
Poison-pills and dynamic
information flow control

Cătălin Hrițcu
(joint work with Michael Greenberg, Benoît Montagu,

Greg Morrisett, Benjamin Pierce, Randy Pollack, …)

Penn PLClub - 2012-05-11

Outline

• Dynamic information flow control (IFC)

• Poison-pill attacks for dynamic IFC (informally)

• Solution ingredients:

– Public labels

– No fatal errors

• Defining poison-pill attacks and protection

Purely dynamic IFC
½; pc ` e + v@ l

¸V

Purely dynamic IFC
½; pc ` e + v@ l

½ ; pc ` e + b@ lb b 2 f true ; fa lseg
½ ; pc _ lb ` e b + v@ l

½ ; pc ` if e then e true e lse e fa lse + v@ l

¸V

pc prevents implicit flows:

let rpub = ref public () in
if bit@secret then rpub := true
 else rpub := false

Purely dynamic IFC

½ (x) = v@ l

½ ; pc ` x + v@(l _ pc)

½; pc ` ¸x:e + h½; ¸x:ei @pc

½; pc ` e + v@ l

½ ; pc ` e + b@ lb b 2 f true ; fa lseg
½ ; pc _ lb ` e b + v@ l

½ ; pc ` if e then e true e lse e fa lse + v@ l

¸V

pc “infects” all values created on high branch
(we need this because of automatic pc restoration)

let rpub = ref public () in
let copy = (if bit@secret then true
 else false)
in rpub := copy // pc restored, leak secret?

Purely dynamic IFC

½ (x) = v@ l

½ ; pc ` x + v@(l _ pc)

½; pc ` ¸x:e + h½; ¸x:ei @pc

½ ; pc ` e1 + h½ 0
; ¸x :ei@ l1

½ ; pc ` e2 + v 2@ l2

½
0
[x 7! v 2@ l2]; pc _ l1 ` e + v 3@ l3

½ ; pc ` e1 e2 + v3@ l3

½; pc ` e + v@ l

½ ; pc ` e + b@ lb b 2 f true ; fa lseg
½ ; pc _ lb ` e b + v@ l

½ ; pc ` if e then e true e lse e fa lse + v@ l

¸V

Purely dynamic IFC

[Austin & Flanagan, PLAS 2009] [Breeze Summer 2011]

½ (x) = v@ l

½ ; pc ` x + v@(l _ pc)

½; pc ` ¸x:e + h½; ¸x:ei @pc

½ ; pc ` e1 + h½ 0
; ¸x :ei@ l1

½ ; pc ` e2 + v 2@ l2

½
0
[x 7! v 2@ l2]; pc _ l1 ` e + v 3@ l3

½ ; pc ` e1 e2 + v3@ l3

½; pc ` e + v@ l

½ ; pc ` e + b@ lb b 2 f true ; fa lseg
½ ; pc _ lb ` e b + v@ l

½ ; pc ` if e then e true e lse e fa lse + v@ l

½ 1 ; pc ` e + v 1@ l1

½ 2 ; pc ` e + v 2@ l2

½ 1 ' l ½ 2

9
=

;
) v1@ l1 ' l v2@ l2

Non-interference
(termination & error insensitive)

¸V

Mutable state

½; pc ` e; ¾ + v@ l ; ¾
0 very easy with weak updates

(references have fixed labels set on creation time)

Mutable state

½; pc ` e; ¾ + v@ l ; ¾
0 very easy with weak updates

(references have fixed labels set on creation time)

½ (x) = v@ lv r 62 ¾ lv _ pc v lr

½ ; pc ` re f lr x ; ¾ + r@ pc ; ¾ [r 7! v@ lr]

¾ (r) = v@ lr

½ ; pc ` !r; ¾ + v@ (lr _ pc) ; ¾

½(x) = v@ lv ¾ (r) = v 0@ lr lv _ pc v lr

½; pc ` r := x; ¾ + r@pc ; ¾ [r 7! v@ lr]

Mutable state

½; pc ` e; ¾ + v@ l ; ¾
0 very easy with weak updates

(references have fixed labels set on creation time)

½ (x) = v@ lv r 62 ¾ lv _ pc v lr

½ ; pc ` re f lr x ; ¾ + r@ pc ; ¾ [r 7! v@ lr]

