INRIA Paris-Rocquencourt — 30 May 2013
application for CR2 in Prosecco team

Formally Verified Privacy-Preserving
Distributed Applications

Catalin Hritcu

LU CE L
0.0 ‘ :I l I l
‘ UNIVERSITY 0f PENNSYLVANIA

Today’s computer systems are insecure

Formal methods will play a crucial role in
building significantly more secure systems

Formal methods, broadly

language design
rigorous semantics
specification
verification

type systems

proof assistants
runtime monitoring
code generation
code transformation
automatic testing

Formal methods, broadly

language design
rigorous semantics
specification
verification

type systems

proof assistants
runtime monitoring
code generation
code transformation
automatic testing

clearly specifying security goals

+ techniques for achieving these goals
(e.g. static analysis or dynamic enforcement)

+ showing that goals were achieved

Formal methods, broadly

language design
rigorous semantics
specification
verification

type systems

proof assistants
runtime monitoring
code generation
code transformation
automatic testing

clearly specifying security goals

+ techniques for achieving these goals
(e.g. static analysis or dynamic enforcement)

+ showing that goals were achieved

all these tools are potentially useful

choose the set of tools that

best solves the problem at hand
(cost vs benefit analysis)

Contributions

1. PhD @ Saarland University: Security protocols

— Expressive type systems — the first one for zero-knowledge proofs
[CCS 2008, CSF 2009, TOSCA 2011, PhD thesis]

— Defining security of e-voting protocols; ProVerif (Prosecco) [CSF 2008]
— Expi2Java: code generator for realistic protocols (TLS) [NFM 2012]

Contributions

1. PhD @ Saarland University: Security protocols

— Expressive type systems — the first one for zero-knowledge proofs
[CCS 2008, CSF 2009, TOSCA 2011, PhD thesis]

— Defining security of e-voting protocols; ProVerif (Prosecco) [CSF 2008]
— Expi2Java: code generator for realistic protocols (TLS) [NFM 2012]

2. Internship & later collaboration @ Microsoft Research Cambridge:

— Data processing (Microsoft Excel 2013 “Data Explorer” formula language);
refinement types; semantic subtyping using SMT solver;
verification condition generator [ICFP 2010, CPP 2011, JFP 2012]

Contributions

1. PhD @ Saarland University: Security protocols

— Expressive type systems — the first one for zero-knowledge proofs
[CCS 2008, CSF 2009, TOSCA 2011, PhD thesis]

— Defining security of e-voting protocols; ProVerif (Prosecco) [CSF 2008]
— Expi2Java: code generator for realistic protocols (TLS) [NFM 2012]

2. Internship & later collaboration @ Microsoft Research Cambridge:

— Data processing (Microsoft Excel 2013 “Data Explorer” formula language);
refinement types; semantic subtyping using SMT solver;
verification condition generator [ICFP 2010, CPP 2011, JFP 2012]
3. PostDoc @ UPenn: CRASH/SAFE project (academia-industry collaboration;
clean-slate co-design of secure architecture: hardware+system+language)

— Robust exception handling for dynamic information flow control
[IEEE S&P (Oakland) 2013]

— Ongoing work: testing and formally verifying information flow machine
[ICFP 2013 submission on random testing, working draft on Coq proofs]

V
) - Coqg formalization

Contributions

1. PhD @ Saarland University: Security protocols

— Expressive type systems — the first one for zero-knowledge proofs ‘;2/ y
[CCS 2008, CSF 2009, TOSCA 2011, PhD thesis] -

— Defining security of e-voting protocols; ProVerif (Prosecco) [CSF 2008]
— Expi2Java: code generator for realistic protocols (TLS) [NFM 2012] Y

2. Internship & later collaboration @ Microsoft Research Cambridge:

— Data processing (Microsoft Excel 2013 “Data Explorer” formula language);
refinement types; semantic subtyping using SMT solver; Vo 7
verification condition generator [ICFP 2010, CPP 2011, JFP 2012] | &

3. PostDoc @ UPenn: CRASH/SAFE project (academia-industry collaboration;
clean-slate co-design of secure architecture: hardware+system+language)

