
Union, Intersection, and Refinement Types
and Reasoning about Type Disjointness
for Analyzing Protocol Implementations

Penn PLClub, Philadelphia, 20th of July 2011

Cătălin Hrițcu

Joint work with: Michael Backes and Matteo Maffei

http://www.infsec.cs.uni-saarland.de/~hritcu/publications/rcf-and-or-coq-full.pdf
http://www.infsec.cs.uni-saarland.de/~hritcu/publications/rcf-and-or-coq-full.pdf
http://www.infsec.cs.uni-saarland.de/~hritcu/publications/rcf-and-or-coq-full.pdf
http://www.infsec.cs.uni-saarland.de/~hritcu/publications/rcf-and-or-coq-full.pdf
http://www.infsec.cs.uni-saarland.de/~hritcu/publications/rcf-and-or-coq-full.pdf
http://www.infsec.cs.uni-saarland.de/~hritcu/publications/rcf-and-or-coq-full.pdf

A little bit of background

Analyzing cryptographic protocols

• Analyzing protocol models: successful research field

• modelling languages:
 strand spaces, CSP, spi calculus, applied-π, PCL, etc.

• security properties:
 from secrecy & authenticity all the way to coercion-resistance

• automated analysis tools:
 Casper, AVISPA, ProVerif, Cryptyc & other type-checkers, etc.

• found bugs in deployed protocols
 SSL, PKCS, Microsoft Passport, Kerberos, Plutus, etc.

• proved industrial protocols secure
 EKE, JFK, TLS, DAA, etc.

Abstract models vs. actual code

• Still, only limited impact in practice!

• Researchers prove properties of abstract models

• Developers write and execute actual code

• Usually no relation between the two

• Even if correspondence is proved, model and code will
drift apart as the code evolves

• Most often the only “model” is the code itself

• The good news: when given a proper semantics the
security of code can be analyzed as well

Analyzing protocol implementations

• Recently many approaches proposed

• program verification:
CSur [Goubault-Larrecq and Parrennes, VMCAI ’05]
ASPIER model checker for C [Chaki & Datta, CSF ‘09]
VCgen for C [Dupressoir, Gordon, Jürjens & Naumann, CSF ’11]

• extracting ProVerif models:
fs2pv [Bhargavan, Fournet, Gordon & Tse, CSF ’06]
symbolic execution for C [Aizatulin, Gordon, Jürjens, CCS ’11]

• typing:
F7v1 [Bengtson, Bhargavan, Fournet, Gordon & Maffeis, CSF ’08]
F7v2 [Bhargavan, Fournet & Gordon, POPL ’10]
F* [Swamy, Chen, Fournet, Strub, Bharagavan & Yang, ICFP ’11]

• advantages: modularity, scalability, infinite # of sessions,
predictable termination behavior, early feedback

F7v1 type-checker

• Security type-checker for (fragment of) F# (ML)

• Checks compliance with authorization policy

• FOL used as authorization logic

• proof obligations discharged using SMT solver (Z3)

• Dual implementation of cryptographic library

• symbolic (DY model): used for security verification, debugging

• concrete (real crypto): used in actual deployment

• F# fragment encoded into expressive core calculus (RCF)

[Bengtson, Bhargavan, Fournet, Gordon & Maffeis CSF ’08]

F7 (& fs2pv) tool-chain

!"#$%&'&
!%()'"

*(+,"-.$
!%()'"

*"+&/"'0&%/
.+)-&+&#'1'."#

2&%.3.&% !%()'"
4&'5-1'3"%+/6!789

:#'&%")&%1,.-.'(*(+,"-.$
;&%.3.$1'."#

*(+,"-.$/'&<'.#=
>/?&,@==.#=

!""#$%&'$()
A'0&%
7.,%1%.&<

B@'0CD(/$"?&
D(

)%"'"$"-

*"@%$&/$"?&
6+"?@-&<9/

!"#$%&'(

)%*+&

!+(,-'."

/%0&1

!"#$%&'%()*+'*+$,--.$/"012$34(%5678

RCF (Refined Concurrent PCF)
• λ-calculus + concurrency & channel communication

 in the style of asynchronous π-calculus
 (new c) c!m | c? → (new c) m

• Minimal core calculus

• as few primitives as possible, everything else encoded
e.g. ML references encoded using channels

• Expressive type system

• refinement types Pos = {x : Nat | x ≠ 0}

• dependent pair and function types (pre&post-conditions)
λx.x : (y:Nat → {z:Nat | z = y})
pred : x:Pos → {y:Nat | x = fold (inl y)}

• iso-recursive and disjoint union types Nat = μα.α+unit

• Safety: in all executions all asserts succeed
(i.e. asserts are logically entailed by the active assumes)

• Robust safety:
safety in the presence of arbitrary DY attacker

• attacker is a closed assert-free RCF expression

• attacker is Un-typed

• type T is public if T <: Un

• type T is tainted if Un <: T

• Type system ensures that well-typed programs are
robustly safe

Security properties (informal)

Why wasn’t this enough?

An extremely simple example

An extremely simple example

n : Private enc<Private> pkB n

public key
pkB : PK<Private>

An extremely simple example

n : Private enc<Private> pkB n

kB : DK<Private>public key
pkB : PK<Private>

let xn = dec<Private> kB net? in

An extremely simple example

n : Private enc<Private> pkB n

kB : DK<Private>

enc<Un> pkB junk

public key
pkB : PK<Private>

junk : Un

let xn = dec<Private> kB net? in

An extremely simple example

n : Private enc<Private> pkB n

kB : DK<Private>

xn : Private ∨ Un

enc<Un> pkB junk

public key
pkB : PK<Private>

junk : Un

let xn = dec<Private> kB net? in

An extremely simple example

n : Private enc<Private> pkB n

kB : DK<Private>

xn : Private ∨ Un

enc<Un> pkB junk

public key
pkB : PK<Private>

junk : Un

assume Auth(m,B,A)

let xn = dec<Private> kB net? in

An extremely simple example

n : Private enc<Private> pkB n

kB : DK<Private>

xn : Private ∨ Un

public key
pkB : PK<Private>pkA : PK<TA>

enc<TA> pkA (xn,m)

assume Auth(m,B,A)

let xn = dec<Private> kB net? in

An extremely simple example

n : Private enc<Private> pkB n

kB : DK<Private>

xn : Private ∨ Un

public key
pkB : PK<Private>pkA : PK<TA>

TA=Private∨Un * {ym:Un | Auth(ym,B,A)}

enc<TA> pkA (xn,m)

assume Auth(m,B,A)

let xn = dec<Private> kB net? in

An extremely simple example

n : Private enc<Private> pkB n

kB : DK<Private>

xn : Private ∨ Un

public key
pkB : PK<Private>kA : DK<TA> pkA : PK<TA>

TA=Private∨Un * {ym:Un | Auth(ym,B,A)}

enc<TA> pkA (xn,m)

let ynym = dec<TA> kA net? in

case ynym’ = ynym : TA ∨ Un of

let (yn, ym) = ynym’ in

if yn = n then assert Auth(ym,B,A)

assume Auth(m,B,A)

let xn = dec<Private> kB net? in

An extremely simple example

n : Private enc<Private> pkB n

kB : DK<Private>

xn : Private ∨ Un

public key
pkB : PK<Private>kA : DK<TA> pkA : PK<TA>

TA=Private∨Un * {ym:Un | Auth(ym,B,A)}

enc<TA> pkA (xn,m)

let ynym = dec<TA> kA net? in

case ynym’ = ynym : TA ∨ Un of

let (yn, ym) = ynym’ in

if yn = n then assert Auth(ym,B,A) enc<Un> pkA junk

assume Auth(m,B,A)

let xn = dec<Private> kB net? in

ynym : TA ∨ Un

An extremely simple example

n : Private enc<Private> pkB n

kB : DK<Private>

xn : Private ∨ Un

public key
pkB : PK<Private>kA : DK<TA> pkA : PK<TA>

TA=Private∨Un * {ym:Un | Auth(ym,B,A)}

enc<TA> pkA (xn,m)

let ynym = dec<TA> kA net? in

case ynym’ = ynym : TA ∨ Un of

let (yn, ym) = ynym’ in

if yn = n then assert Auth(ym,B,A) enc<Un> pkA junk

assume Auth(m,B,A)

let xn = dec<Private> kB net? in

case ynym’ = ynym : TA ∨ Un of

’

