
All Your IFCException Are Belong To Us

Cătălin Hrițcu
(joint work with Michael Greenberg, Ben Karel,

Benjamin Pierce, Greg Morrisett, and more)

2012-11-13 – NJPLS at Penn

Information Flow Control

Static Dynamic

[Denning, 1977]
type systems
& program analysis
Jif, FlowCaml, ...

[Fenton, 1974]

2

Information Flow Control

Static Dynamic

only explicit flows
Perl Taint mode, ...

[Fenton, 1974]

3

Taint Tracking

Information Flow Control

Static Dynamic

only explicit flows
Perl Taint mode, ...

[Fenton, 1974]

4

Taint Tracking Sound + Complete Impossible

[Schneider, 2000]

non-interference not a trace property
can’t be precisely enforced by EM

Information Flow Control

Static Dynamic

Sound

enforce stronger property (incomplete)
changing language semantics allowed
also prevents implicit flows
non-interference proofs

[Krohn & Tromer, 2009] [Sabelfeld & Russo, 2009]
[Austin & Flanagan, 2009]

[Fenton, 1974]

5

Taint Tracking

Information Flow Control

Static Dynamic

Sound

Coarse-grained

[Krohn & Tromer, 2009] [Sabelfeld & Russo, 2009]
[Austin & Flanagan, 2009] OSes: Asbestos (2005), Flume, HiStar

[Fenton, 1974]

JavaScript

6

Taint Tracking

Fine-grained

Preventing implicit flows

• let lref = ref low false in

if h then

 lref := true;

• even purely functional code can leak via control flow:
– if h then true else false

– semantics of conditional:
• if true@high then true else false => true@high

7

pc=high

bad flow -> halt program

false alarm (program non-interferent) lref := false ...

Breeze

• sound fine-grained dynamic IFC

• label-based discretionary access control
– clearance helps prevent covert channels

• functional core (λ) + state(!) + concurrency (π)
– from Pict/CML towards something more Erlang-ish

• dynamically typed
– directly reflects capabilities of CRASH/SAFE HW

– dynamically-checked first-class contracts

 8

Exception handling

• we wanted all Breeze errors to be recoverable

– including IFC violations! (IFCException)

• however, existing work* assumes errors are fatal

– makes some things easier ... at the expense of others

9

+secrecy +integrity –availability

*There are 2 very recent (partial) exceptions:
 [Stefan et al., 2012] and [Hedin & Sabelfeld, 2012]

But there is a problem ... in fact two

10

Sound
Fine-

Grained
Dynamic

IFC

But there is a problem ... in fact two

11

Sound
Fine-

Grained
Dynamic

IFC

But there is a problem ... in fact two

12

Sound
Fine-

Grained
Dynamic

IFC

 ... in fact two!

Labels are information channels

• well-known fact:

– changing labels are themselves information channels

• get soundness by preventing secrets from leaking
either into or out of label channel

13

label
channel

enforce that labels don’t
depend on secrets

labels must be hidden

labels can be observed

allow labels to depend on secrets

Problem #1: IFC exceptions reveal
information about labels

• secret bit: h@high low <: high <: top

try

 true
catch IFCException => false

14

encode h into label

if branch − assignment works
else branch − IFCException

(if h then ()@high
 else ()@top);

href :=

let href = ref high () in
.......

raise the pc on each
assignment by the label of

the written value?

label
channel

labels must be hidden

allow labels to depend on secrets

IFC errors must be hidden too
(not low observable)

we don’t want this restriction!

Solution to problem #1: brackets

• prevent labels from depending on
secrets so that labels are public

• no longer automatically restore pc

– pc=low if h then ()@high else ()@top pc=high

• instead, restore pc manually using brackets
– choose label on result before branching on secrets

– pc=low top[if h then ()@high else ()@top] => ()@top pc=low

– brackets are not declassification!
– sound even when annotation is incorrect (next slide)
– bracket annotations can be dynamically computed (labelOf)

15

labels

IFCException

labelOf

Problem #2: exceptions destroy
control flow join points

• ending brackets have to be control flow join points
– try

 let _ = high[if h then throw Ex] in
 false
catch Ex => true

• brackets need to delay all exceptions!
– high[if true@high then throw Ex] => “(Inr Ex)@high”

– high[if false@high then throw Ex] => “(Inl ())@high”

• similarly for failed brackets
– high[()@top] => “(Inr EBracket)@high”

16

Solution #2: Delayed exceptions

• delayed exceptions unavoidable

– still have a choice how to propagate them

• we studied two alternatives for error handling:

1. mix active and delayed exceptions (λ[]
throw)

17

Solution #2: Delayed exceptions

• delayed exceptions unavoidable

– still have a choice how to propagate them

• we studied two alternatives for error handling:

1. mix active and delayed exceptions (λ[]
throw)

2. only delayed exceptions (λ[]
NaV)

• delayed exception = not-a-value (NaV)

• NaVs are first-class replacement for values

• NaVs propagated solely via data flow

• NaVs are labeled and pervasive

• more radical solution; implemented by Breeze

18

What’s in a NaV?

• error message
– `EDivisionByZero (“can’t divide %1 by 0”, 42)

• stack trace

– pinpoints error origin
(not the billion-dollar mistake)

• propagation trace

– how did the error make it here?

19

NaVs are compiler writer’s
dream, especially if

compiler is allowed to be
imprecise about these

debugging aids
(Greg Morrisett)

Formal results

• proved termination-insensitive non-interference in Coq
for λ[], λ[]

NaV, and λ[]
throw

– for λ[]
NaV even with all debugging aids; error-sensitive

• conjecture: in our setting NaVs and catchable exceptions
have equivalent expressive power

– translations validated by QuickChecking code extracted from
Coq (working on Coq proofs)

20

λ[]

λ[]
throw λ[]

NaV

Conclusion

• reliable error handling possible even for sound
fine-grained dynamic IFC systems

• we study two mechanisms (λ[]
NaV and λ[]

throw)
– all errors recoverable, even IFC violations

– key ingredients:
sound public labels (brackets) + delayed exceptions

– quite radical design (not backwards compatible!)

• our practical experience with NaVs:
– issues are surmountable

– writing good error recovery code is still hard

21

THE END

22