— Robust exception handling for dynamic information flow control)
[IEEE S&P (Oakland) 2013] %

— Ongoing work: testing and formally verifying information flow machine 3
[ICFP 2013 submission on random testing, working draft on Coq proofs] L

\:r-/ - Coq formalization

Contributions </ were

1. PhD @ Saarland University: Security protocols

— Expressive type systems — the first one for zero-knowledge proofs e T QU
[CCS 2008, CSF 2009, TOSCA 2011, PhD thesis] % o @5&

— Defining security of e-voting protocols; ProVerif (Prosecco) [CSF 2008] 7_

— Expi2Java: code generator for realistic protocols (TLS) [NFM 2012] if%é(\%

2. Internship & later collaboration @ Microsoft Research Cambridge:

— Data processing (Microsoft Excel 2013 “Data Explorer” formula language);
refinement types; semantic subtyping using SMT solver; Vo 7 XX
verification condition generator [ICFP 2010, CPP 2011, JFP 2012] ® A %A

3. PostDoc @ UPenn: CRASH/SAFE project (academia-industry collaboration;
clean-slate co-design of secure architecture: hardware+system+language)

— Robust exception handling for dynamic information flow control) QU
[IEEE S&P (Oakland) 2013] P K

— Ongoing work: testing and formally verifying information flow machine) @ o
[ICFP 2013 submission on random testing, working draft on Coq proofs] /@K

10

V
) - Coqg formalization

Contributions

< - tool / software

1. PhD @ Saarland University: Security protocols

~

i — Expressive type systems — the first one for zero-knowledge proofs Y
I J
|

later [CCS 2008, CSF 2009, TOSCA 2011, PhD thesis]

a,' — Defining security of e-voting protocols; ProVerif (Prosecco) [CSF 2008]

:\ — Expi2lava: code generator for realistic protocols (TLS) [NFM 2012] v 2

2. Internshlp & later collaboration @ Microsoft Research Cambridge:

— Data processing (Microsoft Excel 2013 “Data Explorer” formula language);
refinement types; semantic subtyping using SMT solver; ~)
verification condition generator [ICFP 2010, CPP 2011, JFP 2012] 2 B %A

3. PostDoc @ UPenn: CRASH/SAFE project (academia-industry collaboration;
clean-slate co-design of secure architecture: hardware+system+language)

— Robust exception handling for dynamic information flow control
[IEEE S&P (Oakland) 2013]

— Ongoing work: testing and formally verifying information flow machine
[ICFP 2013 submission on random testing, working draft on Coq proofs]

11

Privacy in the age of momputing”

* lack of online privacy is one of the biggest
problems of our time
— technology is causing the problem

— solution not simple and not solely technologic
* also social, legal, economic, behavioral, philosophical

Privacy in the age of momputing”

* lack of online privacy is one of the biggest
problems of our time
— technology is causing the problem
— solution not simple and not solely technologic
* also social, legal, economic, behavioral, philosophical
* “cloud computing” is making this worse

— in order to obtain service, users have to entrust
private information to 3" party service providers that
gather the data of millions of users

Privacy in the age of momputing”

* lack of online privacy is one of the biggest
problems of our time
— technology is causing the problem
— solution not simple and not solely technologic
* also social, legal, economic, behavioral, philosophical
* “cloud computing” is making this worse

— in order to obtain service, users have to entrust
private information to 3" party service providers that
gather the data of millions of users

— what could possibly go wrong?

Sony suffers second data breach with

theft of 25m more user details

Hacker attack on security of Sony Online Entertainment network
preceded PlayStation Network breach but was only discovered on
Monday, electronics company says

Sony has suffered a second enormous data breach with nearly 25m customers' details
from its SOE network stolen. Photograph: Nick Rowe/Getty Images

15

SOCIETE

Sony suffers GIGANTESQUE AFFAIRE
theftcﬁi25ln.Dﬂﬁ“‘ﬂ'lWNGE‘“BEHCM'

Hacker attack on se
preceded PlayStatic
Monday, electronics

c LOI DE

S
,,'