An extremely simple example

n : Private enc<Private> pkB n

kB : DK<Private>

xn : Private ∨ Un

public key
pkB : PK<Private>kA : DK<TA> pkA : PK<TA>

TA=Private∨Un * {ym:Un | Auth(ym,B,A)}

enc<TA> pkA (xn,m)

let ynym = dec<TA> kA net? in

case ynym’ = ynym : TA ∨ Un of

let (yn, ym) = ynym’ in

if yn = n then assert Auth(ym,B,A) enc<Un> pkA junk

Honest sender case: ym : {ym:Un | Auth(ym,B,A)}

assert succeeds

assume Auth(m,B,A)

let xn = dec<Private> kB net? in

case ynym’ = ynym : TA ∨ Un of

’

An extremely simple example

n : Private enc<Private> pkB n

kB : DK<Private>

xn : Private ∨ Un

public key
pkB : PK<Private>kA : DK<TA> pkA : PK<TA>

TA=Private∨Un * {ym:Un | Auth(ym,B,A)}

enc<TA> pkA (xn,m)

let ynym = dec<TA> kA net? in

case ynym’ = ynym : TA ∨ Un of

let (yn, ym) = ynym’ in

if yn = n then assert Auth(ym,B,A) enc<Un> pkA junk

Honest sender case: ym : {ym:Un | Auth(ym,B,A)}

assert succeeds
Dishonest sender case: yn : Un, n : Private

Un ∩ Private = ∅ so assert won’t be executed

assume Auth(m,B,A)

let xn = dec<Private> kB net? in

case ynym’ = ynym : TA ∨ Un of

’

An extremely simple example

n : Private enc<Private> pkB n

kB : DK<Private>

xn : Private ∨ Un

public key
pkB : PK<Private>kA : DK<TA> pkA : PK<TA>

TA=Private∨Un * {ym:Un | Auth(ym,B,A)}

enc<TA> pkA (xn,m)

let ynym = dec<TA> kA net? in

case ynym’ = ynym : TA ∨ Un of

let (yn, ym) = ynym’ in

if yn = n then assert Auth(ym,B,A) enc<Un> pkA junk

Honest sender case: ym : {ym:Un | Auth(ym,B,A)}

assert succeeds
Dishonest sender case: yn : Un, n : Private

Un ∩ Private = ∅ so assert won’t be executed

assume Auth(m,B,A)

let xn = dec<Private> kB net? in

case ynym’ = ynym : TA ∨ Un of

’

✓

An extremely simple example

n : Private enc<Private> pkB n

kB : DK<Private>

xn : Private ∨ Un

public key
pkB : PK<Private>kA : DK<TA> pkA : PK<TA>

TA=Private∨Un * {ym:Un | Auth(ym,B,A)}

enc<TA> pkA (xn,m)

let ynym = dec<TA> kA net? in

case ynym’ = ynym : TA ∨ Un of

let (yn, ym) = ynym’ in

if yn = n then assert Auth(ym,B,A) enc<Un> pkA junk

Honest sender case: ym : {ym:Un | Auth(ym,B,A)}

assert succeeds
Dishonest sender case: yn : Un, n : Private

Un ∩ Private = ∅ so assert won’t be executed

assume Auth(m,B,A)

let xn = dec<Private> kB net? in

case ynym’ = ynym : TA ∨ Un of

’

✖F7v1 can’t handle this

An extremely simple example

n : Private enc<Private> pkB n

kB : DK<Private>

xn : Private ∨ Un

public key
pkB : PK<Private>kA : DK<TA> pkA : PK<TA>

TA=Private∨Un * {ym:Un | Auth(ym,B,A)}

enc<TA> pkA (xn,m)

let ynym = dec<TA> kA net? in

case ynym’ = ynym : TA ∨ Un of

let (yn, ym) = ynym’ in

if yn = n then assert Auth(ym,B,A) enc<Un> pkA junk

Honest sender case: ym : {ym:Un | Auth(ym,B,A)}

assert succeeds
Dishonest sender case: yn : Un, n : Private

Un ∩ Private = ∅ so assert won’t be executed

assume Auth(m,B,A)

let xn = dec<Private> kB net? in

case ynym’ = ynym : TA ∨ Un of

’

simplified variant of Needham-Schroeder-Lowe

✖F7v1 can’t handle this

We propose ...

• a new type-system for verifying protocol implementations

• combines the refinement types from F7v1/RCF [BBFGM '08]
with union, intersection, and polymorphic types (RCF∀

∧∨)

• novel ability: statically reasoning about disjointness of types

We propose ...

• a new type-system for verifying protocol implementations

• combines the refinement types from F7v1/RCF [BBFGM '08]
with union, intersection, and polymorphic types (RCF∀

∧∨)

• novel ability: statically reasoning about disjointness of types

• What does this buy us?

1. successfully type-checking larger class of protocols

e.g. authenticity achieved by showing knowledge of secret data (NSL, ZK sign)

2. a proper sealing-based encoding of asymmetric cryptography

3. type-checking applications based on NI-ZK (DAA, Civitas, etc.)

We propose ...

• a new type-system for verifying protocol implementations

• combines the refinement types from F7v1/RCF [BBFGM '08]
with union, intersection, and polymorphic types (RCF∀

∧∨)

• novel ability: statically reasoning about disjointness of types

• What does this buy us?

1. successfully type-checking larger class of protocols

e.g. authenticity achieved by showing knowledge of secret data (NSL, ZK sign)

2. a proper sealing-based encoding of asymmetric cryptography

3. type-checking applications based on NI-ZK (DAA, Civitas, etc.)Not today

We propose ...

• a new type-system for verifying protocol implementations

• combines the refinement types from F7v1/RCF [BBFGM '08]
with union, intersection, and polymorphic types (RCF∀

∧∨)

• novel ability: statically reasoning about disjointness of types

• What does this buy us?

1. successfully type-checking larger class of protocols

e.g. authenticity achieved by showing knowledge of secret data (NSL, ZK sign)

2. a proper sealing-based encoding of asymmetric cryptography

3. type-checking applications based on NI-ZK (DAA, Civitas, etc.)

+ Machine-checked soundness proof + cool implementation

Not today

Encoding symbolic cryptography
using dynamic sealing

Symbolic cryptography

• RCF doesn’t have any primitive for cryptography

• Instead, crypto primitives can be encoded using
dynamic sealing [Morris, CACM ’73]

• Advantage: adding new crypto primitives doesn’t change
RCF calculus, or type system, or any proof

• Nice idea that (to a certain extent) works for:
symmetric and PK encryption, signatures, hashes, MACs

• Dynamic sealing not primitive either

• encoded using references, lists, pairs, functions and ν
Seal<α> = (α→Un) * (Un→α)

mkSeal : ∀α. unit → Seal<α>

Symmetric encryption
Key<α> = Seal<α> = (α→Un) * (Un→α)

mkKey = mkSeal

senc = Λα.λk:Key<α>. fst k : ∀α.Key<α>→α→Un

sdec = Λα.λk:Key<α>. snd k : ∀α.Key<α>→Un→α

• Dynamic sealing directly corresponds to sym. encryption

• First observed by [Sumii & Pierce, ’03 & ’07]

“Public”-key encryption
DK<α> = Seal<α> = (α→Un) * (Un→α)

PK<α> = α→Un

mkDK = mkSeal : ∀α.unit→DK<α>

mkPK = Λα.λdk:DK<α>. fst dk : ∀α.DK<α>→PK<α>

enc = Λα.λpk:PK<α>. pk : ∀α.PK<α>→α→Un

dec = Λα.λdk:DK<α>. snd k : ∀α.DK<α>→Un→α

“Public”-key encryption
DK<α> = Seal<α> = (α→Un) * (Un→α)

PK<α> = α→Un

mkDK = mkSeal : ∀α.unit→DK<α>

mkPK = Λα.λdk:DK<α>. fst dk : ∀α.DK<α>→PK<α>

enc = Λα.λpk:PK<α>. pk : ∀α.PK<α>→α→Un

dec = Λα.λdk:DK<α>. snd k : ∀α.DK<α>→Un→α

• A “public” key pk: PK<α> is only public when α is tainted!