¾ (r) = v@ lr

½ ; pc ` !r; ¾ + v@ (lr _ pc) ; ¾

½ ; pc ` e1 ; ¾ + v1@ l1 ; ¾
0

½ [x 7! v1@ l1]; pc ` e2 ; ¾
0 + v2@ l2 ; ¾

00

½ ; pc ` le t x = e1 in e2 ; ¾ + v2@ l2 ; ¾
00

[Breeze Summer 2011]

½(x) = v@ lv ¾ (r) = v 0@ lr lv _ pc v lr

½; pc ` r := x; ¾ + r@pc ; ¾ [r 7! v@ lr]

Simplest DynIFC poison-pill attack

• let log = ref public 0
fun server x y =
 let res = x + y in
 log := !log + res;
 res

Simplest DynIFC poison-pill attack

• let log = ref public 0
fun server x y =
 let res = x + y in
 log := !log + res;
 res

server expects public numbers

Simplest DynIFC poison-pill attack

• let log = ref public 0
fun server x y =
 let res = x + y in
 log := !log + res;
 res

• let attacker =
 server 1 (2@secret)

server expects public numbers

attacker sends secret pill

Simplest DynIFC poison-pill attack

• let log = ref public 0
fun server x y =
 let res = x + y in
 log := !log + res;
 res

• let attacker =
 server 1 (2@secret)

server expects public numbers

attacker sends secret pill

res=3@High

attempted write down to log

server gets killed (fatal IFC error)

-> availability attack

Simplest DynIFC poison-pill attack

• let log = ref public 0
fun server x y =
 let res = x + y in
 log := !log + res;
 res

• let attacker =
 server 1 (2@secret)

server expects public numbers

attacker sends secret pill

res=3@High

attempted write down to log

server gets killed (fatal IFC error)

-> availability attack

Poison-pill problem:

in we can’t protect this server against poison-pills ¸ V

Trying to protect server

• let log = ref public 0
fun server x y =
 if labelOf x == public &&
 labelOf y == public then
 let res = x + y in
 log := !log + res;
 res
 else "pls stop poison"

Trying to protect server

• let log = ref public 0
fun server x y =
 if labelOf x == public &&
 labelOf y == public then
 let res = x + y in
 log := !log + res;
 res
 else "pls stop poison"

• We need public labels for this:

 ½ (x) = v@ l

½ ; pc ` lab e lO f x ; ¾ + l@? ; ¾

Problem: labelOf unsound in

• Labels themselves are an IF channel

– let x = (if bit@secret then ()@secret
 else ()@topSecret)
in copy = (labelOf x == secret)

• Public labels unsound if pc restored automatically

½ (x) = v@ l

½ ; pc ` lab e lO f x ; ¾ + l@? ; ¾

¸ V

Problem: labelOf unsound in

• Labels themselves are an IF channel

– let x = (if bit@secret then ()@secret
 else ()@topSecret)
in copy = (labelOf x == secret)

• Public labels unsound if pc restored automatically

• Manual pc declassification doesn’t work

– Adds many subtle audit points … mostly spurious

½ (x) = v@ l

½ ; pc ` lab e lO f x ; ¾ + l@? ; ¾

¸ V

Solution: brackets

• Manual pc restoring

• let x = topSecret<if bit@secret then ()@secret
 else ()@topSecret>
in copy = (labelOf x == secret)

¸WP

Solution: brackets

• Manual pc restoring

• let x = topSecret<if bit@secret then ()@secret
 else ()@topSecret>
in copy = (labelOf x == secret)

½ ` e ; pc + v@ l ; pc
0

l _ pc
0 v lb _ pc

½ ` lb he i ; pc + v@ lb ; p c

¸WP

Solution: brackets

• Manual pc restoring

• let x = topSecret<if bit@secret then ()@secret
 else ()@topSecret>
in copy = (labelOf x == secret)

• Final label cannot depend on secrets (copy is always false)

• Programmer must predict pc & result label at the end of all branches

• Not a declassification construct

• pc no longer infectious (but result value still protected by pc)

• Without automatic pc restoration labels can be made public

½ ` e ; pc + v@ l ; pc
0

l _ pc
0 v lb _ pc

½ ` lb he i ; pc + v@ lb ; p c

[HAILS 2011, Breeze Fall 2011]

¸WP

Poison-pill vulnerable server2

• let log = ref public 0
fun server2 xs =
 let res = fold (+) xs 0 in
 log := !log + res;
 res

