
Formally Verified Privacy-Preserving
Distributed Applications

INRIA Paris-Rocquencourt – 30 May 2013

application for CR2 in Prosecco team

1

Cătălin Hrițcu

2

Today’s computer systems are insecure

Formal methods will play a crucial role in
building significantly more secure systems

Formal methods, broadly

• language design

• rigorous semantics

• specification

• verification

• type systems

• proof assistants

• runtime monitoring

• code generation

• code transformation

• automatic testing

• ...

3

Formal methods, broadly

• language design

• rigorous semantics

• specification

• verification

• type systems

• proof assistants

• runtime monitoring

• code generation

• code transformation

• automatic testing

• ...

4

clearly specifying security goals

+ techniques for achieving these goals
(e.g. static analysis or dynamic enforcement)

+ showing that goals were achieved

Formal methods, broadly

• language design

• rigorous semantics

• specification

• verification

• type systems

• proof assistants

• runtime monitoring

• code generation

• code transformation

• automatic testing

• ...

5

all these tools are potentially useful

choose the set of tools that
best solves the problem at hand

(cost vs benefit analysis)

clearly specifying security goals

+ techniques for achieving these goals
(e.g. static analysis or dynamic enforcement)

+ showing that goals were achieved

1. PhD @ Saarland University: Security protocols

– Expressive type systems – the first one for zero-knowledge proofs
[CCS 2008, CSF 2009, TOSCA 2011, PhD thesis]

– Defining security of e-voting protocols; ProVerif (Prosecco) [CSF 2008]

– Expi2Java: code generator for realistic protocols (TLS) [NFM 2012]

6

Contributions

1. PhD @ Saarland University: Security protocols

– Expressive type systems – the first one for zero-knowledge proofs
[CCS 2008, CSF 2009, TOSCA 2011, PhD thesis]

– Defining security of e-voting protocols; ProVerif (Prosecco) [CSF 2008]

– Expi2Java: code generator for realistic protocols (TLS) [NFM 2012]

2. Internship & later collaboration @ Microsoft Research Cambridge:

– Data processing (Microsoft Excel 2013 “Data Explorer” formula language);
refinement types; semantic subtyping using SMT solver;
verification condition generator [ICFP 2010, CPP 2011, JFP 2012]

7

Contributions

1. PhD @ Saarland University: Security protocols

– Expressive type systems – the first one for zero-knowledge proofs
[CCS 2008, CSF 2009, TOSCA 2011, PhD thesis]

– Defining security of e-voting protocols; ProVerif (Prosecco) [CSF 2008]

– Expi2Java: code generator for realistic protocols (TLS) [NFM 2012]

2. Internship & later collaboration @ Microsoft Research Cambridge:

– Data processing (Microsoft Excel 2013 “Data Explorer” formula language);
refinement types; semantic subtyping using SMT solver;
verification condition generator [ICFP 2010, CPP 2011, JFP 2012]

3. PostDoc @ UPenn: CRASH/SAFE project (academia-industry collaboration;
clean-slate co-design of secure architecture: hardware+system+language)

– Robust exception handling for dynamic information flow control
[IEEE S&P (Oakland) 2013]

– Ongoing work: testing and formally verifying information flow machine
[ICFP 2013 submission on random testing, working draft on Coq proofs]

8

Contributions

1. PhD @ Saarland University: Security protocols

– Expressive type systems – the first one for zero-knowledge proofs
[CCS 2008, CSF 2009, TOSCA 2011, PhD thesis]

– Defining security of e-voting protocols; ProVerif (Prosecco) [CSF 2008]

– Expi2Java: code generator for realistic protocols (TLS) [NFM 2012]

2. Internship & later collaboration @ Microsoft Research Cambridge:

– Data processing (Microsoft Excel 2013 “Data Explorer” formula language);
refinement types; semantic subtyping using SMT solver;
verification condition generator [ICFP 2010, CPP 2011, JFP 2012]

3. PostDoc @ UPenn: CRASH/SAFE project (academia-industry collaboration;
clean-slate co-design of secure architecture: hardware+system+language)

– Robust exception handling for dynamic information flow control
[IEEE S&P (Oakland) 2013]

– Ongoing work: testing and formally verifying information flow machine
[ICFP 2013 submission on random testing, working draft on Coq proofs]

9

Contributions
- Coq formalization

1. PhD @ Saarland University: Security protocols

– Expressive type systems – the first one for zero-knowledge proofs
[CCS 2008, CSF 2009, TOSCA 2011, PhD thesis]

– Defining security of e-voting protocols; ProVerif (Prosecco) [CSF 2008]

