Poison-pills and dynamic
information flow control

Catalin Hritcu

(joint work with Michael Greenberg, Benoit Montagu,
Greg Morrisett, Benjamin Pierce, Randy Pollack, ...)

Penn PLClub - 2012-05-11

Outline

Dynamic information flow control (IFC)
Poison-pill attacks for dynamic IFC (informally)

Solution ingredients:
— Public labels
— No fatal errors

Defining poison-pill attacks and protection

Purely dynamic IFC

p,pc F e || v@l

A |

Purely dynamic IFC

p,pc F e || v@l

p,pc F e | b@Qlb b e {true,false}
p,pcVIb F e, | v@l

p,pc F if e then e e €lse eqe V@I

pc prevents implicit flows:

let rpub = ref public () in
if bit@secret then rpub :
else rpub :

true
false

Purely dynamic IFC ‘AV ‘

p,pc F e || v@l

p,pc e | b@Qlb b € {true,false} p(z) = v@I

p,pcVIb F ey || v@J p,pc =z I v@(LV pc)

p,pc F if e then e e €lse eqe V@I

p,pc F Ax.e || (p,Ax.e) Qpc

pc “infects” all values created on high branch
(we need this because of automatic pc restoration)

let rpub = ref public () in
let copy = (if bit@secret then true
else false)
copy // pc restored, leak secret?

in rpub :

Purely dynamic IFC ‘Av

pP,DPC - e l} vQ]

p,pc e | b@Qlb b € {true,false} p(z) = v@I

p,pcVIlb F ey | v@l p,pc B x | v@Q(IV pc)

,pc F if e then e else e v@]
P, D true false U’ pope b oeq | (p’,Aw.e)@ll

pP,pc Foeq | v2@l2
p'le = va@ly],pe Vi Foe | v3Ql4

p,pc = Azr.e | <p,)\$e> @pc

p,DPC - €1 €9 »U ’1)3@l3

Purely dynamic IFC ‘AV ‘

p,pc F e || v@l

p(x) = vQ@QJ

p,pc F e | b@Qlb b e {true,false}
p,pc F x J v@Q(lV pc)

p,pcVIb F e, | v@l

,pc F if e then e else e v@]
P, D true false U’ pope b oeq | (p’,Aw.e)@ll

p,pc b ey | 0@l
p'lz = v,Qly],pc Vi F e | v3QIy

p,pc F Ax.e || (p,Ax.e) Qpc
p,pc = e ey || v3Q@Ql;

Non-interference pi.pc F e I v,@1;)

(termination & error insensitive) pa,pc F e || vo@lI, = v,Q@l; ~; v,Ql,5

P1 =1 P2)

[Austin & Flanagan, PLAS 2009] [Breeze Summer 2011]

Mutable state

pope - oe o | U@Z,U/‘ very easy with weak updates

(references have fixed labels set on creation time)

Mutable state

pope - oe o | v@l,g/‘ very easy with weak updates

(references have fixed labels set on creation time)

plz) =vQ@l, r&o I,V pclClI,

p,pc F refl, x,0 || rQpc,o[r— vQl,]

p(z) =vQl, o(r)=v'Ql. I,V pcCI,

p,pc Fr:=x,0 | rQpc,o[r— vQl,]

o(r)=vQl,
p,pc Flroo |} v@Q(l,V pc),o

Mutable state

pope - oe o | v@l,g/‘ very easy with weak updates

(references have fixed labels set on creation time)

plz) =vQ@l, r&o I,V pclClI,
p,pc F refl, x,0 || rQpc,o[r— vQl,]

p(z) =vQl, o(r)=v'Ql,. 1,V pcCI,
p,pc Fr:=x,0 | rQpc,o[r— vQl,]

o(r)=vQl,
p,pc Flroo |} v@Q(l,V pc),o

p,PC - €1,0 ll Ul@llaal
ple = v1Ql], pec F es, 0" I vy@Qly, 0"

p,pc F let z = ey iney,0 | vyQIly, 0"

[Breeze Summer 2011]

Simplest DynlFC poison-pill attack

* let log = ref public ©
fun server x y =
let res = x + y in
log := llog + res;
res

Simplest DynlFC poison-pill attack

 let log = ref public © server expects public numbers
fun server x y =
let res = x + y in
log := llog + res;
res

Simplest DynlFC poison-pill attack

 let log = ref public © server expects public numbers
fun server x y =
let res = x + y in
log := llog + res;
res

 let attacker =
server 1 (2@secret) attacker sends secret pill

Simplest DynlFC poison-pill attack

 let log = ref public © server expects public numbers
fun server x y =

let res = x + y in res=3@High
log := !log + res; attempted write down to log
res server gets killed (fatal IFC error)