“Public”-key encryption
DK<α> = Seal<α> = (α→Un) * (Un→α)

PK<α> = α→Un

mkDK = mkSeal : ∀α.unit→DK<α>

mkPK = Λα.λdk:DK<α>. fst dk : ∀α.DK<α>→PK<α>

enc = Λα.λpk:PK<α>. pk : ∀α.PK<α>→α→Un

dec = Λα.λdk:DK<α>. snd k : ∀α.DK<α>→Un→α

• A “public” key pk: PK<α> is only public when α is tainted!

• A function type T→U is public only when

• return type U is public
(otherwise λ_:unit.msecret would be public)

• argument type T is tainted
(otherwise λk:Key<Private>.cpub!(senc k msecret) is public)

“Public”-key encryption
DK<α> = Seal<α> = (α→Un) * (Un→α)

PK<α> = α→Un

mkDK = mkSeal : ∀α.unit→DK<α>

mkPK = Λα.λdk:DK<α>. fst dk : ∀α.DK<α>→PK<α>

enc = Λα.λpk:PK<α>. pk : ∀α.PK<α>→α→Un

dec = Λα.λdk:DK<α>. snd k : ∀α.DK<α>→Un→α

• A “public” key pk: PK<α> is only public when α is tainted!

• A function type T→U is public only when

• return type U is public
(otherwise λ_:unit.msecret would be public)

• argument type T is tainted
(otherwise λk:Key<Private>.cpub!(senc k msecret) is public)

Remember:
in NSL α is Private

(not public and not tainted)
⇒ strange attacker model

DK<α> = Seal<α∨Un> = ((α∨Un)→Un) * (Un→(α∨Un))

PK<α> = (α∨Un)→Un

mkDK = mkSeal : ∀α.unit→DK<α>

mkPK = Λα.λdk:DK<α>. fst dk : ∀α.DK<α>→PK<α>

enc = Λα.λpk:PK<α>.λm:α. pk m : ∀α.PK<α>→α→Un

dec = Λα.λdk:DK<α>. snd k : ∀α.DK<α>→Un→(α∨Un)

• Public keys are now always public

• A type T∨Un is always tainted since Un <: T∨Un for all T

Public-key encryption - FIXED

DK<α> = Seal<α∨Un> = ((α∨Un)→Un) * (Un→(α∨Un))

PK<α> = (α∨Un)→Un

mkDK = mkSeal : ∀α.unit→DK<α>

mkPK = Λα.λdk:DK<α>. fst dk : ∀α.DK<α>→PK<α>

enc = Λα.λpk:PK<α>.λm:α. pk m : ∀α.PK<α>→α→Un

dec = Λα.λdk:DK<α>. snd k : ∀α.DK<α>→Un→(α∨Un)

• Public keys are now always public

• A type T∨Un is always tainted since Un <: T∨Un for all T

Public-key encryption - FIXED

Union type: sealed values can come from
honest participant (α) or from the attacker (Un)

DK<α> = Seal<α∨Un> = ((α∨Un)→Un) * (Un→(α∨Un))

PK<α> = (α∨Un)→Un

mkDK = mkSeal : ∀α.unit→DK<α>

mkPK = Λα.λdk:DK<α>. fst dk : ∀α.DK<α>→PK<α>

enc = Λα.λpk:PK<α>.λm:α. pk m : ∀α.PK<α>→α→Un

dec = Λα.λdk:DK<α>. snd k : ∀α.DK<α>→Un→(α∨Un)

• Public keys are now always public

• A type T∨Un is always tainted since Un <: T∨Un for all T

Public-key encryption - FIXED

DK<α> = Seal<α∨Un> = ((α∨Un)→Un) * (Un→(α∨Un))

PK<α> = (α∨Un)→Un

mkDK = mkSeal : ∀α.unit→DK<α>

mkPK = Λα.λdk:DK<α>. fst dk : ∀α.DK<α>→PK<α>

enc = Λα.λpk:PK<α>.λm:α. pk m : ∀α.PK<α>→α→Un

dec = Λα.λdk:DK<α>. snd k : ∀α.DK<α>→Un→(α∨Un)

• Public keys are now always public

• A type T∨Un is always tainted since Un <: T∨Un for all T

Public-key encryption - FIXED

Union types introduced
by subtyping

m:α and α<: α∨Un

DK<α> = Seal<α∨Un> = ((α∨Un)→Un) * (Un→(α∨Un))

PK<α> = (α∨Un)→Un

mkDK = mkSeal : ∀α.unit→DK<α>

mkPK = Λα.λdk:DK<α>. fst dk : ∀α.DK<α>→PK<α>

enc = Λα.λpk:PK<α>.λm:α. pk m : ∀α.PK<α>→α→Un

dec = Λα.λdk:DK<α>. snd k : ∀α.DK<α>→Un→(α∨Un)

• Public keys are now always public

• A type T∨Un is always tainted since Un <: T∨Un for all T

Public-key encryption - FIXED

normal!

Digital signatures
SK<α> = Seal<α> = (α→Un) * (Un→α)

VK<α> = Un→α
mkSK = mkSeal

mkVK = Λα.λsk:SK<α>. snd sk : ∀α.SK<α>→VK<α>

sign = Λα.λsk:SK<α>. fst sk : ∀α.SK<α>→α→Un

verify = Λα.λvk:VK<α>.λn:Un.λm:Any.

 if m = vk n then vk n

 else failwith “bad signature” : ∀α.VK<α>→Un→Any→α

Digital signatures
SK<α> = Seal<α> = (α→Un) * (Un→α)

VK<α> = Un→α
mkSK = mkSeal

mkVK = Λα.λsk:SK<α>. snd sk : ∀α.SK<α>→VK<α>

sign = Λα.λsk:SK<α>. fst sk : ∀α.SK<α>→α→Un

verify = Λα.λvk:VK<α>.λn:Un.λm:Any.

 if m = vk n then vk n

 else failwith “bad signature” : ∀α.VK<α>→Un→Any→α

• Verification key vk: VK<α> is public only when α is public!

• Strange, since verify leaks only one additional bit about m
(i.e. is m a proper signature of n or not)

Digital signatures - FIXED
SK<α> = (α→Un) * VK<α>

VK<α> = Un→((Any→α)∧(Un→Un))

mkSK = Λα.λ_:unit. let (s,u) = mkSeal () in

 let v = λn:Un. λm:Any ; Un.

 if m = u n as z then z

 else failwith “bad signature”

 in (s, v) : ∀α.unit→SK<α>

mkVK = Λα.λsk:SK<α>. snd sk : ∀α.SK<α>→VK<α>

sign = Λα.λsk:SK<α>. fst sk : ∀α.SK<α>→α→Un

verify = Λα.λvk:VK<α>. vk : ∀α.VK<α>→Un→Any→α

...

Digital signatures - FIXED
SK<α> = (α→Un) * VK<α>

VK<α> = Un→((Any→α)∧(Un→Un))

mkSK = Λα.λ_:unit. let (s,u) = mkSeal () in

 let v = λn:Un. λm:Any ; Un.

 if m = u n as z then z

 else failwith “bad signature”

 in (s, v) : ∀α.unit→SK<α>

mkVK = Λα.λsk:SK<α>. snd sk : ∀α.SK<α>→VK<α>

sign = Λα.λsk:SK<α>. fst sk : ∀α.SK<α>→α→Un

verify = Λα.λvk:VK<α>. vk : ∀α.VK<α>→Un→Any→α

Verification keys are always public

 T∧Un is always public since T∧Un <: Un

...

