
Property-Based Testing for Coq

Cătălin Hrițcu

Prosecco Reading Group - Friday, November 29, 2013

The own itch I’m trying to scratch

• hard to devise correct safety and security
enforcement mechanisms (static or dynamic)
– type systems, reference monitors, ...

– full confidence only with mechanized proofs

• frustrating to prove while designing mechanism
– broken definitions and properties

– countless iterations for ...
• discovering the correct set of lemmas

• strengthening inductive invariants

• other people might have similar itches

2

Dream

• Wouldn’t it be cool if Coq had a tactic for
automagically producing counterexamples?

• Fortunately such tools already exist:

– “The New Quickcheck for Isabelle” [Bulwahn, CPP 2012]

– in fact, Isabelle has lots of push-button automation:
• proving: Sledgehammer [Paulson et al, since approx 2006]

• disproving: Quickcheck, Refute [Weber, ENTCS 2005],
Nitpick [Blanchette & Nipkow, ITP2010]

• ... but nothing like this for Coq

– Clear practical need: property-based testing for Coq

– Question: Is there any interesting research left to do?

3

This talk

• Property-Based Testing (PBT)
– what it is, by example

– the state of the art, quickly

• own experience with PBT
– testing noninterference [ICFP 2013 and after]

– prototype for random testing in Coq

• ideas for going beyond the state of the art
– smart mutation testing

– deep integration with Coq/SSReflect

4

PROPERTY-BASED TESTING

5

QuickCheck

• Property-based random testing for Haskell
– Demo

• Using type classes for
– type-based input generation and shrinking

• Probability is just a monad with
random sampling as the action

• Highly customizable
– write your own generators and shrinkers using

reusable combinators (e.g. choose, frequency,...)

6

[Claessen & Hughes, ICFP 2000]

Custom generator (a simple one)

7

Input generation

• random is not the only way
– exhaustive testing with small instances

• SmallCheck for Haskell [Runciman et al, Haskell 2008]

• New Quickcheck for Isabelle [Bulwahn, CPP 2012]

– symbolic / narrowing-based testing
• [Lindblad, TFP 2007]

• EasyCheck for Curry [Christiansen & Fischer, FLOPS 2008]

• Lazy SmallCheck for Haskell [Runciman et al, Haskell 2008]

• New Quickcheck for Isabelle [Bulwahn, CPP 2012]

– constraint-programming-based
• FocalTest [Carlier et al. 2013]

 8

Input generation (2)

• Smarter generation is not always better

– generation time can dominate testing

• random generation

– super customizable

• precise probability distribution

• often needs manual customization for good results

– not predictable

• that matters for proof scripts

9

Hitting sparse preconditions

• Trivial example: forall x y, x = y ==> P x y

• manually, using custom generator
– choose (0, 10000)

– s1 ≈ s2 – generate s1 then vary it to s2 ≈ s1

• automatically
– Glass-box testing of Curry programs

[Fischer & Kuchen, PPDP 2007]

– New Quickcheck for Isabelle [Bulwahn, LPAR 2012]

– FocalTest [Carlier et al. 2013]

10

Executing declarative specifications
(inductive definitions)

• again strong connection to
functional logic programming
– Mercury [Somogyi et all, since around 1994]
– Curry [Hanus, POPL 1997]

• Isabelle/HOL
– extraction, large TCB [Berghofer&Nipkow, TYPES 2002]
– small TCB [Berghofer et al, TPHOLs 2009]

• Plugins for Coq producing ...
– OCaml code, large TCB [Delahaye et al, TPHOLs 2007]
– certified Coq code, small TCB [Tollitte et al, CPP 2012]

11

OWN EXPERIENCE WITH PBT

12

[ICFP 2013 and after]

Verifying security of the SAFE system

• current status:
noninterference in Coq for very simplified model
[Azevedo de Amorim et al, POPL 2014]

• However…

– Proofs for actual system a lot more work

– Design is still evolving

– Feedback on correctness needed ASAP

long term goal

Random testing?

• Can we use QuickCheck for noninterference?