– Expi2Java: code generator for realistic protocols (TLS) [NFM 2012]

2. Internship & later collaboration @ Microsoft Research Cambridge:

– Data processing (Microsoft Excel 2013 “Data Explorer” formula language);
refinement types; semantic subtyping using SMT solver;
verification condition generator [ICFP 2010, CPP 2011, JFP 2012]

3. PostDoc @ UPenn: CRASH/SAFE project (academia-industry collaboration;
clean-slate co-design of secure architecture: hardware+system+language)

– Robust exception handling for dynamic information flow control
[IEEE S&P (Oakland) 2013]

– Ongoing work: testing and formally verifying information flow machine
[ICFP 2013 submission on random testing, working draft on Coq proofs]

10

Contributions
- Coq formalization

- tool / software

1. PhD @ Saarland University: Security protocols

– Expressive type systems – the first one for zero-knowledge proofs
[CCS 2008, CSF 2009, TOSCA 2011, PhD thesis]

– Defining security of e-voting protocols; ProVerif (Prosecco) [CSF 2008]

– Expi2Java: code generator for realistic protocols (TLS) [NFM 2012]

2. Internship & later collaboration @ Microsoft Research Cambridge:

– Data processing (Microsoft Excel 2013 “Data Explorer” formula language);
refinement types; semantic subtyping using SMT solver;
verification condition generator [ICFP 2010, CPP 2011, JFP 2012]

3. PostDoc @ UPenn: CRASH/SAFE project (academia-industry collaboration;
clean-slate co-design of secure architecture: hardware+system+language)

– Robust exception handling for dynamic information flow control
[IEEE S&P (Oakland) 2013]

– Ongoing work: testing and formally verifying information flow machine
[ICFP 2013 submission on random testing, working draft on Coq proofs]

11

Contributions
- Coq formalization

- tool / software

later

Privacy in the age of “cloud computing”

• lack of online privacy is one of the biggest
problems of our time
– technology is causing the problem

– solution not simple and not solely technologic
• also social, legal, economic, behavioral, philosophical

12

Privacy in the age of “cloud computing”

• lack of online privacy is one of the biggest
problems of our time
– technology is causing the problem

– solution not simple and not solely technologic
• also social, legal, economic, behavioral, philosophical

• “cloud computing” is making this worse
– in order to obtain service, users have to entrust

private information to 3rd party service providers that
gather the data of millions of users

13

Privacy in the age of “cloud computing”

• lack of online privacy is one of the biggest
problems of our time
– technology is causing the problem

– solution not simple and not solely technologic
• also social, legal, economic, behavioral, philosophical

• “cloud computing” is making this worse
– in order to obtain service, users have to entrust

private information to 3rd party service providers that
gather the data of millions of users

– what could possibly go wrong?

14

15

16

17

18

zero-knowledge proofs could help users
reveal less information to 3rd parties

anonymous authentication

security despite

compromise

electronic voting

anonymous credentials

privacy-preserving
digital identity management

e-cash

electronic auctions

anonymous trust
and reputation decentralized

social networks
risk assurance
for hedge funds

anonymous electronic ticketing
for public transportation biometric authentication

privacy-friendly
smart metering

Applications of zero-knowledge proofs
have skyrocketed in recent years

+ ➔

digital credentials

(authorization)

protecting

personal information
privacy-preserving

digital identity management

Achieving privacy with zero-knowledge

Alice proves to online store that she is over 18 , without revealing her age

20

+ ➔

digital credentials

(authorization)

protecting

personal information
privacy-preserving

digital identity management

Achieving privacy with zero-knowledge

Alice proves to online store that she is over 18 , without revealing her age

remote electronic voting

➔ +

verifiability

(software independence)

vote privacy

coercion resistance

[CSF 2008]
21

+ ➔

digital credentials

(authorization)

protecting

personal information
privacy-preserving

digital identity management

Achieving privacy with zero-knowledge

Alice proves to online store that she is over 18 , without revealing her age

remote electronic voting

➔ +

verifiability

(software independence)

vote privacy

coercion resistance

[CSF 2008]
22

sign((A,1982),ki)

Zero-knowledge proofs, by example

Alice proves to online store that she is over 18

23

sign((A,1982),ki)

Zero-knowledge proofs, by example

Alice proves to online store that she is over 18

sign((A,1982),ki)

24

sign((A,1982),ki)

Zero-knowledge proofs, by example

Alice proves to online store that she is over 18

sign((A,1982),ki)

, without revealing her age

25

zkSage(1982, sign((A,1982),ki); A, 2013, vk(ki))

sign((A,1982),ki)