Digital signatures - FIXED
SK<α> = (α→Un) * VK<α>

VK<α> = Un→((Any→α)∧(Un→Un))

mkSK = Λα.λ_:unit. let (s,u) = mkSeal () in

 let v = λn:Un. λm:Any ; Un.

 if m = u n as z then z

 else failwith “bad signature”

 in (s, v) : ∀α.unit→SK<α>

mkVK = Λα.λsk:SK<α>. snd sk : ∀α.SK<α>→VK<α>

sign = Λα.λsk:SK<α>. fst sk : ∀α.SK<α>→α→Un

verify = Λα.λvk:VK<α>. vk : ∀α.VK<α>→Un→Any→α

mkSK = Λα.λ_:unit. let (s,u) = mkSeal () in

 let vk = λn:Un. λm:Any ; Un.

 if m = u n as z then z

 else failwith “bad signature”

 in (s, vk)

Digital signatures - FIXED
SK<α> = (α→Un) * VK<α>

VK<α> = Un→((Any→α)∧(Un→Un))

mkSK = Λα.λ_:unit. let (s,u) = mkSeal () in

 let v = λn:Un. λm:Any ; Un.

 if m = u n as z then z

 else failwith “bad signature”

 in (s, v) : ∀α.unit→SK<α>

mkVK = Λα.λsk:SK<α>. snd sk : ∀α.SK<α>→VK<α>

sign = Λα.λsk:SK<α>. fst sk : ∀α.SK<α>→α→Un

verify = Λα.λvk:VK<α>. vk : ∀α.VK<α>→Un→Any→α

mkSK = Λα.λ_:unit. let (s,u) = mkSeal () in

 let vk = λn:Un. λm:Any ; Un.

 if m = u n as z then z

 else failwith “bad signature”

 in (s, vk)

Introduces intersection
of 2 function types

Digital signatures - FIXED
SK<α> = (α→Un) * VK<α>

VK<α> = Un→((Any→α)∧(Un→Un))

mkSK = Λα.λ_:unit. let (s,u) = mkSeal () in

 let v = λn:Un. λm:Any ; Un.

 if m = u n as z then z

 else failwith “bad signature”

 in (s, v) : ∀α.unit→SK<α>

mkVK = Λα.λsk:SK<α>. snd sk : ∀α.SK<α>→VK<α>

sign = Λα.λsk:SK<α>. fst sk : ∀α.SK<α>→α→Un

verify = Λα.λvk:VK<α>. vk : ∀α.VK<α>→Un→Any→α

mkSK = Λα.λ_:unit. let (s,u) = mkSeal () in

 let vk = λn:Un. λm:Any ; Un.

 if m = u n as z then z

 else failwith “bad signature”

 in (s, vk)

Introduces intersection
of 2 function types

If m : Any, u n : α
then z : Any ∧ α <: α

Digital signatures - FIXED
SK<α> = (α→Un) * VK<α>

VK<α> = Un→((Any→α)∧(Un→Un))

mkSK = Λα.λ_:unit. let (s,u) = mkSeal () in

 let v = λn:Un. λm:Any ; Un.

 if m = u n as z then z

 else failwith “bad signature”

 in (s, v) : ∀α.unit→SK<α>

mkVK = Λα.λsk:SK<α>. snd sk : ∀α.SK<α>→VK<α>

sign = Λα.λsk:SK<α>. fst sk : ∀α.SK<α>→α→Un

verify = Λα.λvk:VK<α>. vk : ∀α.VK<α>→Un→Any→α

mkSK = Λα.λ_:unit. let (s,u) = mkSeal () in

 let vk = λn:Un. λm:Any ; Un.

 if m = u n as z then z

 else failwith “bad signature”

 in (s, vk)

Introduces intersection
of 2 function types

If m : Un, u n : α
then z : Un ∧ α <: Un

If m : Any, u n : α
then z : Any ∧ α <: α

Digital signatures - FIXED
SK<α> = (α→Un) * VK<α>

VK<α> = Un→((Any→α)∧(Un→Un))

mkSK = Λα.λ_:unit. let (s,u) = mkSeal () in

 let v = λn:Un. λm:Any ; Un.

 if m = u n as z then z

 else failwith “bad signature”

 in (s, v) : ∀α.unit→SK<α>

mkVK = Λα.λsk:SK<α>. snd sk : ∀α.SK<α>→VK<α>

sign = Λα.λsk:SK<α>. fst sk : ∀α.SK<α>→α→Un

verify = Λα.λvk:VK<α>. vk : ∀α.VK<α>→Un→Any→α

mkSK = Λα.λ_:unit. let (s,u) = mkSeal () in

 let vk = λn:Un. λm:Any ; Un.

 if m = u n as z then z

 else failwith “bad signature”

 in (s, vk)

Union and intersection types allow us to give a more

faithful seal-based encoding of asymmetric crypto

Disjointness of types

Disjointness of types

• Definition: T1 and T2 are disjoint (T1 # T2) if
E ⊢ v : T1 and E ⊢ v : T2 implies E ⊢ false

Disjointness of types

• Definition: T1 and T2 are disjoint (T1 # T2) if
E ⊢ v : T1 and E ⊢ v : T2 implies E ⊢ false

• How to encode a type disjoint from Un?
(hard since Un <:> Un→Un <:> Un*Un <:> ...)

Disjointness of types

• Definition: T1 and T2 are disjoint (T1 # T2) if
E ⊢ v : T1 and E ⊢ v : T2 implies E ⊢ false

• How to encode a type disjoint from Un?
(hard since Un <:> Un→Un <:> Un*Un <:> ...)

• Private = {f : {false}→Un | ∃x. f = λy. assert false; x}

Disjointness of types

• Definition: T1 and T2 are disjoint (T1 # T2) if
E ⊢ v : T1 and E ⊢ v : T2 implies E ⊢ false

• How to encode a type disjoint from Un?
(hard since Un <:> Un→Un <:> Un*Un <:> ...)

• Private = {f : {false}→Un | ∃x. f = λy. assert false; x}

• We lift this to more complex types
tree<α>=μβ. α + (α * β * β)
tree<Private> # Un

 Private # Un
Private # Un (Private * tree<Private> * tree<Private>) # (Un * tree<Un> * tree<Un>)
Private + (Private * tree<Private> * tree<Private>) # Un + (Un * tree<Un> * tree<Un>)
 μβ. Private + (Private * β * β) # μβ. Un + (Un * β * β)
 tree<Private> # Un

Non-Disjointness Judgment
78 CHAPTER 3. ANALYZING PROTOCOL IMPLEMENTATIONS

Non-disjointness of types (*) ! T !! U " C

(ND Private Un)
fv(C) = ∅

! PrivateC !! Un " C

(ND True)

! T1 !! T2 " true

(ND Sym)
! T2 !! T1 " C

! T1 !! T2 " C

(ND Refine)
! T1 !! T2 " C

! {x : T1 | C1} !! T2 " C

(ND Rec)
! (T{α/µα. T}) !! (U{β/µβ. U}) " C

! (µα. T) !! (µβ. U) " C

(ND Pair)
! T1 !! U1 " C1 ! T2 !! U2 " C2

! (T1 ∗ T2) !! (U1 ∗ U2) " C1 ∧ C2

(ND Sum)
! T1 !! U1 " C1 ! T2 !! U2 " C2

! (T1 + T2) !! (U1 + U2) " (C1 ∨ C2)

(ND And)
! T1 !! U " C1 ! T2 !! U " C2

! (T1 ∧ T2) !! U " C1 ∧ C2

(ND Or)
! T1 !! U " C1 ! T2 !! U " C2

! (T1 ∨ T2) !! U " C1 ∨ C2

We take this idea a lot further: we inductively define a ternary relation, which relates
two types with a logical formula. If ! T1 !! T2 " C holds then any environment E in
which T1 and T2 have a common value, has to entail the condition C (i.e., E ! C). The
base case of this relation is ! PrivateC !! Un " C, in particular ! Private !! Un " false.
We call two types provably disjoint if ! T1 !! T2 " C for some formula C that logically
entails false, so Private and Un are provably disjoint. Intuitively, two provably disjoint
types have common values only in an inconsistent environment.

The other inductive rules lift the NonDisj relation to refinement, pair, sum, recursive,
union, and intersection types. We explain two of them in terms of provable disjointness.
In order to show that two (non-dependent) pair types (T1∗T2) and (U1∗U2) are provably
disjoint, we apply rule (ND Pair) and we need to show that T1 and U1 are provably
disjoint, or that T2 and U2 are provably disjoint (a conjunction is false if at least one of
the conjuncts is false). On the other hand, in order to show that two sum types (T1+T2)
and (U1 + U2) are disjoint using (ND Sum) we need to show both that T1 and U1 are
disjoint and that T2 and U2 are disjoint.