-> availability attack

 let attacker =
server 1 (2@secret) attacker sends secret pill

Simplest DynlFC poison-pill attack

 let log = ref public © server expects public numbers
fun server x y =

let res = x + y in res=3@High
log := !log + res; attempted write down to log
res server gets killed (fatal IFC error)

-> availability attack

 let attacker =
server 1 (2@secret) attacker sends secret pill

Poison-pill problem:
in Ay we can’t protect this server against poison-pills

Trying to protect server

* let log = ref public ©
fun server x y =
if labelOf x == public &&
labelOf y == public then

let res = x + y in
log := llog + res;
res

else "pls stop poison”

Trying to protect server

* let log = ref public ©
fun server x y =
if labelOf x == public &&
labelOf y == public then

let res = x + y in
log := llog + res;
res

else "pls stop poison”

* We need public labels for this:

plz) = v@l
p,pc F labelOf z,0 || [QL,0o

Problem: labelOf unsound in)\

e Labels themselves are an IF channel

— let x = (if bit@secret then ()@secret
else ()@topSecret)
in copy = (labelOf x == secret)

e Public labels unsound if pc restored automatically

plz) = v@l
p,pc F labelOf z,0 || [QL,0o

Problem: labelOf unsound in)\

e Labels themselves are an IF channel

— jet x = (if bit@secret then ()@secret

< Publicy else ()@topSecret)
EB\Epr = (labelOf x == secret)

e Public labels unsound if pc restored automatically

 Manual pc declassification doesn’t work
— Adds many subtle audit points ... mostly spurious

[Safe-breeze] Manual PC declassification
considered harmful

6 messages

Benjamin C. Pierce <bcpierce@cis.upenn.edu> Wed, Aug 17,2011 at 1:24 PM
To: safe-breeze@lists.crash-safe.org

A few months ago, we made the decision that it was better to remove the "automatic
declassification of the PC" at the ends of conditionals and functions in Breeze (and at return
instructions in the ISA) and, instead, demand that programmers lower the PC manually, if it
becomes higher than they want it. Over the past few days, we've finally made this change to
Breeze and have been experimenting with programming in this style. Our conclusion, sadly, is
that it doesn't work.

Solution: brackets ‘Awp ‘

 Manual pc restoring

e let x = topSecret<if bit@secret then ()@secret
else ()@topSecret>
in copy = (labelOf x == secret)

Solution: brackets ‘Awp ‘

 Manual pc restoring

e let x = topSecret<if bit@secret then ()@secret
else ()@topSecret>
in copy = (labelOf x == secret)

p F e, pc § v@l, pc’ 1V pe' T IV pe
p F lb{e),pc | v@Qlb,pc

Solution: brackets ‘Awp

Manual pc restoring

e let x = topSecret<if bit@secret then ()@secret
else ()@topSecret>
in copy = (labelOf x == secret)

pl—e,pci}v@l,pc/ IV pe' T 1bV pe
p F lb{e),pc | v@Qlb,pc

Final label cannot depend on secrets (copy is always false)
Programmer must predict pc & result label at the end of all branches
Not a declassification construct

pc no longer infectious (but result value still protected by pc)
Without automatic pc restoration labels can be made public

[HAILS 2011, Breeze Fall 2011]

Poison-pill vulnerable server2

let log = ref public ©

fun server2 xs =
let res = fold (+) xs @ in
log := llog + res;
res

let attackerl
let attacker2
let attacker3

server2 [1,2,42@secret]
server2 [1,2,42]@secret
server2 (1 :: [2,42]@secret)

One way to protect server?

let log = ref public ©
fun server2 xs =
rec fun sum xs =
if labelOf xs == public then
case xs of
Cons X xs' =>
if labelOf x == public then
case sum xs' of
Some s => Some (X + S)
None => None
else None
Nil => Some ©
else None
case sum xs of
Some res =>
log := !log + res;
res
None => "error"

Wishful way to protect server2

* let log = ref public ©
fun server2 xs =

try
public<
let res = fold (+) xs @ in
log := llog + res;
res
>
catch _ => "error"

Exceptions instead of fatal errors?

(the only way wrapping could work is if no error is fatal)

More reasons for exceptions

e “Stop the world” errors completely unrealistic
— trying to build DynlFC-enforcing HW and an OS

— shut down only the offending thread?
* who gets to find out about the failure? does that leak?
e does the thread get restarted? does that leak more?

