
All Your IFCException Are Belong To Us

Cătălin Hrițcu, Michael Greenberg, Ben Karel,
Benjamin Pierce, Greg Morrisett

2

Robust exception handling mechanism
for sound fine-grained dynamic

information flow control

problem: exceptions can leak information

solution: public labels + delayed exceptions

Information flow control

3

Protect secrecy and integrity

by assigning security levels (labels) to data

and preventing information leaks

Information flow control

4

purely
static

purely
dynamic

types (Jif) SIF

hybrid

oracles

Protect secrecy and integrity

by assigning security levels (labels) to data

and preventing information leaks

Information flow control

5

purely
static

purely
dynamic

types (Jif) SIF

hybrid

oracles

Protect secrecy and integrity

by assigning security levels (labels) to data

and preventing information leaks

this work

Information flow control

6

purely
static

purely
dynamic

types (Jif) SIF

hybrid

oracles

Why dynamic?
1. security policy is often dynamic

2. static analysis not always easily applicable, e.g.

this work

Information flow control

7

purely
static

purely
dynamic

types (Jif) SIF

hybrid

oracles

Why dynamic?
1. security policy is often dynamic

2. static analysis not always easily applicable, e.g.

• high-level dynamic languages (JavaScript)

• low-level machine code

this work

Information flow control

8

purely
static

purely
dynamic

types (Jif) SIF

hybrid

oracles

Why dynamic?
1. security policy is often dynamic

2. static analysis not always easily applicable, e.g.

• high-level dynamic languages (JavaScript)

• this talk: Breeze, new language (no legacy constraints)

• low-level machine code

• CRASH/SAFE project: OS+HW-supported IFC

this work

9

coarse grained fine grained

more precise nice high-level policies

purely
static

purely
dynamic

types (Jif) SIF

hybrid

oracles

Information flow control

10

no explicit flows

TINI
(noninterference) timing

taint tracking

TSNI power

stronger attacker “sound”

coarse grained fine grained

more precise nice high-level policies

purely
static

purely
dynamic

types (Jif) SIF

hybrid

oracles

Information flow control

Is this even possible?

11

no explicit flows

TINI
(noninterference) timing

taint tracking

TSNI power

stronger attacker “sound”

coarse grained fine grained

more precise nice high-level policies

purely
static

purely
dynamic

types (Jif) SIF

hybrid

oracles

Yes, this is possible!

• TINI can be obtained purely dynamically!
[Sabelfeld & Russo, 2009], [Austin & Flanagan, 2009]

• preventing implicit flows:

– no low assignments in high contexts (branching on secrets)

– l:=false; if h {l:=true}; ... is terminated

12

Yes, this is possible!

• TINI can be obtained purely dynamically!
[Sabelfeld & Russo, 2009], [Austin & Flanagan, 2009]

• preventing implicit flows:

– no low assignments in high contexts (branching on secrets)

– l:=false; if h {l:=true}; ... is terminated

– l:=false; if h {l:=true}; l := false has TINI

• TINI not a safety property [Fred Schneider, TISSEC ’00]

– so we enforce a conservative approximation

– incompleteness didn’t stop static enforcement either

13

Yes, this is possible!

• TINI can be obtained purely dynamically!
[Sabelfeld & Russo, 2009], [Austin & Flanagan, 2009]

• preventing implicit flows:

– no low assignments in high contexts (branching on secrets)

– l:=false; if h {l:=true}; ... is terminated

14

• “stopping the world” not an option

– can’t punt on availability / reliability
to get secrecy / integrity

Contributions

• showing that robust error handling is possible

– recovery from all errors, including IFC violations

– without sacrificing soundness (TINI) or precision

• identifying the 2 necessary ingredients
 = solutions to 2 general problems:

1. IFC exceptions can leak via labels → public labels

2. all exceptions can leak via control → delayed exceptions

• exploring the entire design space

• experimentally evaluating most radical design

15

Contributions

• showing that robust error handling is possible

– recovery from all errors, including IFC violations

– without sacrificing soundness (TINI) or precision

• identifying the 2 necessary ingredients
 = solutions to 2 general problems:

1. IFC exceptions can leak via labels → public labels

2. all exceptions can leak via control → delayed exceptions

• exploring the entire design space

• experimentally evaluating most radical design

16

rest of this talk focused on this part

Problem #1:

IFC exceptions can leak via labels

label
channel

17

• labels are themselves information channels

• get soundness by preventing secrets from
leaking either into or out of label channel

Problem #1:

IFC exceptions can leak via labels

label
channel

labels must be hidden allow labels to
depend on secrets

18

• labels are themselves information channels

• get soundness by preventing secrets from
leaking either into or out of label channel

• labels are themselves information channels

• get soundness by preventing secrets from
leaking either into or out of label channel

label
channel

labels must be hidden allow labels to
depend on secrets

IFC errors must be hidden!
(and we don’t want that)

19

Problem #1:

IFC exceptions can leak via labels

• labels are themselves information channels

• get soundness by preventing secrets from
leaking either into or out of label channel

label
channel

enforce that labels don’t
depend on secrets

labels and IFC errors
can be observed
(“public labels”)

20

Problem #1:

IFC exceptions can leak via labels

• labels are themselves information channels

• get soundness by preventing secrets from
leaking either into or out of label channel

label
channel

enforce that labels don’t
depend on secrets

labels and IFC errors
can be observed
(“public labels”)

if s then ()@secret else ()@top-secret

21

Problem #1:

IFC exceptions can leak via labels

• labels are themselves information channels

• get soundness by preventing secrets from
leaking either into or out of label channel

top-secret[if s then ()@secret else ()@top-secret]

label
channel

enforce that labels don’t
depend on secrets

labels and IFC errors
can be observed
(“public labels”)

Solution #1: sound public labels via brackets

22

Problem #1:

IFC exceptions can leak via labels

[Deian Stefan et al., IFCP 2011]

Problem #2:

Exceptions can leak via control
• ending brackets need to be control flow join points,

otherwise...
– try

 let _ = secret[if h then throw Ex] in
 false
catch Ex => true

23

Problem #2:

Exceptions can leak via control
• ending brackets need to be control flow join points,

otherwise...
– try

 let _ = secret[if h then throw Ex] in
 false
catch Ex => true

• brackets need to delay all exceptions!
– secret[if true@secret then throw Ex] => “(Error Ex)@secret”

– secret [if false@secret then throw Ex] => “(Success ())@secret”

24

Problem #2:

Exceptions can leak via control
• ending brackets need to be control flow join points,

otherwise...
– try

 let _ = secret[if h then throw Ex] in
 false
catch Ex => true

• brackets need to delay all exceptions!
– secret[if true@secret then throw Ex] => “(Error Ex)@secret”

– secret [if false@secret then throw Ex] => “(Success ())@secret”

• similarly for failed brackets
– secret[42@top-secret] => “(Error EBracket)@secret”

25

Solution #2: Delayed exceptions

• delayed exceptions unavoidable
– still have a choice how to propagate them

• we studied two main alternatives:
1. mix active and delayed exceptions (λ[]

throw)

26

Solution #2: Delayed exceptions

• delayed exceptions unavoidable

– still have a choice how to propagate them

• we studied two main alternatives:

1. mix active and delayed exceptions (λ[]
throw)

2. only delayed exceptions (λ[]
NaV)

• delayed exception = not-a-value (NaV)

• NaVs are first-class replacement for values

• NaVs propagated solely via data flow

• NaVs are labeled and pervasive

• simpler and more radical solution; implemented in Breeze

27

What’s in a NaV? Debugging aids!

• error message
– `EDivisionByZero (“can’t divide %1 by 0”, 42)

• stack trace

– pinpoints error origin

• very different than for NullPointerException
(the billion-dollar mistake)

• propagation trace

– how did the error make it here?

28

Formal results

• proved TINI in Coq for λ[], λ[]
NaV, and λ[]

throw

– for λ[]
NaV even with all debugging aids; error-sensitive

• some evidence that NaVs and catchable exceptions

have equivalent expressive power (in theory)

– translations validated by QuickChecking extracted code

29

λ[]

λ[]
throw λ[]

NaV

Formal results

• proved TINI in Coq for λ[], λ[]
NaV, and λ[]

throw

– for λ[]
NaV even with all debugging aids; error-sensitive

• some evidence that NaVs and catchable exceptions

have equivalent expressive power (in theory)

– translations validated by QuickChecking extracted code

30

λ[]

λ[]
throw λ[]

NaV

New work:
Testing Noninterference, Quickly

Conclusion

• reliable error handling possible even for
sound fine-grained dynamic IFC systems

• two mechanisms (λ[]
NaV and λ[]

throw) and variants

– all errors recoverable, even IFC violations

– necessary ingredients: sound public labels (brackets)
 + delayed exceptions

– quite radical design (not backwards compatible!)

– delayed exceptions applicable to static IFC

31

