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Information Flow Control 

Static Dynamic 

Sound 

Coarse-grained 

[Denning, 1977] 
type systems 
& program analysis 
Jif, FlowCaml, ... 

only explicit flows 
Perl Taint mode, ... 

also implicit flows 
non-interference proofs 

[Krohn & Tromer, 2009] [Sabelfeld & Russo, 2009] 
[Austin & Flanagan, 2009] OSes: Asbestos, Flume, HiStar 

    [Krohn & Kohler & ..., 2005] 

[Fenton, 1974] 

JavaScript 
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Taint Tracking 

Fine-grained 



Breeze 

• sound fine-grained dynamic IFC 

• label-based discretionary access control 
– clearance 

• functional core (λ) + state(!) + concurrency (π) 
– from Pict/CML towards something more Erlang-ish 

• dynamically typed (for now) 
– directly reflects capabilities of SAFE HW 

– dynamically-checked first-class contracts  
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Exception handling 

• we wanted all Breeze errors to be recoverable 

– including IFC violations! 

• however, existing work* assumes errors are fatal 

– makes some things easier ... at the expense of others 
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+secrecy +integrity –availability 

*There are 2 recent (partial) exceptions: 
  [Stefan et al., 2012] and [Hedin & Sabelfeld, 2012] 



Poison-pill attacks 
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let cin = chan low; 
let cout = chan low; 
 
fun process_max x y = 
  if x <= y then y else x 
 
fun rec max_server_loop () = 
  let (x,y) = recv cin in 
  let res = process_max x y in 
  send cout res; 
  max_server_loop () 

let attacker = send cin (3, 2@high)@low 
let client = send cin (3, 5)@low; recv cout 

x=3@low  y=2@high 

3@low <= 2@high = false@high 
pc=high 

res=3@high 
max_server gets killed because of IFC violation!? 

= 5 



Wishful thinking 
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let cin = chan low; 
let cout = chan low; 
 
fun process_max (x,y) = 
  if x <= y then y else x 
 
fun rec max_server_loop' () = 
  try 
    send cout (process_max (recv cin)) 
  catch x => log x; 
  max_server_loop' () 



But there is a problem ... in fact two 
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But there is a problem ... in fact two 
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Dynamic 
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 ... in fact two! 



Labels are information channels 

• well-known fact: 
– labels that change are themselves information channels 

• more than one label channel: 
– labels on reference contents (strong updates) 
– vs. labels on values and components of values 

• get soundness by preventing secrets from leaking 
either into or out of label channel 
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label 
channel 

no strong updates or 
“no-sensitive-upgrade” 
[Austin & Flanagan, ’09] 

labels can be observed 
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label 
channel 

labels must be hidden 
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allow labels to depend on secrets 
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channel 
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allow labels to depend on secrets 



Problem #1: IFC exceptions make all 
label channels public 

• we disallow strong updates 

• still need to close label channel on values 

• secret bit: h@high            low <: high <: top 

• let href = ref high () in 
....... 
try 
  href := (if h then ()@high 
           else      ()@top ); 
  true 
catch IFCException => false 
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encode h into label 

if branch − assignment works 
else branch − IFCException 

Automatic pc restoring 
just doesn’t work! 



Solution to problem #1: brackets 

• no longer automatically restore pc 

– pc=low if h then ()@high else ()@top pc=high 

• restore pc manually using brackets 
– choose label before branching on secrets 

– pc=low top[if h then ()@high else ()@top] pc=low 

– brackets are not declassification! 
– sound even when annotation is incorrect (more later) 

• labels are now public 
– bracket annotations can be dynamically computed 

13 
labels 

IFCException 

labelOf 



Problem #2: exceptions destroy 
control flow join points 

• ending brackets have to be control flow join points 
– try 
  let _ = high[if h then throw Ex else ()] in 
  false 
catch Ex => true 

• failed brackets cannot raise exceptions 

– let lref = ref low false in 
try 
  let _ = high[if h then ()@high else ()@top] in 
  lref := true 
catch EBrk => () 

• brackets need to delay all exceptions! 
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Solution #2: Delayed exceptions 

• delayed exceptions unavoidable 
– still have a choice how to propagate them 

• we study two alternatives for error handling: 
1. mix active and delayed exceptions (λ[ ]

throw) 

2. only delayed exceptions (λ[ ]
NaV) 

• delayed exception = not-a-value (NaV) 

• NaVs are first-class replacement for values 

• NaVs propagated solely via data flow 

• NaVs are labeled and pervasive 

• more radical solution; implemented by Breeze 
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NaV-lax vs. NaV-strict behavior 
• all non-parametric operations are NaV-strict 

– NaV@low + 42@high => NaV@high 

• for parametric operations we can chose: 
                                    NaV-lax           or     NaV-strict 
– (fun x => 42) NaV => 42            or   => NaV 

– Cons NaV Nil      => Cons NaV Nil  or   => NaV 

– (r := NaV,r=7)    => ((),r=NaV)    or   => (NaV,r=7) 

• NaV-strict behavior reveals errors earlier 
– but it also introduces additional IFC constraints 

• in Breeze the programmer can choose 
– in formal development NaV-lax everywhere 
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What’s in a NaV? 

