
All Your IFCException Are Belong To Us

Cătălin Hrițcu
(joint work with Michael Greenberg, Ben Karel,

Benjamin Pierce, Greg Morrisett, and more)

or
Exception Handling in Breeze

2012-10-15 at Harvard

Information Flow Control

Static Dynamic

Sound

Coarse-grained

[Denning, 1977]
type systems
& program analysis
Jif, FlowCaml, ...

only explicit flows
Perl Taint mode, ...

also implicit flows
non-interference proofs

[Krohn & Tromer, 2009] [Sabelfeld & Russo, 2009]
[Austin & Flanagan, 2009] OSes: Asbestos, Flume, HiStar

 [Krohn & Kohler & ..., 2005]

[Fenton, 1974]

JavaScript

2

Taint Tracking

Fine-grained

Breeze

• sound fine-grained dynamic IFC

• label-based discretionary access control
– clearance

• functional core (λ) + state(!) + concurrency (π)
– from Pict/CML towards something more Erlang-ish

• dynamically typed (for now)
– directly reflects capabilities of SAFE HW

– dynamically-checked first-class contracts

 3

Exception handling

• we wanted all Breeze errors to be recoverable

– including IFC violations!

• however, existing work* assumes errors are fatal

– makes some things easier ... at the expense of others

4

+secrecy +integrity –availability

*There are 2 recent (partial) exceptions:
 [Stefan et al., 2012] and [Hedin & Sabelfeld, 2012]

Poison-pill attacks

5

let cin = chan low;
let cout = chan low;

fun process_max x y =
 if x <= y then y else x

fun rec max_server_loop () =
 let (x,y) = recv cin in
 let res = process_max x y in
 send cout res;
 max_server_loop ()

let attacker = send cin (3, 2@high)@low
let client = send cin (3, 5)@low; recv cout

x=3@low y=2@high

3@low <= 2@high = false@high
pc=high

res=3@high
max_server gets killed because of IFC violation!?

= 5

Wishful thinking

6

let cin = chan low;
let cout = chan low;

fun process_max (x,y) =
 if x <= y then y else x

fun rec max_server_loop' () =
 try
 send cout (process_max (recv cin))
 catch x => log x;
 max_server_loop' ()

But there is a problem ... in fact two

7

Sound
Fine-

Grained
Dynamic

IFC

But there is a problem ... in fact two

8

Sound
Fine-

Grained
Dynamic

IFC

 ... in fact two!

Labels are information channels

• well-known fact:
– labels that change are themselves information channels

• more than one label channel:
– labels on reference contents (strong updates)
– vs. labels on values and components of values

• get soundness by preventing secrets from leaking
either into or out of label channel

9

label
channel

no strong updates or
“no-sensitive-upgrade”
[Austin & Flanagan, ’09]

labels can be observed

Labels are information channels

• well-known fact:
– labels that change are themselves information channels

• more than one label channel:
– labels on reference contents (strong updates)
– vs. labels on values and components of values

• get soundness by preventing secrets from leaking
either into or out of label channel

10

label
channel

labels must be hidden
e.g. “permissive upgrades”

[Austin & Flanagan, ’10]
allow labels to depend on secrets

Labels are information channels

• well-known fact:
– labels that change are themselves information channels

• more than one label channel:
– labels on reference contents (strong updates)
– vs. labels on values and components of values

• get soundness by preventing secrets from leaking
either into or out of label channel

11

label
channel

labels must be hidden
e.g. “permissive upgrades”

[Austin & Flanagan, ’10]
allow labels to depend on secrets

Problem #1: IFC exceptions make all
label channels public

• we disallow strong updates

• still need to close label channel on values

• secret bit: h@high low <: high <: top

• let href = ref high () in
.......
try
 href := (if h then ()@high
 else ()@top);
 true
catch IFCException => false

12

encode h into label

if branch − assignment works
else branch − IFCException

Automatic pc restoring
just doesn’t work!

Solution to problem #1: brackets

• no longer automatically restore pc

– pc=low if h then ()@high else ()@top pc=high

• restore pc manually using brackets
– choose label before branching on secrets

– pc=low top[if h then ()@high else ()@top] pc=low

– brackets are not declassification!
– sound even when annotation is incorrect (more later)

• labels are now public
– bracket annotations can be dynamically computed

13
labels

IFCException

labelOf

Problem #2: exceptions destroy
control flow join points

• ending brackets have to be control flow join points
– try
 let _ = high[if h then throw Ex else ()] in
 false
catch Ex => true

• failed brackets cannot raise exceptions

– let lref = ref low false in
try
 let _ = high[if h then ()@high else ()@top] in
 lref := true
catch EBrk => ()

• brackets need to delay all exceptions!

14

Solution #2: Delayed exceptions

• delayed exceptions unavoidable
– still have a choice how to propagate them

• we study two alternatives for error handling:
1. mix active and delayed exceptions (λ[]

throw)

2. only delayed exceptions (λ[]
NaV)

• delayed exception = not-a-value (NaV)

• NaVs are first-class replacement for values

• NaVs propagated solely via data flow

• NaVs are labeled and pervasive

• more radical solution; implemented by Breeze

15

NaV-lax vs. NaV-strict behavior
• all non-parametric operations are NaV-strict

– NaV@low + 42@high => NaV@high

• for parametric operations we can chose:
 NaV-lax or NaV-strict
– (fun x => 42) NaV => 42 or => NaV

– Cons NaV Nil => Cons NaV Nil or => NaV

– (r := NaV,r=7) => ((),r=NaV) or => (NaV,r=7)

• NaV-strict behavior reveals errors earlier
– but it also introduces additional IFC constraints

• in Breeze the programmer can choose
– in formal development NaV-lax everywhere

16

What’s in a NaV?