To illustrate the expressivity of this definition we consider a type for binary trees:
tree〈α〉 ! µβ.α+(α∗β∗β). Each node in the tree is either a leaf or has two children, and
both kind of nodes store some information of type α. We can show that tree〈Private〉 and
tree〈Un〉 are provably disjoint. By (ND Rec) we need to show that the unfolded types
Private+(Private∗ tree〈Private〉∗ tree〈Private〉) and Un+(Un∗ tree〈Un〉∗ tree〈Un〉) are dis-
joint. By (ND Sum) we need to show both that Private and Un are disjoint, which is im-
mediate by (ND Private Un), and that the pair types (Private∗tree〈Private〉∗tree〈Private〉)
and (Un ∗ tree〈Un〉 ∗ tree〈Un〉) are disjoint. For the latter, by (ND Pair) it suffices to

2.4. TYPE SYSTEM FOR ZERO-KNOWLEDGE 45

(ND Conj)
E ! T !! U " C1 E ! T !! U " C2

E ! T !! U " C1 ∧ C2

(ND Entails)
E ! T1 !! T2 " C E,C ! C ′

E ! T1 !! T2 " C ′

Fortunately, we can use the logical characterization of kinding to capture the effect of
kinding on type disjointness. The most important rule of the non-disjointness judgement
(ND Gen) states that if two generative types with different top-level type constructors
overlap then one of them is public and the other is tainted. This rule is very general
and can be instantiated with different generative types. For instance it allows us to
derive syntactically that Private and Un only overlap in an inconsistent environment (see
derived rule (ND Private Un) below); that if Ch(T) or SymKey(T) overlap with Un then
T is both public and tainted (derived rules (ND Channel Un) and (ND SymKey Un));
and that if SigKey(T) overlaps with Un then T is tainted (derived rule (ND SigKey Un)).

Non-disjointness rules derived from (ND Gen) and (ND Entails)

(ND Private Un)
E ! C ok

E ! Private !! Un " false

(ND PrivateUnless Un)
E ! C ok

E ! PrivateUnless(C) !! Un " C

(ND Channel Un)
E ! T ok

E ! Ch(T) !! Un " fkind(E, T, tnt) ∧ fkind(E, T, pub)

(ND SymKey Un)
E ! T ok

E ! SymKey(T) !! Un " fkind(E, T, tnt) ∧ fkind(E, T, pub)

(ND DecKey Un)
E ! T ok

E ! DecKey(T) !! Un " fkind(E, T, pub)

(ND SigKey Un)
E ! T ok

E ! SigKey(T) !! Un " fkind(E, T, tnt)

Rule (ND True) gives the non-disjointness judgement a trivial base case which allows
us to always infer the true formula. Rule (ND Sym) allows us to swap the two type
arguments, since type disjointness is symmetric. Rule (ND Conj) allows us to take
two instances of the non-disjointness judgement and combine their results using logical
conjunction. Rule (ND Entails) allows us to weaken the formula in the non-disjointness
judgement to any other formula that is entailed by it in the current typing environment.
This rule together with (ND True) allow us to copy all formulas of the environment
into the output formula, as done by the derived rule (ND Forms Env) below. Rule (ND
Forms And Type) allows us to gather the formulas from the two types, conjoin them
together, and require that there exists a term for which they all hold. Intuitively, if

44 CHAPTER 2. ANALYZING PROTOCOL MODELS

This disjointness property is quite complicated to show, but at a very high-level the
reasoning can be summarized as follows: In a consistent environment any closed term of
type Private has to be a name a that is bound in the typing environment to a channel
type Ch(T), for some type T that is equivalent by subtyping11 to the OK-type {false}.
Since the name a can also be given type Un then it must be the case that type Ch(T) is
public, which means that type T is public and tainted, and therefore {false} is public and
tainted. The type {false} is however only tainted in an inconsistent environment, which
contradicts our original assumption. While we have manually done such disjointness
proofs in Coq, the proofs involve non-trivial inductive arguments and use many of the
properties we have proved about the type system, and we cannot expect an automated
type-checker to do such complicated meta-reasoning about our typing judgements.

In order to reason about type (non)disjointness in our type system in a purely syntactic
manner, we introduce a new inductively-defined typing judgement E ! T !! U " C
which guarantees that if the types T and U intersect in E then the formula C is entailed
by E. Defining this judgement is challenging in our setting because kinding makes many
types overlap. For instance, in our type system the types Ch(Un) and Pair(Un,Un) are
equivalent, so it is not enough to look only at the top-level type constructor to decide if
two types can overlap. Moreover, in an inconsistent environment all types overlap, since
all types are equivalent by subtyping.

Non-disjointness of types E ! T !! U " C

(ND Gen)
T and U are generative and have different top-level type constructors

E ! T !! U " (fkind(E, T, pub) ∧ fkind(E,U, tnt)) ∨ (fkind(E, T, tnt) ∧ fkind(E,U, pub))

(ND True)
E ! T1 ok E ! T1 ok

E ! T1 !! T2 " true

(ND Sym)
E ! T2 !! T1 " C

E ! T1 !! T2 " C

(ND Conj)
E ! T !! U " C1 E ! T !! U " C2

E ! T !! U " C1 ∧ C2

(ND Entails)
E ! T1 !! T2 " C E,C ! C ′

E ! T1 !! T2 " C ′

(ND Forms And Type)
E ! T1 ok E ! T1 ok x $∈ fv(T1, T2)

E ! T1 !! T2 " ∃x.
∧
formsx(T1 ∧ T2)

(ND Sub)
E ! T !! U " C E ! U ′ <: U

E ! T !! U ′ " C

(ND Pair)
E ! T1 !! U1 " C1 E ! T2 !! U2 " C2

E ! Pair(x:T1, T2) !! Pair(y:U1, U2) " C1 ∧ C2

(ND And)
E ! T1 !! U " C1 E ! T2 !! U " C2

E ! (T1 ∧ T2) !! U " C1 ∧ C2

(ND Or)
E ! T1 !! U " C1 E ! T2 !! U " C2

E ! (T1 ∨ T2) !! U " C1 ∨ C2

Fortunately, we can use the logical characterization of kinding to capture the effect of
kinding on type disjointness. The most important rule of the non-disjointness judgement

11 Channel types are invariant, but our subtyping relation is not anti-symmetric.

Soundness

Calculus

• Surface calculus (RCF∀
∧∨)

• explicitly typed

• informal (alpha-renaming convention)

• named → human-readable

• used by our type-checker, in the paper, on slides, etc.

• operational semantics only by erasure into Formal-RCF∀
∧∨

Calculus

• Surface calculus (RCF∀
∧∨)

• explicitly typed

• informal (alpha-renaming convention)

• named → human-readable

• used by our type-checker, in the paper, on slides, etc.

• operational semantics only by erasure into Formal-RCF∀
∧∨

• Formal calculus (Formal-RCF∀
∧∨)

• implicitly typed

• formalized using Coq proof assistant

• locally nameless representation (de Bruijn for bound variables)

• machine-checked soundness proof (well-typed programs are robustly safe)

x 2

Calculus

• Surface calculus (RCF∀
∧∨)

• explicitly typed

• informal (alpha-renaming convention)

• named → human-readable

• used by our type-checker, in the paper, on slides, etc.

• operational semantics only by erasure into Formal-RCF∀
∧∨

• Formal calculus (Formal-RCF∀
∧∨)

• implicitly typed

• formalized using Coq proof assistant

• locally nameless representation (de Bruijn for bound variables)

• machine-checked soundness proof (well-typed programs are robustly safe)

+ Adequacy: well-typed in RCF∀
∧∨⇒ erasure well-typed in Formal-RCF∀

∧∨

x 2

RCF∀
∧∨: intersection introduction

• Because of type annotations following rule not enough

E ⊢ M : T1 E ⊢ M : T2 e.g λx : ??? . x :
 E ⊢ M : T1∧T2 (Private→Private)∧(Un→Un)

RCF∀
∧∨: intersection introduction

• Because of type annotations following rule not enough

E ⊢ M : T1 E ⊢ M : T2 e.g λx : ??? . x :
 E ⊢ M : T1∧T2 (Private→Private)∧(Un→Un)

• λx:T1; T2. M [Reynolds ’86, ’96]

• (λx:Private;Un. x) : (Private→Private)∧(Un→Un)

• can’t write terms of type (T1→T1→U1)∧(T2→T2→U2)

• you can use uncurried version (T1×T1→U1)∧(T2×T2→U2)
but then no partial application

RCF∀
∧∨: intersection introduction

• Because of type annotations following rule not enough

E ⊢ M : T1 E ⊢ M : T2 e.g λx : ??? . x :
 E ⊢ M : T1∧T2 (Private→Private)∧(Un→Un)

• λx:T1; T2. M [Reynolds ’86, ’96]

• (λx:Private;Un. x) : (Private→Private)∧(Un→Un)

• can’t write terms of type (T1→T1→U1)∧(T2→T2→U2)

• you can use uncurried version (T1×T1→U1)∧(T2×T2→U2)
but then no partial application

• Type alternation: for α in T; U do M [Pierce, MSCS ‘97]

