DDDDDDDDDDDDDDDDDDDDDDDDDD

Property-Based Testing for Coq

Catalin Hritcu

The own itch I'm trying to scratch

* hard to devise correct safety and security
enforcement mechanisms (static or dynamic)

— type systems, reference monitors, ...
— full confidence only with mechanized proofs

* frustrating to prove while designing mechanism
— broken definitions and properties

— countless iterations for ...
* discovering the correct set of lemmas
* strengthening inductive invariants

* other people might have similar itches

Dream

 Wouldn’tit be cool if Cog had a tactic for
automagically producing counterexamples?

* Fortunately such tools already exist:

— “The New Quickcheck for Isabelle” [Bulwahn, CPP 2012]
— in fact, Isabelle has lots of push-button automation:

* proving: Sledgehammer [Paulson et al, since approx 2006]

* disproving: Quickcheck, Refute [\Weber, ENTCS 2005],
Nitpick [Blanchette & Nipkow, ITP2010]

* ... but nothing like this for Coq
— Clear practical need: property-based testing for Coq
— Question: Is there any interesting research left to do?

This talk

* Property-Based Testing (PBT)
— what it is, by example
— the state of the art, quickly
* own experience with PBT
— testing noninterference [ICFP 2013 and after]
— prototype for random testing in Coq
* ideas for going beyond the state of the art

— smart mutation testing
— deep integration with Coq/SSReflect

PROPERTY-BASED TESTING

QuickCheck

[Claessen & Hughes, ICFP 2000]

Property-based random testing for Haskell
— Demo

Using type classes for
— type-based input generation and shrinking

Probability is just a monad with
random sampling as the action
Highly customizable

— write your own generators and shrinkers using
reusable combinators (e.g. choose, frequency,...)

Custom generator (a simple one)

frequency 5
[(1, pure Noop)] ++
[(1, pure Halt)] ++
[(18, pure Add) | nstk = 2] ++
[(18, Push <%= 1lint)] ++
[(18, pure Pop) | nstk = 1] ++
[(206, pure Store) | nstk == 2
, absAdjustAddr vtop "isIndex mem] ++
[(20, pure Load) | nstk == 1
, absAdjustAddr vtop "isIndex mem] ++
[(18, 1iftm2 call (choose (®, (nstk-1) min maxArgs)) arbitrary)
| nstk >= 1
, cally] ++
[(20, 1iftM Return arbitrary) | Just r =- [fmap astkReturns S
find (not . isAData) stk]
, nstk == if r then 1 else ©
, cally] ++
[(18, pure Jump) | nstk >= 1
, Jumpy] ++
[(18, pure JumpNZ) | nstk == 2
, genTMM] ++
[(18, pure Sub) | nstk == 2, genTMM] ++
[(18, pure Labelof) | labelofAllowed S gen_instrs getFlags]

Input generation

* random is not the only way

— exhaustive testing with small instances
* SmallCheck for Haskell [Runciman et al, Haskell 2008]
 New Quickcheck for Isabelle [Bulwahn, CPP 2012]

— symbolic / narrowing-based testing

[Lindblad, TFP 2007]

EasyCheck for Curry [Christiansen & Fischer, FLOPS 2008]
Lazy SmallCheck for Haskell [Runciman et al, Haskell 2008]
 New Quickcheck for Isabelle [Bulwahn, CPP 2012]

— constraint-programming-based
* FocalTest [Carlier et al. 2013]

Input generation (2)

 Smarter generation is not always better

— generation time can dominate testing

* random generation

— super customizable

* precise probability distribution

e often needs manual customization for good results
— not predictable

e that matters for proof scripts

Hitting sparse preconditions

e Trivial example: forall xy, x=y==>Pxy
* manually, using custom generator

— choose (0, 10000)

— s, =s,—generate s, thenvaryittos,=s,
e automatically

— Glass-box testing of Curry programs
[Fischer & Kuchen, PPDP 2007]

— New Quickcheck for Isabelle [Bulwahn, LPAR 2012]
— FocalTest [Carlier et al. 2013]

10

Executing declarative specifications
(inductive definitions)

* again strong connection to
functional logic programming

— Mercury [Somogyi et all, since around 1994
— Curry [Hanus, POPL 1997]

* |sabelle/HOL

— extraction, large TCB [Berghofer&Nipkow, TYPES 2002]
— small TCB [Berghofer et al, TPHOLs 2009]

* Plugins for Coq producing ...