• error message 
– `EDivisionByZero (“can’t divide %1 by %2”, 42@high, 0@low) 

– high clearance code can obtain: 
“EDivisionByZero: can’t divide 42@high by 0@low”@high 

– all code can obtain: 
 “EDivisionByZero: can’t divide <hidden>@high by 0@low”@low 

• stack trace 

– pinpoints error origin (not the billion-dollar mistake) 

• propagation trace 

– how did the error make it here? 
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Formal results 

• proved error-sensitive non-interference in Coq  
for λ[ ], λ[ ]

NaV, and λ[ ]
throw (termination-insensitive) 

– for λ[ ]
NaV even with all debugging aids 

• conjecture: NaVs and catchable exceptions have 
equivalent expressive power 
– translations validated by quick-checking code 

extracted from Coq (working on Coq proofs) 
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λ[ ] 

λ[ ]
throw+δ λ[ ]

throw λ[ ]
NaV 



Conclusion 

• reliable error handling possible even for sound 
fine-grained dynamic IFC systems 

• we study two mechanisms (λ[ ]
NaV and λ[ ]

throw) 
– all errors recoverable, even IFC violations 

– necessary ingredients: 
public labels (via brackets) + delayed exceptions 

– quite radical design (not backwards compatible!) 

• practical experience with NaVs 
– issues are surmountable 

– writing good error recovery code is still hard 
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THE END 
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INTEGRITY 

21 



Integrity 

Sound taint tracking Endorsement 

IFC-endorsement Signatures 

default label = bottom (trusted) 
(same as for secrecy) 
you know “who” is untrusted 
and trust everyone else 

pc starts at integrity top 
stronger guarantees 
(by “being paranoid”) 
coarser-grained 

default label 
= top (untrusted) 

not tracking implicit/explicit flows 
simple and natural model 
not IFC! 
finer-grained 
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A 
(doesn’t trust B & C) 

42@A 

B C 
(trusts A) 

42@? 

‖Q: Should A’s endorsement be preserved? 

‖A1: No! (IFC-endorsement) 

‖A2: Yes! (Signatures) 
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Signature labels 

• Very much like digital signatures 

– P’s signing authority  – P’s signing key 

– P’s name    – P’s public verification key 

• Lattice structure useful 

– conjunctive labels [[P],[Q]]  – multi-signatures 

– disjunctive labels [[P,Q]]  – group signatures 

• Unforgeable 

– New atoms start out “unsigned” (integrity top) 

– Just passing around atoms preserves signatures 
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Data abstraction by signing 

25 

Bool module 
- private principal B 
- true 
- false 
- not 

1@([[B]]; [[B]]) 

secrecy part: 
only Bool can 

access this data 
(enforced by 

clearance, not IFC) 

integrity part: 
only Bool can 

create this 
signature 



Data abstraction by signing 
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Bool module 
- private principal B 
- true 
- false 
- not 

1@([[B]]; [[B]]) 

0@([[B]]; [[B]]) 

0@([[B]]; [[A],[B]]) 

A 

C 

0@([[B],[C]]; [[A],[B]]) 

1@([[B],[C]]; [[B]]) 
(trusts B to access his data, 
  but not to declassify it) 

More flexible than dynamic sealing: 
- no extra boxing; 
- secrecy separate from integrity; 
- multiple signers and “decrypters” 
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more restrictive 

secrecy 

IFC 

discretionary 
access control 

(clearance) 

public key 
encryption 

homomorphic 
encryption 

more restrictive 

endorsement 
integrity 

IFC 

signature 
labels 

digital 
signatures 

????? 



Signature labels are no silver bullet 
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A 
42⁰@A   45⁰@A  38⁰@A 

B C 45⁰@A  42⁰@A  42⁰@A 



Signature labels are no silver bullet 
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A 
(42⁰, 10am, 2012-10-15)@A 

B C (42⁰, 10am, 2012-10-15)@A 



Signature labels are no silver bullet 
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‖Only sign “self-contained” (+immutable) messages 

A 
(42⁰, 10am, 2012-10-15)@A 

B C (42⁰, 10am, 2012-10-15)@A 

A 
“Give B 42$”@A 

B C 

“Give B 42$”@A 

“Give B 42$”@A 

“Give B 42$”@A 



Signature labels are no silver bullet 
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‖Only sign “self-contained” (+immutable) messages 

A 
(“Give B 42$”,n)@A 

B C n 

(“Give B 42$”,n)@A 

n 

A 
(42⁰, 10am, 2012-10-15)@A 

B C (42⁰, 10am, 2012-10-15)@A 



Signature labels are no silver bullet 
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A 
“Give B 42$”@A 

B C 

“Give B 42$”@A 

“Give B 42$”@A 

“Give B 42$”@A 

‖Only sign “self-contained” (+immutable) messages 

‖Signatures alone don’t guarantee freshness 

‖- Linear/unique signatures? (could work in a closed system) 

A 
(42⁰, 10am, 2012-10-15)@A 

B C (42⁰, 10am, 2012-10-15)@A 



BACKUP SLIDES 
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Rules (λ[ ]
NaV) 
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Rules (λ[ ]
NaV) 
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prEx (δ excp) = δ excp 
prEx  _           = EType 


