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Today’s computer systems are insecure

Formal methods will play a crucial role in
building significantly more secure systems
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automatic testing

clearly specifying security goals

+ techniques for achieving these goals
(e.g. static analysis or dynamic enforcement)

+ showing that goals were achieved

all these tools are potentially useful

choose the set of tools that

best solves the problem at hand
(cost vs benefit analysis)
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* lack of online privacy is one of the biggest
problems of our time
— technology is causing the problem
— solution not simple and not solely technologic
* also social, legal, economic, behavioral, philosophical
* “cloud computing” is making this worse

— in order to obtain service, users have to entrust
private information to 3" party service providers that
gather the data of millions of users

— what could possibly go wrong?



Sony suffers second data breach with

theft of 25m more user details

Hacker attack on security of Sony Online Entertainment network
preceded PlayStation Network breach but was only discovered on
Monday, electronics company says

Sony has suffered a second enormous data breach with nearly 25m customers' details
from its SOE network stolen. Photograph: Nick Rowe/Getty Images
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Sony has suffered a secon «hackers». De nombreux documents liés au G20 ont été piratés.
from its SOE network stolen. Photograph: Nick Rowe/Getty Images 16
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Tweeter

December 11, 2012 — CSO — The hacktivist group Team Ghostshell took credit Monday for the release of 1
million accounts and records stolen from government and private organizations covering aerospace, law
enforcement, the military, the defense industry and banking.
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zero-knowledge proofs could help users
reveal less information to 3 parties

NEWS
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The hacktivist group Team Ghostshell cites ProjectWhiteFox in release of
information on 1.6 million accounts, including from DHS and FBI
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December 11, 2012 — CSO — The hacktivist group Team Ghostshell took credit Monday for the release of 1.6 eux documents liés au G20 ont été pirates.
million accounts and records stolen from government and private organizations covering aerospace, law
enforcement, the military, the defense industry and banking.
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Applications of zero-knowledge proofs
have skyrocketed in recent years

anonymous authentication

. : electronic votin
privacy-preserving 9

digital identity management e-cash

| | security despite  Privacy-friendly
electronic auctions compromise  Smart metering

anonymous trust

and reputation decentralized risk assurance
social networks for hedge funds

anonymous credentials

_ _ o anonymous electronic ticketing
biometric authentication for public transportation



Achieving privacy with zero-knowledge

Alice proves to online store that she is over 18, without revealing her age

TR
0

privacy kgt >

protecting
personal information

digital credentials
(authorization)

privacy-preserving
digital identity management
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Privacy
prot_ecting _ digital credentials privacy-preserving
personal information (authorization) digital identity management
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Zero-knowledge proofs, by example

Alice proves to online store that she is over 18, without revealing her age

Prover

zks,4(1982, sign((A,1982),ki); A, 2013, vk(ki))

> amazonifr

Sig”((Ar1982),ki)t
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Zero-knowledge proofs, by example

Alice proves to online store that she is over 18, without revealing her age
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Zero-knowledge proofs, by example

Alice proves to online store that she is over 18, without revealing her age
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Challenges of type-checking zero-knowledge
[CCS 2008, CSF 2009, TOSCA 2011, PhD thesis]

e Zk-proofs don’t depend on crypto keys
— previous type systems rely on assigning types to keys

— solution: assign types to each zk-statement
* refinement type “Ts, . ={yname:Un,... | Ixvirth. Send(yname,Xbirth)}”
* type-checker enforces this strong type on honest provers
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Challenges of type-checking zero-knowledge
[CCS 2008, CSF 2009, TOSCA 2011, PhD thesis]

e Zk-proofs don’t depend on crypto keys
— previous type systems rely on assigning types to keys

— solution: assign types to each zk-statement
* refinement type “Ts, . ={yname:Un,... | Ixvirth. Send(yname,Xbirth)}”
* type-checker enforces this strong type on honest provers

* Attacker can also produce valid zk-proofs
— successfully verifying zk-proof Sage

f{
* guarantees “Ixvirth,Xcert. check(Xcert,Yvki)U (Yname,Xbirth) AYyear—Xbirth=>18"