• let attacker1 = server2 [1,2,42@secret]

• let attacker2 = server2 [1,2,42]@secret

• let attacker3 = server2 (1 :: [2,42]@secret)

One way to protect server2

• let log = ref public 0
fun server2 xs =
 rec fun sum xs =
 if labelOf xs == public then
 case xs of
 Cons x xs' =>
 if labelOf x == public then
 case sum xs' of
 Some s => Some (x + s)
 None => None
 else None
 Nil => Some 0
 else None
 case sum xs of
 Some res =>
 log := !log + res;
 res
 None => "error"

Wishful way to protect server2

• let log = ref public 0
fun server2 xs =
 try
 public<
 let res = fold (+) xs 0 in
 log := !log + res;
 res
 >
 catch _ => "error"

Exceptions instead of fatal errors?
(the only way wrapping could work is if no error is fatal)

More reasons for exceptions

• “Stop the world” errors completely unrealistic
– trying to build DynIFC-enforcing HW and an OS

– shut down only the offending thread?
• who gets to find out about the failure? does that leak?

• does the thread get restarted? does that leak more?

More reasons for exceptions

• “Stop the world” errors completely unrealistic
– trying to build DynIFC-enforcing HW and an OS

– shut down only the offending thread?
• who gets to find out about the failure? does that leak?

• does the thread get restarted? does that leak more?

• Error insensitive non-interference very weak
– security guarantees depend on fatality of errors

½ 1 ; pc ` e + v 1@ l1

½ 2 ; pc ` e + v 2@ l2

½ 1 ' l ½ 2

9
=

;
) v1@ l1 ' l v2@ l2

Exceptions vs. DynIFC

• Exceptions can be used to leak secrets
– let rpub = ref public ()
try
 secret<
 if bit@secret then throw E else ()
 >;
 rpub := false;
catch E => rpub := true

• Exceptions destroy “decent” control flow

– DynIFC relies on this for restoring the pc

The high price of exceptions

• Raise pc on operations that can cause exceptions
– in Breeze all operations can cause exceptions
– consequence: more brackets = annotations

or/and more declassifications = audit points

The high price of exceptions

• Raise pc on operations that can cause exceptions
– in Breeze all operations can cause exceptions
– consequence: more brackets = annotations

or/and more declassifications = audit points

• Try-catch cannot restore pc
– not guaranteed control-flow merge point

The high price of exceptions

• Raise pc on operations that can cause exceptions
– in Breeze all operations can cause exceptions
– consequence: more brackets = annotations

or/and more declassifications = audit points

• Try-catch cannot restore pc
– not guaranteed control-flow merge point

• Brackets have to catch all exceptions
– brackets could return labeled option
– can choose when to handle (raise pc again)

The high price of exceptions

• Raise pc on operations that can cause exceptions
– in Breeze all operations can cause exceptions
– consequence: more brackets = annotations

or/and more declassifications = audit points

• Try-catch cannot restore pc
– not guaranteed control-flow merge point

• Brackets have to catch all exceptions
– brackets could return labeled option
– can choose when to handle (raise pc again)

• Two kinds of exceptions: active + delayed

The high price of exceptions

• Raise pc on operations that can cause exceptions
– in Breeze all operations can cause exceptions
– consequence: more brackets = annotations

or/and more declassifications = audit points

• Try-catch cannot restore pc
– not guaranteed control-flow merge point

• Brackets have to catch all exceptions
– brackets could return labeled option
– can choose when to handle (raise pc again)

• Two kinds of exceptions: active + delayed

¸BP

Not-A-Value (NAV)

• Lower cost exception handling mechanism

• Idea: use only delayed exceptions (lazy)

• All values are morally labeled options / sums
– [Tony Hoare, Null References: The Billion Dollar Mistake, 1965/2009]

• Exception propagation via data flow

– no additional control flow

– pc doesn’t raise more

– no bad interaction with brackets

Protecting server2 with NAVs

• let log = ref public 0
fun server2 xs =
 let ores = public<fold (+) xs 0> in
 case ores of
 val res =>
 bind _ <- (log := !log + res) in
 res
 nav E => E

DEFINING POISON-PILLS

Not just DynIFC poison-pills

• type error pps (dynamic typing)

• contract failure pps (dynamic contracts)

• access control pps (IF-based access control)

• zero-order vs. higher-order pps
– non-termination pps

– resource consumption pps

• fast-acting (types*, contracts*, access*)
vs. slow-acting pps (IFC, termination, resources)

*assuming fatal errors / eager exceptions

White-box vs. black-box protection

• White-box = rewriting
– weaker protection; bigger overhead

– not clear how to handle higher-order pps
• does rewriting need to happen at run-time?

