
Testing Noninterference, Quickly

Cătălin Hrițcu, John Hughes, Benjamin C. Pierce,
Antal Spector-Zabusky, Dimitrios Vytiniotis,

Arthur Azevedo de Amorim, Leonidas Lampropoulos

to appear at ICFP 2013

The SAFE project

language

system

hardware

@ Penn, Harvard, Northeastern,
 BAE Systems

http://www.crash-safe.org/

The SAFE project

language

system

hardware

@ Penn, Harvard, Northeastern,
 BAE Systems

http://www.crash-safe.org/

The SAFE project

language

system

hardware V
er

if
ic

at
io

n

@ Penn, Harvard, Northeastern,
 BAE Systems

http://www.crash-safe.org/

Verifying security of the SAFE system

long term goal

Verifying security of the SAFE system

• current status:
noninterference in Coq for a very simplified model

long term goal

Verifying security of the SAFE system

• current status:
noninterference in Coq for a very simplified model

Benjamin’s
keynote on Friday

long term goal

Verifying security of the SAFE system

• current status:
noninterference in Coq for a very simplified model

• However…

– Proofs for actual system will require a lot more work

– Design is still evolving

– Feedback on correctness needed ASAP

Benjamin’s
keynote on Friday

long term goal

Random testing?

• Can we use property-based random testing for

checking noninterference?

Random testing?

• Can we use property-based random testing for

checking noninterference?

• The experiment

– very simple machine (10 instructions)

– standard noninterference property

– use QuickCheck to generate many random

programs and try to find counterexamples

Encouraging results

• introduced plausible errors in IFC rules

• all errors found in 2-16ms on average

Encouraging results

• introduced plausible errors in IFC rules

• all errors found in 2-16ms on average

• However, for these results
we are not using QuickCheck naïvely

– that didn’t really work for us

– significant cleverness was needed in 3 areas…

The 3 secret ingredients

1. Clever program generation strategies

– generating only data that satisfies preconditions

– “generation by execution”

2. Strengthening the tested property

– best one: unwinding conditions

– requires inventing (by hand!) stronger invariants

• invariants of real SAFE machine are very complicated

3. Shrinking counterexamples

Getting confidence by testing

• “testing can only show the presence of bugs,
not their absence” – Dijkstra

Getting confidence by testing

• “testing can only show the presence of bugs, not

their absence” – Dijkstra

• new idea: use old bugs to “test” the generator

– if all old bugs found fast & no new bugs found

– then we do get some confidence

Getting confidence by testing

• “testing can only show the presence of bugs, not

their absence” – Dijkstra

• new idea: use old bugs to “test” the generator

– if all old bugs found fast & no new bugs found

– then we do get some confidence

• open problems

– how to save bugs without turning code into spaghetti?

– or how to add all interesting bugs automatically?

Conclusion

• property-based random testing

– is a lot of fun

– can inform and speed up design process

– can serve as 1st step towards formal verification

• concentrate more energy on proving correct things

• finding the right design, properties, and invariants

– is not push-button ... yet

• but some general tricks can help a lot