— OCaml code, large TCB [Delahaye et al, TPHOLs 2007
— certified Coqg code, small TCB [Tollitte et al, CPP 2012]

11

OWN EXPERIENCE WITH PBT
[ICFP 2013 and after]

Verifying security of the SAFE system

& long term goal
* current status:

noninterference in Coq for very simplified model
[Azevedo de Amorim et al, POPL 2014]

* However...
— Proofs for actual system a lot more work
— Design is still evolving
— Feedback on correctness needed ASAP

Random testing?

e Can we use QuickCheck for noninterference?

* The experiment
— very simple machine (10 instructions)
— standard noninterference property

— generate many random programs
and try to find counterexamples

Encouraging results

* introduced plausible errors in IFC rules
* all errors found in 2-16ms on average

* However, for these results
we are not using QuickCheck naively

— that didn’t really work for us
— significant cleverness was needed in 3 areas...

The 3 secret ingredients

1. Clever program generation strategies
— distributions, instruction sequences, smart integers
— best one: “generation by execution”

2. Strengthening the tested property

— best one: unwinding conditions (next slide)

— requires inventing (by hand!) stronger invariants
* invariants of real SAFE machine are very complicated

3. Shrinking counterexamples

Unwinding conditions

easiest to test and suitable for [co]inductive proof

L > *x [H] > L
L >*S E >

QuickCheck clone for Coq (prototype)

Initial testing noninterference work [ICFP 2013]
used Haskell QuickCheck

Since then Leo (Leonidas Lambropoulos)
ported Haskell QuickCheck to Coqg

Using extraction only for

— efficient evaluation, random seed, tracing

Demo

Custom generator in Coqg

frequency (pure Nop) [
(* Nop *]
(1, pure Nop);
{* Halt *)
(@, pure Halt):
(* PcLab *)
(10, 1iftGen PcLab genRegPtr);
(* Lab *)
(16, 1iftGen2 Lab genRegPtr genRegPtr);
(* MLab *)
{onNonEmpty dptr 10, 1iftGen2 MLab (elements Z0 dptr) genRegPtr);
{(* FlowsTo *)
{onNonEmpty lab 10,
liftGen3 FlowsTo (elements Z® lab)
(elements Z@ lab) genRegPtr);
(* Lloin *)
{(onNonEmpty lab 1@, 1iftGen3 LJoin (elements Z© lab)
{(elements Z® lab) genRegPtr);
(* PutBot *)
(10, 1iftGen PutBot genRegPtr);
(* BCall *)
(16 * onNonEmpty cptr 1 * onMNonEmpty lab 1,
liftGen3 BCall (elements Z8 cptr) (elements Z® lab) genRegPtr);
(* BRet *)
(if containsRet stk then 58 else @, pure BRet);
{(* Alloc *)
(200 * onNonEmpty num 1 * onNonEmpty lab 1,
liftGen3 Alloc (elements ZO® num) (elements Z® lab) genRegPtr);

19

IDEAS FOR EXTENDING
THE STATE OF THE ART

* Smart Mutations

* Deep Integration with Coq/SSReflect

High confidence by PBT

“testing can only show the presence of bugs, not their
absence” — Dijkstra

systematically introduce bugs and
test the testing infrastructure (e.g. the generator)

— if testing finds all introduced bugs but no new bugs
then we do get high confidence

initial experiments [ICFP 2013] added bugs manually
— not good, turns code into spaghetti

newer experiments with smart mutation very encouraging

— can easily enumerate all missing taints and missing checks

Mutants game (input rule table)

OplLab
OpMLab
OpPcLab
OpBCall
OpBRet

OpFlowsTo
OpLJoin
OpPutBot
OpNop
OpPut
OpBinOp
OpJump
OpBNZ
OpLload

OpStore

Allow

TRUE

TRUE

TRUE

TRUE

LE (JOIN Labl LabPC)
(JOIN Lab2 Lab3)
TRUE

TRUE

TRUE

TRUE

TRUE

TRUE

TRUE

TRUE

TRUE

LE (JOIN Labl LabPC)
Lab2

Result

BOT

Labl

BOT

JOIN Lab2 LabPC
Lab2

JOIN Labl Lab2
JOIN Labl Lab2
BOT
BOT
JOIN Labl Lab2
L_aTJS

Lab3

PC

LabPC

LabPC

LabPC

JOIN Labl LabPC
Lab3

LabPC

LabPC

LabPC

LabPC

LabPC

LabPC

JOIN LabPC Labl
JOIN Labl LabPC
JOIN LabPC
(JOIN Labl Lab2)
LabPC

Mutant game (final output)