• The experiment

– very simple machine (10 instructions)

– standard noninterference property

– generate many random programs

and try to find counterexamples

Encouraging results

• introduced plausible errors in IFC rules

• all errors found in 2-16ms on average

• However, for these results
we are not using QuickCheck naïvely

– that didn’t really work for us

– significant cleverness was needed in 3 areas…

The 3 secret ingredients

1. Clever program generation strategies

– distributions, instruction sequences, smart integers

– best one: “generation by execution”

2. Strengthening the tested property

– best one: unwinding conditions (next slide)

– requires inventing (by hand!) stronger invariants

• invariants of real SAFE machine are very complicated

3. Shrinking counterexamples

Unwinding conditions

L

L

*

*

easiest to test and suitable for [co]inductive proof

L

L

*

*

H

H

L

L

H

H

H

QuickCheck clone for Coq (prototype)

• Initial testing noninterference work [ICFP 2013]
used Haskell QuickCheck

• Since then Leo (Leonidas Lambropoulos)
ported Haskell QuickCheck to Coq

• Using extraction only for

– efficient evaluation, random seed, tracing

• Demo

18

Custom generator in Coq

19

IDEAS FOR EXTENDING
THE STATE OF THE ART

• Smart Mutations

• Deep Integration with Coq/SSReflect

20

High confidence by PBT

• “testing can only show the presence of bugs, not their
absence” – Dijkstra

• systematically introduce bugs and
test the testing infrastructure (e.g. the generator)

– if testing finds all introduced bugs but no new bugs
then we do get high confidence

• initial experiments [ICFP 2013] added bugs manually

– not good, turns code into spaghetti

• newer experiments with smart mutation very encouraging

– can easily enumerate all missing taints and missing checks

Mutants game (input rule table)

22

Mutant game (final output)

23

Iterative workflow
M,P,T := best guess for a mechanism, property, and test config
start:
if test(M,P,T) finds counter then
 (M := manual-fix M || P := manual-fix P); goto start
else
 Ms := mutate M
 for each mutant Ms[i] do (even in parallel)
 if test(Ms[i],P,T) finds counter then
 killed[i] := true
 else
 killed[i] := false
 if manual-search(Ms[i],P) finds counter then
 T := manual-fix T; goto start
 if forall i we have killed[i] then
 done; validated P for M
 else
 for each j so that not(killed[j]) do
 M := apply change Ms[j] to M
 goto start

24

Smart mutation

• Mutation testing already exists
– 390 papers from 1977 to 2009 [Jia & Harman, 2010]

– TDD world: test suite = specification
• any change in behavior that’s not caught by testing is

considered a potential bug and manually inspected

• kill count just another metric, an alternative to coverage

– purely syntactic mutations

• Smart mutation not quite the same
– PBT world: property = specification

– only produce more permissive mechanism

25

Open problem

• Generalizing smart mutation beyond IFC, to
arbitrary static or dynamic mechanisms

• very simple thing to try first:

– dropping preconditions of inductive definition

– making Boolean function return more true

– can’t do these properly in a black-box way;
so even these require meta-programming

26

IDEAS FOR EXTENDING
THE STATE OF THE ART

• Smart Mutations 

• Deep Integration with Coq/SSReflect

27

Testing actual lemmas / proof goals

• Currently

– reimplement mechanism & property in the purely
functional fragment of Coq

– prove equivalence (or soundness?)

– test this executable variant

• Ideally, switch freely between

– proving and testing

– declarative and executable ...

28

SSReflect

• in small-scale reflection proofs

– defining both declarative and computational specs

– switching freely between them

 ... is already the normal proving process

• testing would add small(er) additional overhead

• while SSReflect computational specifications are
often not fully / efficiently executable

– could use refinement framework by Denes et al. [ITP 2012,
CPP 2013] for switching to efficiently executable specs

29

Potential workflow

• Reify proof goal to syntactic representation of formula
(Coq plugin)

• Normalize formula (DNF, classically equivalent)

• Associate computations to atoms (type classes)
– negative atoms (premises) get smart generators

• optimization: smart generators only for sparse negative atoms

– positive atoms (conclusions) get checkers

• Associate Skolem functions to existentials (type class)

• User would still have to provide type class instances
– could try to use existing work for automating this

30

THANK YOU

31

Native Coq execution

• current prototype uses extraction

• want more seamless integration in Coq

– make the result of testing and counterexamples
available to Coq tactics and terms

• exploit recent progress on NativeCoq
[Boespflug et al, CPP 2011]

– this will only complement extraction

– tracing for debugging still needs extraction

32

Prove things about generators

• Surjectivity [Dybjer et al, TPHOLs 2003]

• Correctness of smart generators

33

Testing with nondeterminism

• Oracles

34

Dependent types

• This is what Coq is all about

35