More reasons for exceptions

e “Stop the world” errors completely unrealistic
— trying to build DynlFC-enforcing HW and an OS

— shut down only the offending thread?
* who gets to find out about the failure? does that leak?
e does the thread get restarted? does that leak more?

* Error insensitive non-interference very weak
— security guarantees depend on fatality of errors

pr.pc b oe | vi@ly)
pa,pc F e | vy@Qly = v,Ql; ~; v,Ql,5
P1 =1 P2)

Exceptions vs. DynlFC

* Exceptions can be used to leak secrets
— let rpub = ref public ()

try
secret<
if bit@secret then throw E else ()
25
rpub := false;
catch E => rpub := true

* Exceptions destroy “decent” control flow
— DynIFC relies on this for restoring the pc

The high price of exceptions

e Raise pc on operations that can cause exceptions
— in Breeze all operations can cause exceptions

— consequence: more brackets = annotations
or/and more declassifications = audit points

The high price of exceptions

e Raise pc on operations that can cause exceptions
— in Breeze all operations can cause exceptions

— consequence: more brackets = annotations
or/and more declassifications = audit points

* Try-catch cannot restore pc
— not guaranteed control-flow merge point

The high price of exceptions

e Raise pc on operations that can cause exceptions
— in Breeze all operations can cause exceptions

— consequence: more brackets = annotations
or/and more declassifications = audit points

* Try-catch cannot restore pc
— not guaranteed control-flow merge point

* Brackets have to catch all exceptions
— brackets could return labeled option
— can choose when to handle (raise pc again)

The high price of exceptions

Raise pc on operations that can cause exceptions
— in Breeze all operations can cause exceptions

— consequence: more brackets = annotations
or/and more declassifications = audit points

Try-catch cannot restore pc
— not guaranteed control-flow merge point

Brackets have to catch all exceptions
— brackets could return labeled option
— can choose when to handle (raise pc again)

Two kinds of exceptions: active + delayed

1QQ
The'high price of exceptions

>\BP

Raise pc on operations that can cause exceptions

— in Breeze all operations can cause exceptions

— consequence: more brackets = annotations
or/and more declassifications = audit points

Try-catch cannot restore pc
— not guaranteed control-flow merge point

Brackets have to catch all exceptions
— brackets could return labeled option
— can choose when to handle (raise pc again)

Two kinds of exceptions: active + delayed

Bui, ﬁ) does hanve C—?r’rovzsemgifive O — W QVQ.

Not-A-Value (NAV)

* Lower cost exception handling mechanism
* |dea: use only delayed exceptions (lazy)

* All values are morally labeled options / sums
— [Tony Hoare, Null References: The Billion Dollar Mistake, 1965/2009]

* Exception propagation via data flow
— no additional control flow
— pc doesn’t raise more
— no bad interaction with brackets

Protecting server2 with NAVs

* let log = ref public ©
fun server2 xs =
let ores = public<fold (+) xs 0> in
case ores of
val res =>
bind <- (log := !log + res) in
res
nhav E => E

DEFINING POISON-PILLS

Not just DynIFC poison-pills

type error pps (dynamic typing)
contract failure pps (dynamic contracts)
access control pps (IF-based access control)

zero-order vs. higher-order pps
— non-termination pps
— resource consumption pps

fast-acting (types™®, contracts™, access*™)
vs. slow-acting pps (IFC, termination, resources)

*assuming fatal errors / eager exceptions

White-box vs. black-box protection

 White-box = rewriting
— weaker protection; bigger overhead

— not clear how to handle higher-order pps
* does rewriting need to happen at run-time?

— not having at least this means broken language
* Black-box = wrapping
— stronger protection; smaller overhead

— easier to handle higher-order pps
— needs more mechanism, e.g. exception handling

Poison-pill protection

Definition (White-box protection against higher-order B-poison-pills wrt £). A de-
terministic language £ provides white-box protection against higher-order B-poison-
pills with respect to & iff there exists a computable compositional transformation func-
tion [|-] from terms to terms, such that for every closed term t and every initial partial
configuration € :

o IfC[t] —* € —» then C[[[t]] —* €" - and —-B(€¢")
and additionally if ~B(€") then also (¢',€") € £.

Poison-pill protection

Definition (White-box protection against higher-order B-poison-pills wrt £). A de-
terministic language £ provides white-box protection against higher-order B-poison-
pills with respect to & iff there exists a computable compositional transformation func-
tion [|-] from terms to terms, such that for every closed term t and every initial partial
configuration € :

o IfC[t] —* € —» then C[[[t]] —* €" - and —-B(€¢")
and additionally if ~B(€") then also (¢',€") € £.