./Extracted

Fighting 52 mutants Killed mutant 26 (27 frags)
Killed mutant 0 (1 frags) Killed mutant 27 (28 frags)
Killed mutant 1 (2 frags) Killed mutant 28 (29 frags)
Killed mutant 2 (3 frags) Killed mutant 29 (30 frags)
Killed mutant 3 (4 frags) Killed mutant 30 (31 frags)
Killed mutant 4 (5 frags) Killed mutant 31 (32 frags)
Killed mutant 5 (6 frags) Killed mutant 32 (33 frags)
Killed mutant 6 (7 frags) Killed mutant 33 (34 frags)
Killed mutant 7 (8 frags) Killed mutant 34 (35 frags)
Killed mutant 8 (9 frags) Killed mutant 35 (36 frags)
Killed mutant 9 (10 frags) Killed mutant 36 (37 frags)
Killed mutant 10 (11 frags) Killed mutant 37 (38 frags)
Killed mutant 11 (12 frags) Missed mutant [38] (38 frags)
Killed mutant 12 (13 frags) Missed mutant [39] (38 frags)
Killed mutant 13 (14 frags) Killed mutant 40 (39 frags)
Killed mutant 14 (15 frags) Killed mutant 41 (40 frags)
Killed mutant 15 (16 frags) Killed mutant 42 (41 frags)
Killed mutant 16 (17 frags) Killed mutant 43 (42 frags)
Killed mutant 17 (18 frags) Killed mutant 44 (43 frags)
Killed mutant 18 (19 frags) Killed mutant 45 (44 frags)
Killed mutant 19 (20 frags) Killed mutant 46 (45 frags)
Killed mutant 20 (21 frags) Killed mutant 47 (46 frags)
Killed mutant 21 (22 frags) Killed mutant 48 (47 frags)
Killed mutant 22 (23 frags) Killed mutant 49 (48 frags)
Killed mutant 23 (24 frags) Killed mutant 50 (49 frags)
Killed mutant 24 (25 frags) Killed mutant 51 (50 frags)
Killed mutant 25 (26 frags)

Iterative workflow

M,P,T := best guess for a mechanism, property, and test config
start:
if test(M,P,T) finds counter then
(M := manual-fix M || P := manual-fix P); goto start
else

Ms := mutate M
for each mutant Ms[i] do (even in parallel)
if test(Ms[i],P,T) finds counter then
killed[i] := true
else
killed[i] := false
if manual-search(Ms[i],P) finds counter then
T := manual-fix T; goto start
if forall i we have killed[i] then
done; validated P for M
else
for each j so that not(killed[j]) do
M := apply change Ms[j] to M
goto start

Smart mutation

 Mutation testing already exists
— 390 papers from 1977 to 2009 [Jia & Harman, 2010]

— TDD world: test suite = specification

e any change in behavior that’s not caught by testing is
considered a potential bug and manually inspected

* kill count just another metric, an alternative to coverage
— purely syntactic mutations
* Smart mutation not quite the same
— PBT world: property = specification
— only produce more permissive mechanism

Open problem

* Generalizing smart mutation beyond IFC, to
arbitrary static or dynamic mechanisms

e very simple thing to try first:
— dropping preconditions of inductive definition

— making Boolean function return more true

— can’t do these properly in a black-box way;
SO even these require meta-programming

IDEAS FOR EXTENDING
THE STATE OF THE ART

e Smart Mutations v

* Deep Integration with Coq/SSReflect

Testing actual lemmas / proof goals

e Currently

— reimplement mechanism & property in the purely
functional fragment of Coq

— prove equivalence (or soundness?)
— test this executable variant

* |deally, switch freely between
— proving and testing
— declarative and executable ...

SSReflect

* in small-scale reflection proofs
— defining both declarative and computational specs
— switching freely between them
... is already the normal proving process

* testing would add small(er) additional overhead

* while SSReflect computational specifications are
often not fully / efficiently executable

— could use refinement framework by Denes et al. [ITP 2012,
CPP 2013] for switching to efficiently executable specs

Potential workflow

Reify proof goal to syntactic representation of formula
(Coq plugin)

Normalize formula (DNF, classically equivalent)
Associate computations to atoms (type classes)

— negative atoms (premises) get smart generators
e optimization: smart generators only for sparse negative atoms

— positive atoms (conclusions) get checkers
Associate Skolem functions to existentials (type class)

User would still have to provide type class instances
— could try to use existing work for automating this

THANK YOU

Native Coq execution

* current prototype uses extraction
* want more seamless integration in Coqg

— make the result of testing and counterexamples
available to Coq tactics and terms

e exploit recent progress on NativeCoq
[Boespflug et al, CPP 2011]

— this will only complement extraction
— tracing for debugging still needs extraction

Prove things about generators

e Surjectivity [Dybjer et al, TPHOLs 2003]
* Correctness of smart generators

33

Testing with nondeterminism

 Oracles

Dependent types

* This is what Coq is all about