• More general (λx:T1; T2. M = for α in T1; T2 do λx:α. M)

• for α in T1;T2 do λx:α.λx:α.M : (T1→T1→U1)∧(T2→T2→U2)

Erasure crucial for soundness
• polymorphism, intersections, unions vs. side-effects (known)

Erasure crucial for soundness
• polymorphism, intersections, unions vs. side-effects (known)

• Type refinements Type alternation

E ⊢ M : T E ⊢ C{M/x} E ⊢ M{Ti /α} : T i ∈1,2
 E ⊢ M : {x:T | C} E ⊢ for α in T1; T2 do M : T

Erasure crucial for soundness
• polymorphism, intersections, unions vs. side-effects (known)

• Type refinements Type alternation

E ⊢ M : T E ⊢ C{M/x} E ⊢ M{Ti /α} : T i ∈1,2
 E ⊢ M : {x:T | C} E ⊢ for α in T1; T2 do M : T

• Type refinements vs. type alternation

 ⊢ M{T1/α}:T ⊢ M{T1/α}=M{T1/α}
 ⊢ M{T1/α} : {x:T | x=M{T1/α}} _
⊢ for α in T1; T2 do M : {x:T | x=M{T1/α}}

Erasure crucial for soundness
• polymorphism, intersections, unions vs. side-effects (known)

• Type refinements Type alternation

E ⊢ M : T E ⊢ C{M/x} E ⊢ M{Ti /α} : T i ∈1,2
 E ⊢ M : {x:T | C} E ⊢ for α in T1; T2 do M : T

• Type refinements vs. type alternation

 ⊢ M{T1/α}:T ⊢ M{T1/α}=M{T1/α}
 ⊢ M{T1/α} : {x:T | x=M{T1/α}} _
⊢ for α in T1; T2 do M : {x:T | x=M{T1/α}}

• This can only possibly work if (for α in T1; T2 do M) = M{T1/α}
(both operationally and in the authorization logic)

Erasure crucial for soundness
• polymorphism, intersections, unions vs. side-effects (known)

• Type refinements Type alternation

E ⊢ M : T E ⊢ C{M/x} E ⊢ M{Ti /α} : T i ∈1,2
 E ⊢ M : {x:T | C} E ⊢ for α in T1; T2 do M : T

• Type refinements vs. type alternation

 ⊢ M{T1/α}:T ⊢ M{T1/α}=M{T1/α}
 ⊢ M{T1/α} : {x:T | x=M{T1/α}} _
⊢ for α in T1; T2 do M : {x:T | x=M{T1/α}}

• This can only possibly work if (for α in T1; T2 do M) = M{T1/α}
(both operationally and in the authorization logic)

• Fors and type annotations need to be erased away
⎣for α in T1; T2 do M⎦ = ⎣M⎦

Erasure crucial for soundness
• polymorphism, intersections, unions vs. side-effects (known)

• Type refinements Type alternation

E ⊢ M : T E ⊢ C{M/x} E ⊢ M{Ti /α} : T i ∈1,2
 E ⊢ M : {x:T | C} E ⊢ for α in T1; T2 do M : T

• Type refinements vs. type alternation

 ⊢ M{T1/α}:T ⊢ M{T1/α}=M{T1/α}
 ⊢ M{T1/α} : {x:T | x=M{T1/α}} _
⊢ for α in T1; T2 do M : {x:T | x=M{T1/α}}

• This can only possibly work if (for α in T1; T2 do M) = M{T1/α}
(both operationally and in the authorization logic)

• Fors and type annotations need to be erased away
⎣for α in T1; T2 do M⎦ = ⎣M⎦

• Fors don’t have an operational semantics anyway!

Formalization

• 14k+LOC of Coq, 6+ months of work (Coq beginner)

• 1.5+kLOC of definitions, most generated from Ott spec + quite big patch
[Sewell, Nardelli, Owens, Peskine, Ridge, Sarkar & Strnisa, JFP ’10]

• 12+kLOC Software-Foundations-style proofs with very little automation

+ 25kLOC of “infrastructure” lemmas generated by wonderful LNgen tool
[Aydemir & Weirich, Draft ’10]

• Found+fixed 3 relatively small bugs in previous proofs

• Public Down / Tainted Up, Robust Safety, Strengthening (claim weakened)

• Available at:
http://www.infsec.cs.uni-saarland.de/projects/F5/

http://www.infsec.cs.uni-saarland.de/projects/F5/
http://www.infsec.cs.uni-saarland.de/projects/F5/

Transitivity of subtyping

• Cardelli’s Amber rule makes transitivity proof a mess
74 CHAPTER 3. ANALYZING PROTOCOL IMPLEMENTATIONS

(Sub Rec)
E,α <: α′ ! T <: T ′ α "= α′ α "∈ ftv(T ′) α′ "∈ ftv(T)

E ! µα. T <: µα′. T ′

The soundness of the Amber rule (Sub Rec) is hard to prove syntactically [BBF+08] – in
particular proving the transitivity of subtyping in the presence of the Amber rule requires
a very complicated inductive argument, which only works for “executable” environments,
as well as spurious restrictions on the usage of type variables in the rules (Sub Refl*),
(Kind And Pub 1), (Kind And Pub 2), (Kind Or Tnt 1), (Kind Or Tnt 2), (Sub And LB
1), (Sub And LB 2), (Sub Or UB 1), (Sub Or UB 2). We use the simpler (Sub Pos Rec*)
rule, which is much easier to prove sound and requires no restrictions on the other rules.
It resembles (Sub Univ*), our rule for subtyping universal types, with the additional
restriction that the recursive variable is not allowed to appear in a contravariant position
(such as α → T). While this positivity restriction is crucial for the soundness of the (Sub
Pos Rec*) rule, this did not pose big problems for us in practice4, where most of the
time only positive recursive types [Men91, Urz95] are used. Moreover, this positivity
restriction only affects subyping, so programs involving negative occurrences of recursion
variables that do not require subtyping can still be properly type-checked (e.g., we can
still type-check the encodings of fixpoint combinators on expressions [BBF+08])

3.4.3. Encoding Types Un and Private in RCF∀
∧∨

In RCF [BBF+08] type Un is not primitive. By the (Sub Pub Tnt) rule that relates
kinding and subtyping, any type that is both public and tainted is equivalent to Un.
Since type unit is both public and tainted, Un is actually encoded as unit.

The (Sub Pub Tnt) rule equates many of the types in the system. For instance in RCF
all the following types are equivalent by subtyping: Un, Un → Un, Un ∗ Un, Un + Un,
µα.Un, and ∀α.Un. As a consequence it is hard to come up with RCF types that do
not share any values with type Un, a property we want for our Private type. Perhaps
unintuitively, it is not enough that a type is not public and not tainted to make it disjoint
from Un (e.g., ' → ' is not public and not tainted, still λx : '. x and λx : Un. x are
two syntactically equal values that inhabit ' → ' and Un → Un respectively). A final
observation is that, in RCF∀

∧∨, in an inconsistent environment (E ! false) all types are
equivalent and all values inhabit all types. This means that Private being disjoint from
Un is relative to the formulas in the environment.
4Val Tannen et al. [TGS89] give µα. int ∗ {l : α,m : α → α} <: µβ. int ∗ {l : β} as an example subtyping
that is intuitively valid, but which cannot be handled by rule (Sub Pos Rec*) because of the positivity
restriction. Our type system has, however, no record types, and it cannot encode record types that
satisfy subtyping in width. The only way we found to write a similar example in our system was to
use union or intersection types inside the recursive type, as in µα. int ∗ (α∧ (α → α)) <: µβ. (int ∗ β),
but this is by no means a commonly used idiom in practice.

The proof of transitivity depends on the following
lemma, the first two of which concern the use of recursive
type variables declared by entries α <: α ′ in the typing en-
vironment.

Lemma 17 (Rec Kinding)
If E " T :: ν and (α <: α ′) ∈ E then α /∈ fnfv(T) and α ′ /∈
fnfv(T).

Proof: By induction on the derivation of E " T :: ν . !

Lemma 18 (Rec Subtyping)
If E " T <: T ′ and (α <: α ′) ∈ E we have that: {α,α ′}∩
fnfv(T) =∅ if and only if {α,α ′}∩ fnfv(T ′) =∅.

Proof: By induction on the derivation of E " T <: T ′. !