Zero-knowledge proofs, by example

Alice proves to online store that she is over 18 , without revealing her age

Prover

26

zkSage(1982, sign((A,1982),ki); A, 2013, vk(ki))

Sage = check(xcert,yvki)⇓(yname,xbirth) ∧ yyear−xbirth≥18

sign((A,1982),ki)

Zero-knowledge proofs, by example

Alice proves to online store that she is over 18 , without revealing her age

Prover

27

zkSage(1982, sign((A,1982),ki); A, 2013, vk(ki))

check(sign((A,1982),ki), vk(ki))⇓(A,1982) ∧ 2013−1982≥18

Sage = check(xcert,yvki)⇓(yname,xbirth) ∧ yyear−xbirth≥18

sign((A,1982),ki) A 2013 vk(ki)

Zero-knowledge proofs, by example

Alice proves to online store that she is over 18 , without revealing her age

verifier checks if proof is valid or not;
finds out public arguments (ys)

Prover
Verifier

28

✓

zkSage(1982, sign((A,1982),ki); A, 2013, vk(ki))

check(sign((A,1982),ki), vk(ki))⇓(A,1982) ∧ 2013−1982≥18

zero-knowledge:
no information is revealed about witnesses (xs)
beyond the validity of the statement

Sage = check(xcert,yvki)⇓(yname,xbirth) ∧ yyear−xbirth≥18

sign((A,1982),ki) A 2013 vk(ki)

Zero-knowledge proofs, by example

Alice proves to online store that she is over 18 , without revealing her age

verifier checks if proof is valid or not;
finds out public arguments (ys)

Prover
Verifier

29

✓

zkSage(1982, sign((A,1982),ki); A, 2013, vk(ki))

check(sign((A,1982),ki), vk(ki))⇓(A,1982) ∧ 2013−1982≥18

zero-knowledge:
no information is revealed about witnesses (xs)
beyond the validity of the statement

Sage = check(xcert,yvki)⇓(yname,xbirth) ∧ yyear−xbirth≥18

sign((A,1982),ki) A 2013 vk(ki)

Zero-knowledge proofs, by example

Alice proves to online store that she is over 18 , without revealing her age

verifier checks if proof is valid or not;
finds out public arguments (ys)

Prover
Verifier

30

✓

Challenges of type-checking zero-knowledge

• Zk-proofs don’t depend on crypto keys
– previous type systems rely on assigning types to keys
– solution: assign types to each zk-statement

• refinement type “TSage={yname:Un,...|∃xbirth. Send(yname,xbirth)}”
• type-checker enforces this strong type on honest provers

 31

[CCS 2008, CSF 2009, TOSCA 2011, PhD thesis]

Challenges of type-checking zero-knowledge

• Zk-proofs don’t depend on crypto keys
– previous type systems rely on assigning types to keys
– solution: assign types to each zk-statement

• refinement type “TSage={yname:Un,...|∃xbirth. Send(yname,xbirth)}”
• type-checker enforces this strong type on honest provers

• Attacker can also produce valid zk-proofs
– successfully verifying zk-proof

• guarantees “∃xbirth,xcert. check(xcert,yvki)⇓(yname,xbirth)∧yyear−xbirth≥18”
• guarantees TSage only if type-checker can infer that the verified

zk-proof was produced by honest prover (i.e. type-checked)

– solution: statement-based inference + intersection types (∧)
 + reasoning about type disjointness (Un∧Private=∅)

 32

Un-typed
zkSage

[CCS 2008, CSF 2009, TOSCA 2011, PhD thesis]

Sage

Challenges of type-checking zero-knowledge

• Zk-proofs don’t depend on crypto keys
– previous type systems rely on assigning types to keys
– solution: assign types to each zk-statement

• refinement type “TSage={yname:Un,...|∃xbirth. Send(yname,xbirth)}”
• type-checker enforces this strong type on honest provers

• Attacker can also produce valid zk-proofs
– successfully verifying zk-proof

• guarantees “∃xbirth,xcert. check(xcert,yvki)⇓(yname,xbirth)∧yyear−xbirth≥18”
• guarantees TSage only if type-checker can infer that the verified

zk-proof was produced by honest prover (i.e. type-checked)

– solution: statement-based inference + intersection types (∧)
 + reasoning about type disjointness (Un∧Private=∅)

• Participants can be dynamically compromised
– inferred types conditioned on participants’ honesty
– solution: union types {Private|¬Bad(A)} ∨ {Un|Bad(A)}

 + logical subtyping
– automatically strengthened protocols [CSF 2009]
 33

Un-typed
zkSage

Alice Malice

[CCS 2008, CSF 2009, TOSCA 2011, PhD thesis]

Sage

Type-checking zero-knowledge

• first type systems to analyze zk-protocols

[CCS 2008, TOSCA 2011, PhD thesis]

• same ideas for protocol models (π)

& simple implementations (λ)

• formalized, implemented, experimented

– type-checkers used independently in other projects

34

Why isn’t this enough?