N

3

mbBARO

des Compte
15 forme de Hn\

La ministre de I'Economie Christine Lagarde

et |e ministre du Budget Frangois Baroin. Tweeter R0
Leur ministére a ée la cible d'une attaque
\ informatique.
' o5 \‘ s e Info Match. Pendant plusieurs semaines, plus de 150 ordinateurs du
Ministéere de I'Economie et des Finances ont été infiltrés par des

Sony has suffered a secon «hackers». De nombreux documents liés au G20 ont été piratés.
from its SOE network stolen. Photograph: Nick Rowe/Getty Images 16

SOCIETE

Sony suffers GIGANTESQUE AFFAIRE
theft Of 25m WMAM

Hacker attack on se
preceded PlayStatic
Monday, electronics

Ll : oy I
;ois BAROIN
udget, des Comptes Publics

{¢ la Roforme de 'Etat

Chrictina | AlS

Ghostshell takes credit for extensive hack of
government, private websites

The hacktivist group Team Ghostshell cites ProjectWhiteFox in release of
information on 1.6 million accounts, including from DHS and FBI

» 1 Comment Share 8 a g +1 E &) ﬁ . . .
t plusieurs semaines, plus de 150 ordinateurs du

By Antone Gonsalves omie et des Finances ont été infiltrés par des

¢ eux documents liés au G20 ont été pirateés.
' 17

>
o

Tweeter

December 11, 2012 — CSO — The hacktivist group Team Ghostshell took credit Monday for the release of 1
million accounts and records stolen from government and private organizations covering aerospace, law
enforcement, the military, the defense industry and banking.

SOCIETE

Sony suffers GIGANTESQUE AFFAIRE
theft Of 25m WMAW

Hacker attack on se
preceded PlayStatic
Monday, electronics

zero-knowledge proofs could help users
reveal less information to 3 parties

NEWS

Ghostshell takes credit for extensive hack of
government, private websites

The hacktivist group Team Ghostshell cites ProjectWhiteFox in release of
information on 1.6 million accounts, including from DHS and FBI

» 1 Comment 3y share 8 4 g +1 (&) ﬁ
. u . t plusieurs semaines, plus de 150 ordinateurs du
By Antone Gonsalves omie et des Finances ont été infiltrés par des

Tweeter R4 0

December 11, 2012 — CSO — The hacktivist group Team Ghostshell took credit Monday for the release of 1.6 eux documents liés au G20 ont été pirates.
million accounts and records stolen from government and private organizations covering aerospace, law
enforcement, the military, the defense industry and banking.

18

Applications of zero-knowledge proofs
have skyrocketed in recent years

anonymous authentication

. : electronic votin
privacy-preserving 9

digital identity management e-cash

| | security despite Privacy-friendly
electronic auctions compromise Smart metering

anonymous trust

and reputation decentralized risk assurance
social networks for hedge funds

anonymous credentials

_ _ o anonymous electronic ticketing
biometric authentication for public transportation

Achieving privacy with zero-knowledge

Alice proves to online store that she is over 18, without revealing her age

TR
0

privacy kgt >

protecting
personal information

digital credentials
(authorization)

privacy-preserving
digital identity management

20

Achieving privacy with zero-knowledge

Alice proves to online store that she is over 18, without revealing her age

+
Privacy
prot_ecting _ digital credentials privacy-preserving
personal information (authorization) digital identity management
+ g
N e
vote privacy verifiability remote electronic voting

coercion resistance (software independence)
[CSF 2008]

21

Achieving privacy with zero-knowledge

Alice proves to online store that she is over 18, without revealing her age

+
Privacy
prot_ecting _ digital credentials privacy-preserving
personal information (authorization) digital identity management
+ g
N e
vote privacy verifiability remote electronic voting

coercion resistance (software independence)
[CSF 2008]

22

Zero-knowledge proofs, by example

Alice proves to online store that she is over 18

amazonifr

<Yz

Sign((A,1982),ki)*

23

Zero-knowledge proofs, by example

Alice proves to online store that she is over 18

> amazonifr

sign((A,1982),ki)1'