The following lemma formalizes the intuition that the
formulas decorating the type in the environment are all that
matter as far as the kinding and subtyping judgments are
concerned. In particular, we can replace an environment
entry x : T with x : (T)!, where (T)! is the refinement of the
unit type given as follows.

Formulizing a Type:

(T)! %
= {x : unit | forms(x : T)}

Lemma 19 (Formulize Type) Assume E,x : T,E ′ " &.

(1) E,x : (T)!,E ′ " &.

(2) E,x : T,E ′ "C iff E,x : (T)!,E ′ "C.

(3) E,x : T,E ′ "U :: ν iff E,x : (T)!,E ′ "U :: ν .

(4) E,x : T,E ′ "U <: U ′ iff E,x : (T)!,E ′ "U <: U ′.

Moreover, the depth of the derivations of each pair of judg-
ments is the same.

Proof: Each direction follows by induction on the deriva-
tion of the assumed judgment. !

Lemma 20 (Transitivity)
If E is executable and E " T <: T ′ and E " T ′ <: T ′′ then
E " T <: T ′′.

Proof: The lemma is an instance of the following more
general statement, which we prove by a simultaneous induc-
tion on the sum of the depth of derivations of the antecedent
judgments:

(1) E01 " T <: T ′ and E12 " T ′ <: T ′′ imply E02 " T <: T ′′

(2) E12 " T ′′ <: T ′ and E01 " T ′ <: T imply E02 " T ′′ <: T

where E01, E12, and E02 take the form

E01 = E[(αi Ri α ′
i)

i∈1..n]
E12 = E[(α ′

i Ri α ′′
i)

i∈1..n]
E02 = E[(αi Ri α ′′

i)
i∈1..n]

for some number n, distinct type variables αi, α ′
i , α ′′

i , re-
lations Ri ∈ {<:,<:−1} for i ∈ 1..n, and executable envi-
ronment E with E " &. (We write R ∈ {<:,<:−1} to mean
that relation R is either the subtype relation (in which case
α R α ′ stands for α <: α ′) or its inverse (in which case
α R α ′ stands for α ′ <: α).)

Since E is executable, none of the type variables αi, α ′
i ,

α ′′
i occurs in types in E.

We prove part (1) in detail. We first assume (*) that the
last rule in the derivation of E12 " T ′ <: T ′′ is neither (Sub
Refl), nor (Sub Public Tainted), nor (Sub Refine Right); we
prove that E02 " T <: T ′′ by a case analysis of the last rule
in the derivation of E01 " T <: T ′.

(Sub Refl) In this case T = T ′ and E01 " T <: T follows
from E01 " T with fnfv(T)∩ recvar(E01) = ∅ and we
have E12 " T <: T ′′. We have fnfv(T) ⊆ dom(E01)∩
dom(E12) = dom(E)∪ {α ′

i
i∈1..n} and so we get that

fnfv(T)⊆ dom(E).

We have E12 " T <: T ′′ and none of the type variables
α ′

i , α ′′
i occurs in T ; so, by Lemma 18 (Rec Subtyp-

ing), none of these variables occurs in T ′′. Hence,
fnfv(T ′′) ⊆ dom(E). We may therefore obtain E02 "
T <: T ′′ from E12 " T <: T ′′ by removing the sub-
type declarations of E12 with Lemma 3 (Type Vari-
able Strengthening) and introducing the subtype dec-
larations of E02 with Lemma 6 (Weakening).

(Sub Public Tainted) In this case, E01 " T <: T ′ follows
from E01 " T :: pub and E01 " T ′ :: tnt.

By Lemma 17 (Rec Kinding), none of the type vari-
ables αi, α ′

i , α ′′
i occurs in T or T ′.

We may therefore obtain E " T :: pub from E01 " T ::
pub by removing the subtype declarations of E01 with
Lemma 3 (Type Variable Strengthening).

Similarly, we may obtain E " T ′ :: tnt from E01 " T ′ ::
tnt by removing the subtype declarations of E01 with
Lemma 3 (Type Variable Strengthening).

We have E12 " T ′ <: T ′′ and none of the type variables
α ′

i , α ′′
i occurs in T ′; so, by Lemma 18 (Rec Subtyp-

ing), none of the type variables αi, α ′
i , α ′′

i occurs in T ′′

either.

We may therefore obtain E " T ′ <: T ′′ from E12 "
T ′ <: T ′′ by removing the subtype declarations of E12
with Lemma 3 (Type Variable Strengthening).

30
The proof of transitivity depends on the following

lemma, the first two of which concern the use of recursive
type variables declared by entries α <: α ′ in the typing en-
vironment.

Lemma 17 (Rec Kinding)
If E " T :: ν and (α <: α ′) ∈ E then α /∈ fnfv(T) and α ′ /∈
fnfv(T).

Proof: By induction on the derivation of E " T :: ν . !

Lemma 18 (Rec Subtyping)
If E " T <: T ′ and (α <: α ′) ∈ E we have that: {α,α ′}∩
fnfv(T) =∅ if and only if {α,α ′}∩ fnfv(T ′) =∅.

Proof: By induction on the derivation of E " T <: T ′. !

The following lemma formalizes the intuition that the
formulas decorating the type in the environment are all that
matter as far as the kinding and subtyping judgments are
concerned. In particular, we can replace an environment
entry x : T with x : (T)!, where (T)! is the refinement of the
unit type given as follows.

Formulizing a Type:

(T)! %
= {x : unit | forms(x : T)}

Lemma 19 (Formulize Type) Assume E,x : T,E ′ " &.

(1) E,x : (T)!,E ′ " &.

(2) E,x : T,E ′ "C iff E,x : (T)!,E ′ "C.

(3) E,x : T,E ′ "U :: ν iff E,x : (T)!,E ′ "U :: ν .

(4) E,x : T,E ′ "U <: U ′ iff E,x : (T)!,E ′ "U <: U ′.

Moreover, the depth of the derivations of each pair of judg-
ments is the same.

Proof: Each direction follows by induction on the deriva-
tion of the assumed judgment. !

Lemma 20 (Transitivity)
If E is executable and E " T <: T ′ and E " T ′ <: T ′′ then
E " T <: T ′′.

Proof: The lemma is an instance of the following more
general statement, which we prove by a simultaneous induc-
tion on the sum of the depth of derivations of the antecedent
judgments:

(1) E01 " T <: T ′ and E12 " T ′ <: T ′′ imply E02 " T <: T ′′

(2) E12 " T ′′ <: T ′ and E01 " T ′ <: T imply E02 " T ′′ <: T

where E01, E12, and E02 take the form

E01 = E[(αi Ri α ′
i)

i∈1..n]
E12 = E[(α ′

i Ri α ′′
i)

i∈1..n]
E02 = E[(αi Ri α ′′

i)
i∈1..n]

for some number n, distinct type variables αi, α ′
i , α ′′

i , re-
lations Ri ∈ {<:,<:−1} for i ∈ 1..n, and executable envi-
ronment E with E " &. (We write R ∈ {<:,<:−1} to mean
that relation R is either the subtype relation (in which case
α R α ′ stands for α <: α ′) or its inverse (in which case
α R α ′ stands for α ′ <: α).)

Since E is executable, none of the type variables αi, α ′
i ,

α ′′
i occurs in types in E.

We prove part (1) in detail. We first assume (*) that the
last rule in the derivation of E12 " T ′ <: T ′′ is neither (Sub
Refl), nor (Sub Public Tainted), nor (Sub Refine Right); we
prove that E02 " T <: T ′′ by a case analysis of the last rule
in the derivation of E01 " T <: T ′.

(Sub Refl) In this case T = T ′ and E01 " T <: T follows
from E01 " T with fnfv(T)∩ recvar(E01) = ∅ and we
have E12 " T <: T ′′. We have fnfv(T) ⊆ dom(E01)∩
dom(E12) = dom(E)∪ {α ′

i
i∈1..n} and so we get that

fnfv(T)⊆ dom(E).

We have E12 " T <: T ′′ and none of the type variables
α ′

i , α ′′
i occurs in T ; so, by Lemma 18 (Rec Subtyp-

ing), none of these variables occurs in T ′′. Hence,
fnfv(T ′′) ⊆ dom(E). We may therefore obtain E02 "
T <: T ′′ from E12 " T <: T ′′ by removing the sub-
type declarations of E12 with Lemma 3 (Type Vari-
able Strengthening) and introducing the subtype dec-
larations of E02 with Lemma 6 (Weakening).