• many real zk-applications are beyond current

state of the art in automatic protocol analysis;

my previous type systems:

– largest example:

simplified DAA ~250 lines of λ-calculus (RCF)

– only authorization (robust safety), not “privacy”

– only non-interactive zero-knowledge

– crypto assumed perfect (symbolic model)

35

Goals of this proposal

• remove these limitations

• make the design, analysis, and correct

implementation of zk-applications practical

• verify implementations of real zk-applications

• produce better generally-useful tools

36

Goals of this proposal

• remove these limitations

• make the design, analysis, and correct

implementation of zk-applications practical

• verify implementations of real zk-applications

• produce better generally-useful tools

37

Verifying real zk-applications

• privacy-preserving digital identity management (e.g.
idemix, UProve), e-voting (e.g. Civitas/CaveatCoercitor),
and e-cash (e.g. ZeroCoin)

38

Verifying real zk-applications

• privacy-preserving digital identity management (e.g.
idemix, UProve), e-voting (e.g. Civitas/CaveatCoercitor),
and e-cash (e.g. ZeroCoin)

• formalize end-to-end security properties (i.e. “privacy”)

– relational, quantitative, probabilistic

39

Verifying real zk-applications

• privacy-preserving digital identity management (e.g.
idemix, UProve), e-voting (e.g. Civitas/CaveatCoercitor),
and e-cash (e.g. ZeroCoin)

• formalize end-to-end security properties (i.e. “privacy”)

– relational, quantitative, probabilistic

• devise sound automated verification tools that

– work for real code (not abstract models)

– provide strong guarantees (computational crypto)

– support non-interactive + interactive zero-knowledge

40

Verifying real zk-applications

• privacy-preserving digital identity management (e.g.
idemix, UProve), e-voting (e.g. Civitas/CaveatCoercitor),
and e-cash (e.g. ZeroCoin)

• formalize end-to-end security properties (i.e. “privacy”)

– relational, quantitative, probabilistic

• devise sound automated verification tools that

– work for real code (not abstract models)

– provide strong guarantees (computational crypto)

– support non-interactive + interactive zero-knowledge

41

2 ways to approach this; capitalize previous experience (mine + Prosecco)

Short term objectives (1/2)

1. reimplement applications in OCaml/F#
and use new, very expressive type-checker

– combine the strengths of existing type systems

• F5: non-interactive zero-knowledge [TOSCA 2011, PhD thesis]

• F7: computational guarantees (Prosecco)

• F*: relational properties (Prosecco)

– challenge: devise this super expressive type system

– challenge: interactive zero-knowledge proofs

• fixed interaction pattern (e.g. to Σ-protocols)

42

Short term objectives (2/2)

2. generate code from verified abstract models

– extend CryptoVerif (Prosecco) to zero-knowledge proofs

• add indistinguishability axioms (e.g. zero-knowledge property)

• challenges: existentials (Skolemize?), guarded rewriting

– code generator targeting mainstream language like C

• experience: Expi2Java [NFM 2012], CryptoVerif2OCaml (Prosecco)

• zero-knowledge implementation is statement dependent

– use existing cryptographic compiler – e.g. ZKCrypt (IMDEA)

• challenge: security of translation wrt. formal semantics of C

43

More speculative ideas

• tools aiding design of privacy-preserving applications

– automated synthesis from high-level specifications

– privacy-enhancing transformations

• studying other general privacy-enhancing techniques

– secure multi-party computation

– (fully) homomorphic encryption

44

Cătălin Hrițcu

• Publications:

– conferences (8): IEEE S&P, ACM CCS, 2 x IEEE CSF, ACM ICFP, ...

– journals (2); textbook (1); workshops (6); under review (2)

• Software: >67.6k lines of code

– 13.2k OCaml/F#, 9.1k Haskell, 16k Java,
 20.1k Breeze, 5.3k π-calculus, 3.9k λ-calculus (RCF)

• Machine-checked formalizations: >57k lines of Coq

• MSc + PhD Fellowships from Microsoft Research & MPI (IMPRS)

• Günter Hotz Medal for “outstanding CS graduates” @ Saarland Univ.

• Best course award:“Practical Aspects of Security” (TA+guest lecturer)

• Advised 3 MSc + 2 BSc theses; 4 of them on my own

45

best conferences in security

resulted in 3 conference publications

