L,0@L,0@L,0@L,1{/0}@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,{0/17}@L,0@L,0@L,0@L] [-5@L,3@L,{21/3}@H] Pop

[{9/17}@L,-5@L,0@L,0@L,0@L,0@L,0@L,0@L,1{/0}@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,{0/17}@L,0@L,0@L,0@L] [3@L,{21/3}@H] Push 1@L

[{9/17}@L,-5@L,0@L,0@L,0@L,0@L,0@L,0@L,1{/0}@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,{0/17}@L,0@L,0@L,0@L] [1@L,3@L,{21/3}@H] Push 19@L

[{9/17}@L,-5@L,0@L,0@L,0@L,0@L,0@L,0@L,1{/0}@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,0@L,{0/17}@L,0@L,0@L,0@L] [19@L,1@L,3@L,{21/3}@H] Halt

73

Shrinking

• greedy search for smaller counterexample

• lots of different tricks/heuristics/black magic:

– shrinking variations together

– smart shrinking (optimizes order to gain speed)

– double shrinking (take two steps in one)

• domain-specific knowledge crucial

• future: experimentally assess our shrinking

74

Potential extensions

• estimate expected error in our experiments

• evaluate against other testing techniques

– we blow symbolic execution out of the water

– still need to try exhaustive and narrowing based
testing (SmallCheck, Lazy SmallCheck, EasyCheck)

• test other IFC mechanisms

– high-level languages: Breeze and LIO

– static type systems

75

Beyond noninterference

• testing other properties:

– general relational ones (program logics)

– some results on testing refinement / simulation

– semantics preserving translations
(exception handling mechanisms)

• All Your IFCException Are Belong To Us
talk on Monday at 8:45am at Oakland 2013

76

More potential future work on testing

• how to make random testing as repeatable as
unit testing?
– how to save all bugs without turning code into

spaghetti?

– or how to add bugs automatically?
• missing checks + taints are rather easy

• generic random testing framework for Coq
– testing Coq very much behind wrt Isabelle

– we don't need much beyond extraction to get started

• random testing: from art to science

77

Beyond testing

78

more abstract machine with
built-in IFC (executable spec)

more concrete machine
running protection server code

correctness of
implementation

noninterference

more concrete
noninterference

+

I showed you how to test (a simplified version of) this

Beyond testing

79

more abstract machine with
built-in IFC (executable spec)

more concrete machine
running protection server code

correctness of
implementation

noninterference

more concrete
noninterference

+

I showed you how to test (a simplified version of) this

We actually also tested this part

Beyond testing

80

more abstract machine with
built-in IFC (executable spec)

more concrete machine
running protection server code

correctness of
implementation

noninterference

more concrete
noninterference

+

We proved all this in Coq (for this 10 instr. machine;

Testing is a great prelude to formal verification

real machine 10x more complex though)

Conclusion

• property-based random testing
– is a lot of fun

– can inform and greatly speed up design process

– can serve as 1st step towards formal verification
• concentrate more energy on proving things that are

correct or nearly correct; finding the right invariants

– is not push-button
• but some general tricks help a lot

• incorporating domain knowledge crucial:
about the system and the property

81