Definition (White-box protection against zero-order B-poison-pills wrt £). ... such
that for every closed zero-order term t and any context C and any initial partial con-
figuration € :

o ifEC[C[t]] —* €' - then €||C[t]]] —* €" - and -B(€")
and additionally if —~B(€") then also (¢',€¢") € &.

Poison-pill protection

Definition (White-box protection against higher-order B-poison-pills wrt £). A de-
terministic language £ provides white-box protection against higher-order B-poison-
pills with respect to & iff there exists a computable compositional transformation func-
tion [|-] from terms to terms, such that for every closed term t and every initial partial
configuration € :

o IfC[t] —* € —» then C[[[t]] —* €" - and —-B(€¢")
and additionally if ~B(€") then also (¢',€") € £.

Definition (Black-box protection against higher-order B-poison-pills wrt &). ... iff
there exists a context Cy; so that for every closed term t for a fixed transformation

[t] = Cult]

o [fCy[t] —* €[, —» then €y|[t]] —* €" - and ~B(€")
and additionally if =B(€") then also (¢',€¢") € £.

Plan / open questions

\ purely functional DynlFC language
V' prove it does not provide white-box protection

A\ public labels + brackets
W P prove white-box protection + no black-box protection

_ Q: Where do NAVs fit?
exceptions

A B P prove black-box protection

Plan / open questions

\ purely functional DynlFC language
V' prove it does not provide white-box protection

A\ public labels + brackets
W P prove white-box protection + no black-box protection

_ Q: Where do NAVs fit?
exceptions

A B P prove black-box protection

Reasonable definitions? General enough?

Prove metaproperties about definitions?
Does any of this extend to state? concurrency?

Does this work in practice (Breeze)? ...

BACKUP SLIDES

DynIFC vs reliability

* DynlIFCis a source of errors/exceptions

* DynlIFC is a source of restrictions on reporting
and handling errors/exceptions

— exceptions are themselves a channel

— e.g. Asbestos does very strange stuff like silently
hiding errors

Program context (pc)

pc prevents implicit flows

let rpub = ref public () in
if bit@secret then rpub := true
else rpub := false

pc “infects” all values created on high branch
p,pc F e, o J v@Ql,¢' = 1LC pc

— we need this because of automatic pc restoration

let rpub = ref public () in
let copy = (if bit@secret then true
else false)
in rpub := copy // pc restored, leak secret?

Another solution for attack 1

e let log = ref public ©
fun server xs =
rec fun check input xs =
if labelOf xs == public then
case xs of
Cons x xs' =>
(labelOf x == public) && f xs'
Nil => true
else false
if check _input xs then
let res = fold (+) xs @ in
log := !llog + res;
res
else "error"

Poison-pill attack 2

* let log = ref secret []
fun server2 xs =
let res = fold (\x.\s. log:=x::!log; x+s)
Xs 0
in res

« let attacker2 =
server2 [1,2,42@topSecret]

Poison-pill attack 3

* let pLog = ref public ©
let sLog = ref secret ©
fun server xs =
let res = fold (+) xs @ in

sLog := lslLog + res; // <- this fails
pLog := !pLog + 1;
res

e let attacker =
server [1,2,42@topSecret]@secret

Non-solution for attack 3

* let pLog = ref public ©
let sLog = ref secret ©
fun server xs =
if labelOf xs <: secret &&

forall (\x. labelOf x <: secret) xs then
let res = fold (+) xs @ in
sLog := lsLog + res;
pLog := pLog + 1; // <- pc too high
res

Better solution for attack 3

e let pLog = ref public © // counts total requests
let sLog = ref secret © // only successful operations
fun server xs =
if labelOf xs <: secret then
let ores =
secret<fold (\x.\os.
case os of
Some s => if labelOf x == secret then Some(x+s)
else None
None => None
) Xs 0> in
secret<case ores of
Some res => sLog := lsLog + res;
None => ()>
pLog := l!pLog + 1;
secret<case ores of
Some res => res;
None => "pls stop poison">

A simpler + smarter solution for 3

* let pLog = ref public ©
let sLog = ref secret ©
fun server Xxs =
if labelOf xs <: secret then
let valid = secret<
forall (\x. labelOf x <: secret) xs> in
let res = secret«
if valid then fold (+) xs 0 else ©

> 1in
sLog := lsLog + res;
pLog := pLog + 1;

res

Poison-pill attack ingredients

Dynamic IFC
Fine-grained labeling

— High data can be hidden under low labels
[1,2,pill@H]@L

Decentralized label model

— any code can classify data only for itself

Fatal errors

