All Your IFCException Are Belong To Us

or
Exception Handling in Breeze

Catalin Hritcu

(joint work with Michael Greenberg, Ben Karel,
Benjamin Pierce, Greg Morrisett, and more)

LLF Y
" Pel l I l 2012-10-15 at Harvard
UNIVERSITY of PENNSYLVANIA

Information Flow Control W

//\

[Fenton, 1974]

N N
Static Dynamic
[Denning, 1977] /'
type systomse)/
& progri Taint Tracking W, -7
Jif, FlowCGar— -

/
only explicit flows 1
Perl Taint mode, ..

Coarse-grained

[Krohn & Tromer, 2009]

OSes: Asbestos, Flume, HiStar
[Krohn & Kohler & ..., 2005]

Fine-grained

[Sabelfeld & Russo, 2009]
[Austin & Flanagan, 2009]

JavaScript

Breeze o?,O’lf[

sound fine-grained dynamic IFC

label-based discretionary access control
— clearance

functional core (A) + state(!) + concurrency (1)
— from Pict/CML towards something more Erlang-ish

dynamically typed (for now)
— directly reflects capabilities of SAFE HW
— dynamically-checked first-class contracts

Exception handling

e we wanted all Breeze errors to be recoverable
— including IFC violations!

* however, existing work™ assumes errors are fatal
— makes some things easier ... at the expense of others
+secrecy +integrity —availability

*There are 2 recent (partial) exceptions:
[Stefan et al., 2012] and [Hedin & Sabelfeld, 2012]

Poison-pill attacks W

let cin = chan low;
let cout = chan low;

fun process_max x y = 3@low <= 2@high = false@high
if x <= y then y else x pc=high

fun rec max_server_loop () =
let (x,y) = recv cin in x=3@low y=2@high
let res = process max X y in res=3@high

send cout res;| max_server gets killed because of IFC violation!?
max_server _loop ()

let client = send cin (3, 5)@low; recv cout = 5
let attacker = send cin (3, 2@high)@low

Wishful thinking

let cin = chan low;
let cout = chan low;

fun process max (x,y) =
if x <= y then y else x

fun rec max_server_loop' () =
try
send cout (process max (recv cin))
catch x => log x;
max_server_loop' ()

But there is a problem

Sound

Fine-
Grained
Dynamic

.

But there is a problem ... in fact two!

A\

o

Labels are information channels

e well-known fact:

— labels that change are themselves information channels
* more than one label channel:

— labels on reference contents (strong updates)

— vs. labels on values and components of values

e get soundness by preventing secrets from leaking
either into or out of label channel

no strong updates or
“no-sensitive-upgrade”
[Austin & Flanagan, '09]

labels can be observed

label
channel

Labels are information channels

e well-known fact:

— labels that change are themselves information channels
* more than one label channel:

— labels on reference contents (strong updates)

— vs. labels on values and components of values

e get soundness by preventing secrets from leaking
either into or out of label channel

label
channel

labels must be hidden
e.g. “permissive upgrades”

allow labels to depend on secrets [Austin & Flanagan, '10]

Labels are information channels

e well-known fact:

— labels that change are themselves information channels
* more than one label channel:

— labels on reference contents (strong updates)

— vs. labels on values and components of values

e get soundness by preventing secrets from leaking
either into or out of label channg)

label
channel

labels must be hidden
2.g. “permissive upgrades”

allow labels to depend on secrets [Austin & Flanagan, '10]

Problem #1: IFC exceptions make all
label channels public

we disallow strong updates
still need to close label channel on values

secret bit: h@high low <: high <: top
let href = ref high () in

try encode h into label
'd A \
href := (if h then ()@high if branch — assignment works
else ()@top);| else branch - IFCException
true

catch IFCException => false

Automatic pc restoring
just doesn’t work!

Solution to problem #1: brackets

* no longer automatically restore pc

— pc=low‘if h then ()@high else ()@top‘pc=high

* restore pc manually using brackets
— choose label before branching on secrets

— pc=low‘§gg[if h then ()@high else ()@top]‘pc=low

— brackets are not declassification!
— sound even when annotation is incorrect (more later)
* labels are now public

— bracket annotations can be dynamically computed
IFCException

labelOf

13

Problem #2: exceptions destroy
control flow join points

* ending brackets have to be control flow join points

— try
let = high[if h then throw Ex else ()] in
false

catch Ex => true

* failed brackets cannot raise exceptions
— let lref = ref low false in

try
let = high[if h then ()@high else ()@top] in
lref := true

catch EBrk => ()
* brackets need to delay all exceptions!

Solution #2: Delayed exceptions

* delayed exceptions unavoidable
— still have a choice how to propagate them

e we study two alternatives for error handling:
1. mix active and delayed exceptions (All,,)

2. only delayed exceptions (Al)
 delayed exception = not-a-value (NaV)
 NaVs are first-class replacement for values
 NaVs propagated solely via data flow
* NaVs are labeled and pervasive
* more radical solution; implemented by Breeze

NaV-lax vs. NaV-strict behavior

all non-parametric operations are NaV-strict
— Nav@low + 42@high => NaV@high

for parametric operations we can chose:

NaV-lax or NaV-strict
— (fun x => 42) NaVv => 42 or => NaV
— Cons NaV Nil => Cons NaV Nil or => NaV
— (r := NaV,r=7) => ((),r=NaV) or => (NaV,r=7)

NaV-strict behavior reveals errors earlier
— but it also introduces additional IFC constraints

in Breeze the programmer can choose
— in formal development NaV-lax everywhere

What’s in a NaV?