• error message
– `EDivisionByZero (“can’t divide %1 by %2”, 42@high, 0@low)

– high clearance code can obtain:
“EDivisionByZero: can’t divide 42@high by 0@low”@high

– all code can obtain:
 “EDivisionByZero: can’t divide <hidden>@high by 0@low”@low

• stack trace

– pinpoints error origin (not the billion-dollar mistake)

• propagation trace

– how did the error make it here?

17

Formal results

• proved error-sensitive non-interference in Coq
for λ[], λ[]

NaV, and λ[]
throw (termination-insensitive)

– for λ[]
NaV even with all debugging aids

• conjecture: NaVs and catchable exceptions have
equivalent expressive power
– translations validated by quick-checking code

extracted from Coq (working on Coq proofs)

18

λ[]

λ[]
throw+δ λ[]

throw λ[]
NaV

Conclusion

• reliable error handling possible even for sound
fine-grained dynamic IFC systems

• we study two mechanisms (λ[]
NaV and λ[]

throw)
– all errors recoverable, even IFC violations

– necessary ingredients:
public labels (via brackets) + delayed exceptions

– quite radical design (not backwards compatible!)

• practical experience with NaVs
– issues are surmountable

– writing good error recovery code is still hard

19

THE END

20

INTEGRITY

21

Integrity

Sound taint tracking Endorsement

IFC-endorsement Signatures

default label = bottom (trusted)
(same as for secrecy)
you know “who” is untrusted
and trust everyone else

pc starts at integrity top
stronger guarantees
(by “being paranoid”)
coarser-grained

default label
= top (untrusted)

not tracking implicit/explicit flows
simple and natural model
not IFC!
finer-grained

22

A
(doesn’t trust B & C)

42@A

B C
(trusts A)

42@?

‖Q: Should A’s endorsement be preserved?

‖A1: No! (IFC-endorsement)

‖A2: Yes! (Signatures)

23

Signature labels

• Very much like digital signatures

– P’s signing authority – P’s signing key

– P’s name – P’s public verification key

• Lattice structure useful

– conjunctive labels [[P],[Q]] – multi-signatures

– disjunctive labels [[P,Q]] – group signatures

• Unforgeable

– New atoms start out “unsigned” (integrity top)

– Just passing around atoms preserves signatures

24

Data abstraction by signing

25

Bool module
- private principal B
- true
- false
- not

1@([[B]]; [[B]])

secrecy part:
only Bool can

access this data
(enforced by

clearance, not IFC)

integrity part:
only Bool can

create this
signature

Data abstraction by signing

26

Bool module
- private principal B
- true
- false
- not

1@([[B]]; [[B]])

0@([[B]]; [[B]])

0@([[B]]; [[A],[B]])

A

C

0@([[B],[C]]; [[A],[B]])

1@([[B],[C]]; [[B]])
(trusts B to access his data,
 but not to declassify it)

More flexible than dynamic sealing:
- no extra boxing;
- secrecy separate from integrity;
- multiple signers and “decrypters”

27

more restrictive

secrecy

IFC

discretionary
access control

(clearance)

public key
encryption

homomorphic
encryption

more restrictive

endorsement
integrity

IFC

signature
labels

digital
signatures

?????

Signature labels are no silver bullet

28

A
42⁰@A 45⁰@A 38⁰@A

B C 45⁰@A 42⁰@A 42⁰@A

Signature labels are no silver bullet

29

A
(42⁰, 10am, 2012-10-15)@A

B C (42⁰, 10am, 2012-10-15)@A

Signature labels are no silver bullet

30

‖Only sign “self-contained” (+immutable) messages

A
(42⁰, 10am, 2012-10-15)@A

B C (42⁰, 10am, 2012-10-15)@A

A
“Give B 42$”@A

B C

“Give B 42$”@A

“Give B 42$”@A

“Give B 42$”@A

Signature labels are no silver bullet

31

‖Only sign “self-contained” (+immutable) messages

A
(“Give B 42$”,n)@A

B C n

(“Give B 42$”,n)@A

n

A
(42⁰, 10am, 2012-10-15)@A

B C (42⁰, 10am, 2012-10-15)@A

Signature labels are no silver bullet

32

A
“Give B 42$”@A

B C

“Give B 42$”@A

“Give B 42$”@A

“Give B 42$”@A

‖Only sign “self-contained” (+immutable) messages

‖Signatures alone don’t guarantee freshness

‖- Linear/unique signatures? (could work in a closed system)

A
(42⁰, 10am, 2012-10-15)@A

B C (42⁰, 10am, 2012-10-15)@A

BACKUP SLIDES

33

Rules (λ[]
NaV)

34

Rules (λ[]
NaV)

35

prEx (δ excp) = δ excp
prEx _ = EType