* guarantees Ts,.. only if type-checker can infer that the verified
zk-proof was produced by honest prover (i.e. type-checked)

— solution: statement-based inference + intersection types (/)
+ reasoning about type disjointness (UnAPrivate=0)
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* Attacker can also produce valid zk-proofs =
. 69
— successfully verifying zk-proof Sage st
« guarantees “Ixbirth,Xcert. check(Xcert,yvii)U(Yname,Xbirth) AYyear—Xbirth>18” age

Un-typed
* guarantees Ts,.. only if type-checker can infer that the verified P

zk-proof was produced by honest prover (i.e. type-checked)

— solution: statement-based inference + intersection types (/)
+ reasoning about type disjointness (UnAPrivate=0)

* Participants can be dynamically compromised

— inferred types conditioned on participants’ honesty QQ
— solution: union types {Private|-Bad(A)} V {Un|Bad(A)} “

+ logical subtyping Alice Malice

— automatically strengthened protocols [CSF 2009]
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Type-checking zero-knowledge

* first type systems to analyze zk-protocols
[CCS 2008, TOSCA 2011, PhD thesis]

* same ideas for protocol models (m)
& simple implementations (A)

. . . e Ve U L
* formalized, implemented, experimented DI X

— type-checkers used independently in other projects



Why isn’t this enough?

* many real zk-applications are beyond current
state of the art in automatic protocol analysis;
my previous type systems:

— largest example:
simplified DAA ~250 lines of A-calculus (RCF)

— only authorization (robust safety), not “privacy”
— only non-interactive zero-knowledge

— crypto assumed perfect (symbolic model)
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Verifying real zk-applications

e privacy-preserving digital identity management (e.g.
idemix, UProve), e-voting (e.g. Civitas/CaveatCoercitor),
and e-cash (e.g. ZeroCoin)

* formalize end-to-end security properties (i.e. “privacy”)

— relational, quantitative, probabilistic
* devise sound automated verification tools that
— work for real code (not abstract models)

— provide strong guarantees (computational crypto)
— support non-interactive + interactive zero-knowledge

2 ways to approach this; capitalize previous experience (mine + Prosecco)



1.

Short term objectives (1/2)

reimplement applications in OCaml/F#
and use new, very expressive type-checker
— combine the strengths of existing type systems
* F5: non-interactive zero-knowledge [TOSCA 2011, PhD thesis]

e F7:computational guarantees (Prosecco)
* F*:relational properties (Prosecco)

— challenge: devise this super expressive type system

— challenge: interactive zero-knowledge proofs
 fixed interaction pattern (e.g. to 2-protocols)
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Short term objectives (2/2)

2. generate code from verified abstract models

— extend CryptoVerif (Prosecco) to zero-knowledge proofs
e add indistinguishability axioms (e.g. zero-knowledge property)
* challenges: existentials (Skolemize?), guarded rewriting
— code generator targeting mainstream language like C
e experience: Expi2Java [NFM 2012], CryptoVerif20Caml (Prosecco)

* zero-knowledge implementation is statement dependent
— use existing cryptographic compiler — e.g. ZKCrypt (IMDEA)

* challenge: security of translation wrt. formal semantics of C
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More speculative ideas

* tools aiding design of privacy-preserving applications
— automated synthesis from high-level specifications
— privacy-enhancing transformations

* studying other general privacy-enhancing techniques
— secure multi-party computation
— (fully) homomorphic encryption
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Catalin Hritcu

Publications: best conferences in security

— journals (2), textbook (1 ), Workshops (6); under review (2)

Software: >67.6k lines of code

— 13.2k OCaml/F#, 9.1k Haskell, 16k Java,
20.1k Breeze, 5.3k mt-calculus, 3.9k A-calculus (RCF)

Machine-checked formalizations: >57k lines of Coq

MSc + PhD Fellowships from Microsoft Research & MPI (IMPRS)
Gunter Hotz Medal for “outstanding CS graduates” @ Saarland Univ.
Best course award “Practical Aspects of Security” (TA+guest lecturer)

resulted i |n 3 conference publlcatlons
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