– not having at least this means broken language

• Black-box = wrapping
– stronger protection; smaller overhead

– easier to handle higher-order pps

– needs more mechanism, e.g. exception handling

Poison-pill protection

Poison-pill protection

Poison-pill protection

Plan / open questions

¸ V
purely functional DynIFC language
prove it does not provide white-box protection

¸W P

public labels + brackets
prove white-box protection + no black-box protection

¸B P
exceptions
prove black-box protection

Q: Where do NAVs fit?

Plan / open questions

¸ V
purely functional DynIFC language
prove it does not provide white-box protection

¸W P

public labels + brackets
prove white-box protection + no black-box protection

¸B P
exceptions
prove black-box protection

Reasonable definitions? General enough?
Prove metaproperties about definitions?
Does any of this extend to state? concurrency?
Does this work in practice (Breeze)? ...

Q

Q: Where do NAVs fit?

BACKUP SLIDES

DynIFC vs reliability

• DynIFC is a source of errors/exceptions

• DynIFC is a source of restrictions on reporting
and handling errors/exceptions

– exceptions are themselves a channel

– e.g. Asbestos does very strange stuff like silently
hiding errors

• pc prevents implicit flows

let rpub = ref public () in
if bit@secret then rpub := true
 else rpub := false

• pc “infects” all values created on high branch

– we need this because of automatic pc restoration

let rpub = ref public () in
let copy = (if bit@secret then true
 else false)
in rpub := copy // pc restored, leak secret?

Program context (pc)

½; pc ` e; ¾ + v@ l; ¾
0) l v pc

Another solution for attack 1

• let log = ref public 0
fun server xs =
 rec fun check_input xs =
 if labelOf xs == public then
 case xs of
 Cons x xs' =>
 (labelOf x == public) && f xs'
 Nil => true
 else false
 if check_input xs then
 let res = fold (+) xs 0 in
 log := !log + res;
 res
 else "error"

Poison-pill attack 2

• let log = ref secret []
fun server2 xs =
 let res = fold (\x.\s. log:=x::!log; x+s)
 xs 0
 in res

• let attacker2 =
 server2 [1,2,42@topSecret]

Poison-pill attack 3

• let pLog = ref public 0
let sLog = ref secret 0
fun server xs =
 let res = fold (+) xs 0 in
 sLog := !sLog + res; // <- this fails
 pLog := !pLog + 1;
 res

• let attacker =
 server [1,2,42@topSecret]@secret

Non-solution for attack 3

• let pLog = ref public 0
let sLog = ref secret 0
fun server xs =
 if labelOf xs <: secret &&
 forall (\x. labelOf x <: secret) xs then
 let res = fold (+) xs 0 in
 sLog := !sLog + res;
 pLog := pLog + 1; // <- pc too high
 res

Better solution for attack 3

• let pLog = ref public 0 // counts total requests
let sLog = ref secret 0 // only successful operations
fun server xs =
 if labelOf xs <: secret then
 let ores =
 secret<fold (\x.\os.
 case os of
 Some s => if labelOf x == secret then Some(x+s)
 else None
 None => None
) xs 0> in
 secret<case ores of
 Some res => sLog := !sLog + res;
 None => ()>
 pLog := !pLog + 1;
 secret<case ores of
 Some res => res;
 None => "pls stop poison">

A simpler + smarter solution for 3

• let pLog = ref public 0
let sLog = ref secret 0
fun server xs =
 if labelOf xs <: secret then
 let valid = secret<
 forall (\x. labelOf x <: secret) xs> in
 let res = secret<
 if valid then fold (+) xs 0 else 0
 > in
 sLog := !sLog + res;
 pLog := pLog + 1;
 res

Poison-pill attack ingredients

• Dynamic IFC

• Fine-grained labeling

– High data can be hidden under low labels
[1,2,pill@H]@L

• Decentralized label model

– any code can classify data only for itself

• Fatal errors