(Sub Public Tainted) In this case, E01 " T <: T ′ follows
from E01 " T :: pub and E01 " T ′ :: tnt.

By Lemma 17 (Rec Kinding), none of the type vari-
ables αi, α ′

i , α ′′
i occurs in T or T ′.

We may therefore obtain E " T :: pub from E01 " T ::
pub by removing the subtype declarations of E01 with
Lemma 3 (Type Variable Strengthening).

Similarly, we may obtain E " T ′ :: tnt from E01 " T ′ ::
tnt by removing the subtype declarations of E01 with
Lemma 3 (Type Variable Strengthening).

We have E12 " T ′ <: T ′′ and none of the type variables
α ′

i , α ′′
i occurs in T ′; so, by Lemma 18 (Rec Subtyp-

ing), none of the type variables αi, α ′
i , α ′′

i occurs in T ′′

either.

We may therefore obtain E " T ′ <: T ′′ from E12 "
T ′ <: T ′′ by removing the subtype declarations of E12
with Lemma 3 (Type Variable Strengthening).

30

Transitivity of subtyping

• Cardelli’s Amber rule makes transitivity proof a mess

• Went for a simpler rule instead
[Val Tannen, LICS ’89]

74 CHAPTER 3. ANALYZING PROTOCOL IMPLEMENTATIONS

(Sub Rec)
E,α <: α′ ! T <: T ′ α "= α′ α "∈ ftv(T ′) α′ "∈ ftv(T)

E ! µα. T <: µα′. T ′

The soundness of the Amber rule (Sub Rec) is hard to prove syntactically [BBF+08] – in
particular proving the transitivity of subtyping in the presence of the Amber rule requires
a very complicated inductive argument, which only works for “executable” environments,
as well as spurious restrictions on the usage of type variables in the rules (Sub Refl*),
(Kind And Pub 1), (Kind And Pub 2), (Kind Or Tnt 1), (Kind Or Tnt 2), (Sub And LB
1), (Sub And LB 2), (Sub Or UB 1), (Sub Or UB 2). We use the simpler (Sub Pos Rec*)
rule, which is much easier to prove sound and requires no restrictions on the other rules.
It resembles (Sub Univ*), our rule for subtyping universal types, with the additional
restriction that the recursive variable is not allowed to appear in a contravariant position
(such as α → T). While this positivity restriction is crucial for the soundness of the (Sub
Pos Rec*) rule, this did not pose big problems for us in practice4, where most of the
time only positive recursive types [Men91, Urz95] are used. Moreover, this positivity
restriction only affects subyping, so programs involving negative occurrences of recursion
variables that do not require subtyping can still be properly type-checked (e.g., we can
still type-check the encodings of fixpoint combinators on expressions [BBF+08])

3.4.3. Encoding Types Un and Private in RCF∀
∧∨

In RCF [BBF+08] type Un is not primitive. By the (Sub Pub Tnt) rule that relates
kinding and subtyping, any type that is both public and tainted is equivalent to Un.
Since type unit is both public and tainted, Un is actually encoded as unit.

The (Sub Pub Tnt) rule equates many of the types in the system. For instance in RCF
all the following types are equivalent by subtyping: Un, Un → Un, Un ∗ Un, Un + Un,
µα.Un, and ∀α.Un. As a consequence it is hard to come up with RCF types that do
not share any values with type Un, a property we want for our Private type. Perhaps
unintuitively, it is not enough that a type is not public and not tainted to make it disjoint
from Un (e.g., ' → ' is not public and not tainted, still λx : '. x and λx : Un. x are
two syntactically equal values that inhabit ' → ' and Un → Un respectively). A final
observation is that, in RCF∀

∧∨, in an inconsistent environment (E ! false) all types are
equivalent and all values inhabit all types. This means that Private being disjoint from
Un is relative to the formulas in the environment.
4Val Tannen et al. [TGS89] give µα. int ∗ {l : α,m : α → α} <: µβ. int ∗ {l : β} as an example subtyping
that is intuitively valid, but which cannot be handled by rule (Sub Pos Rec*) because of the positivity
restriction. Our type system has, however, no record types, and it cannot encode record types that
satisfy subtyping in width. The only way we found to write a similar example in our system was to
use union or intersection types inside the recursive type, as in µα. int ∗ (α∧ (α → α)) <: µβ. (int ∗ β),
but this is by no means a commonly used idiom in practice.

72 CHAPTER 3. ANALYZING PROTOCOL IMPLEMENTATIONS

Notation: pub = tnt and tnt = pub

Subtyping E ! T <: U

(Sub Refl*)
E ! T

E ! T <: T

(Sub Top*)
E ! T

E ! T <: "

(Sub Pub Tnt)
E ! T :: pub E ! U :: tnt

E ! T <: U

(Sub Refine Left)
E ! {x : T | C} E ! T <: T ′

E ! {x : T | C} <: T ′

(Sub Refine Right)
E ! T <: T ′ E, x : T ! C

E ! T <: {x : T ′ | C}

(Sub Univ*)
E,α ! T <: U

E ! ∀α. T <: ∀α. U
(Sub Pair)
E ! T <: T ′ E, x : T ′ ! U <: U ′

E ! (x : T ∗ U) <: (x : T ′ ∗ U ′)

(Sub Arrow)
E ! T ′ <: T E, x : T ′ ! U <: U ′

E ! (x : T → U) <: (x : T ′ → U ′)

(Sub And LB 1)
E ! T1 <: U E ! T2

E ! T1 ∧ T2 <: U

(Sub And LB 2)
E ! T1 E ! T2 <: U

E ! T1 ∧ T2 <: U

(Sub And Greatest)
E ! T ′ <: T1 E ! T ′ <: T2

E ! T ′ <: T1 ∧ T2

(Sub Or Least)
E ! T1 <: U E ! T2 <: U

E ! T1 ∨ T2 <: U

(Sub Or UB 1)
E ! T <: U1 E ! U2

E ! T <: U1 ∨ U2

(Sub Or UB 2)
E ! U1 E ! T <: U2

E ! T <: U1 ∨ U2

(Sub Sum)
E ! T <: T ′ E ! U <: U ′

E ! (T + U) <: (T ′ + U ′)

(Sub Pos Rec*)
E,α ! T <: U α only occurs positively in T and U

E ! µα. T <: µα. U

Refinement Types. The refinement type {x : T | C} is a subtype of T . This allows
us to discard logical formulas when they are not needed. For instance, a value of type
{x : Un | Ok(x)} can be sent on a channel of type Un. Conversely, the type T is a subtype
of {x : T | C} only if ∀x. forms(x : T) ⇒ C is entailed in the current typing environment,
so by subtyping we can only add universally valid formulas. Similarly, a type {x : T | C}
is public when T is public, and tainted when T is tainted and ∀x. forms(x : T) ⇒ C
is entailed in the typing environment. The intuition is that {x : T | C} <: T by (Sub
Refine Left) and (Sub Refl*), so if additionally we have that that T is public (T <: Un),
then we can use transitivity of subtyping to conclude that {x : T | C} is public as well
({x : T | C} <: Un). Please note, however, that transitivity of subtyping is a property
we later prove for the type system, not a subtyping rule.

Function Types. Function types are contravariant in their input and covariant in their
output, i.e., T → U is a subtype of T ′ → U ′ if T ′ is a subtype of T and U is a subtype
of U ′. Intuitively, this means that a function can be used in place of another function
if the former is “more liberal” in the types it accepts and “more conservative” in the
type it returns [LW94]. A function type T → U is public only if the return type U is

Random thoughts for the future

• Study type inference, maybe in restricted setting

• Our type-checker is efficient for a good reason

• Study relation to F7v2?

• Semantic subtyping for RCF ... is it possible? λ + {x:T|C}

• Develop semantic model for RCF / RCF∀
∧∨

• Automating FO authorization logic with says
(constructive)

• Study methods for establishing observational equivalence
in RCF / RCF∀

∧∨ (logical relations, bisimulations, etc.)

Other things I worked on so far ...

• Mechanized formalization of expi2java (useful tool)

• Automatically verifying typing constraints for Dminor
(general refinement types + dynamic type-tests)

• using (semantic subtyping or VCgen) + SMT solver

• Achieving security despite compromise using ZK proofs

• Type-checking protocols that use zero-knowledge proofs

• Automated verifying electronic voting protocols

• Step-indexed semantics of object calculi

Thank you!