* error message
— 'EDivisionByZero (“can’t divide %1 by %2”, 42@high, 0@low)

— high clearance code can obtain:
“EDivisionByZero: can’t divide 42@high by 0@low” @high

— all code can obtain:
“EDivisionByZero: can’t divide <hidden>@high by 0@low” @low

e stack trace

— pinpoints error origin (not the billion-dollar mistake)

* propagation trace
— how did the error make it here?

Formal results

* proved error-sensitive non-interference in Cog
for AL, AU, and AL, (termination-insensitive)

— for All,,_, even with all debugging aids

e conjecture: NaVs and catchable exceptions have
equivalent expressive power

— translations validated by quick-checking code
extracted from Coqg (working on Coq proofs)

N

Nk o Al P o ALl

throw

throw+6

Conclusion

* reliable error handling possible even for sound
fine-grained dynamic IFC systems

 we study two mechanisms (Al!, ., and All,,)
— all errors recoverable, even IFC violations

— necessary ingredients:
public labels (via brackets) + delayed exceptions

— quite radical design (not backwards compatible!)
* practical experience with NaVs

— issues are surmountable
— writing good error recovery code is still hard

THE END

INTEGRITY

Integrity W

default label
Sound taint tracking Endorsement = top (untrusted)
default label = bottom (trusted)
(same as for secrecy)
you know “who” is untrusted
and trust everyone else
IFC-endorsement W Signatures W
pc starts at integrity top not tracking implicit/explicit flows
stronger guarantees simple and natural model

(by “being paranoid”) not IFC!

coarser-grained finer-grained
22

12@A 12@?

A > B

(doesn’t trust B & C)
Q: Should A’s endorsement be preserved?
Al: No! (IFC-endorsement)
A2: Yes! (Signatures)

> C

(trusts A)

23

Signature labels

* Very much like digital signatures
— P’s signing authority — P’s signing key
— P’s name — P’s public verification key
* Lattice structure usefu
— conjunctive labels [[P],[Q]] — multi-signatures

— disjunctive labels [[P,Q]] — group signatures

* Unforgeable
— New atoms start out “unsigned” (integrity top)
— Just passing around atoms preserves signatures

24

Data abstraction by signing

secrecy part:
only Bool can

access this data
(enforced by

clearance, not IFC)

only Bool can
create this
signature

Bool module

_ private/prin/ci@B///z 1@([[B]]; [[BI])
- true

- false
- not

integrity part:

25

Data abstraction by signing

More flexible than dynamic sealing:
- ho extra boxing;
- secrecy separate from integrity;

- multiple signers and “decrypters”
Bool module

_ private/prin/ci@B///z 1@([[B]]; [[BI]])
- true

b o@(IBIL [Bl)

- hot

o@([[BL,[C]]; [[AL,[B]])

o@([[B]]; [[A],[B]])
1@([[B],[C]]; [[BI])

C (trusts B to access his data,
but not to declassifyzi;c)

more restrictive

discretionary
access control
(clearance)

IFC ©

A

public key
encryption

homomorphic
encryption

secrecy

more restrictive

signature. digital
labels | signatures

endorsement
integrity 27

Signature labels are no silver bullet

42°@A 45°@A 38°@A A5°@A 42°@A 42°@A
A > B > C

28

Signature labels are no silver bullet

(42°, 10am, 2012-10-15)@§

(42°, 10am, 2012-10-15)@A> C

A B

29

Signature labels are no silver bullet

(42°, 10am, 2012-10-15)@§

(42°, 10am, 2012-10-15)@A> C

A B

Only sign “self-contained” (+immutable) messages

“Give B 425" @A
“Give B 425" @A
“Give B 428" @A “Give B 425" @A

B > C

A

30

Signature labels are no silver bullet

(42°, 10am, 2012-10-15)@§ (42°, 10am, 2012-10-15)@§ C

A B

Only sign “self-contained” (+immutable) messages

A g« C

(“Give B 425”,n) @A > (“Give B 425" n)@A

31

Signature labels are no silver bullet

(42°, 10am, 2012-10-15)@§

(42°, 10am, 2012-10-15)@A> C

A B

Only sign “self-contained” (+immutable) messages

Signatures alone don’t guarantee freshness
- Linear/unique signatures? (could work in a closed system)

IIG.I'IE B qzsﬂ@e
IIG‘IlIE B 425”@Q
“Give B 428" @A “Give B 425" @A

B > C

A

32

BACKUP SLIDES

Boxes and atoms
b
a = bal

Rules (A,

v | 6 excp p(z) =a

pEx pcl a, pe

pbE (Az.t),pcll (p, Az.t)al, pc

plz1) = (p', Ax. t)alL p(a2) = a
(p',z—=a)bt,(pcV L) d,pc

p b (1 22),pcl o, pc

plz) = val
p = labelOf z, pc || La_l. pe

34

Rules (Al)

plr) = bakl tagOf b # TLab prEx (6 excp) = & excp
ptx[t],pc |} (0 (prExb))al, (pc VY Prex _ = EType
p(z) = Lal{_ pH pe VB U baL”, pe’
L"Vpc' T LV (pcVX)
l_

z[t], pc | baL,(pcV)

p(z) = La¥X. pkt,(pcV)| bal”, pc’
L'V pc'" Z LV (pec VE)

p b z[t], pc | (0 EBrk)aL, (pc VX)

35