<Yz

Sig”((Ar1982),ki)t

24

Zero-knowledge proofs, by example

Alice proves to online store that she is over 18, without revealing her age

> amazonfr

sign((A,1982),ki)1'

Sign((A,1982),ki)*

25

Zero-knowledge proofs, by example

Alice proves to online store that she is over 18, without revealing her age

Prover

zks,4(1982, sign((A,1982),ki); A, 2013, vk(ki))

> amazonifr

Sig”((Ar1982),ki)t

26

Zero-knowledge proofs, by example

Alice proves to online store that she is over 18, without revealing her age

: CheCk(XcertryV i)U(yname,X irth) N yyear—Xbirch].S
Prover %

(1982, sign((A,1982),ki); A, 2013, vk(ki))

> amazonifr

sign((A,1982),ki)T

27

Zero-knowledge proofs, by example

Alice proves to online store that she is over 18, without revealing her age

: CheCk(XcertryV i)U(yname,X irth) N yyear—Xbirch].S
Prover
% \ Z Verifier

zks.5211982, sign((A,1982),ki); A, 2013, vk(ki))
amazonifr
check(sign((A,1982) ki), vk(ki))U(A,1982) A 2013- 1982>18|/
S|gn(A1982 k)T A 2013 vk(ki)

verifier checks if proof is valid or not;
finds out public arguments (ys)

28

Zero-knowledge proofs, by example

Alice proves to online store that she is over 18, without revealing her age

: CheCk(XcertryV i)U(yname,X irth) N yyear—Xbirch].S
Prover
% \ Z Verifier

zks.5211982, sign((A,1982),ki); A, 2013, vk(ki))
amazonifr
check(sign((A,1982) ki), vk(ki))U(A,1982) A 2013- 1982>18|/
S|gn(A1982 k)T A 2013 vk(ki)

verifier checks if proof is valid or not;
finds out public arguments (ys)

. zero-knowledge:
¥ no information is revealed about witnesses (xs)
beyond the validity of the statement

29

Zero-knowledge proofs, by example

Alice proves to online store that she is over 18, without revealing her age

: CheCk(XcertryV i)U(yname,X irth) N yyear—Xbirch].S

Prover

Verifier

:'A, 2013, vk(ki))

V(AR A 2013- ->18|/

A 2013 vk(ki)

amazonifr

verifier checks if proof is valid or not;
~ finds out public arguments (ys)

._zero-knowledge:
¥ no information is revealed about witnesses (xs)
beyond the validity of the statement

Challenges of type-checking zero-knowledge
[CCS 2008, CSF 2009, TOSCA 2011, PhD thesis]

e Zk-proofs don’t depend on crypto keys
— previous type systems rely on assigning types to keys

— solution: assign types to each zk-statement
* refinement type “Ts, . ={yname:Un,... | Ixvirth. Send(yname,Xbirth)}”
* type-checker enforces this strong type on honest provers

@)%
y

31

Challenges of type-checking zero-knowledge
[CCS 2008, CSF 2009, TOSCA 2011, PhD thesis]

e Zk-proofs don’t depend on crypto keys
— previous type systems rely on assigning types to keys

— solution: assign types to each zk-statement
* refinement type “Ts, . ={yname:Un,... | Ixvirth. Send(yname,Xbirth)}”
* type-checker enforces this strong type on honest provers

* Attacker can also produce valid zk-proofs
— successfully verifying zk-proof Sage

f{
* guarantees “Ixvirth,Xcert. check(Xcert,Yvki)U (Yname,Xbirth) AYyear—Xbirth=>18"

* guarantees Ts,.. only if type-checker can infer that the verified
zk-proof was produced by honest prover (i.e. type-checked)

— solution: statement-based inference + intersection types (/)
+ reasoning about type disjointness (UnAPrivate=0)

@A%
y

1

32

Challenges of type-checking zero-knowledge
[CCS 2008, CSF 2009, TOSCA 2011, PhD thesis]

e Zk-proofs don’t depend on crypto keys
— previous type systems rely on assigning types to keys

— solution: assign types to each zk-statement
* refinement type “Ts, . ={yname:Un,... | Ixvirth. Send(yname,Xbirth)}”
* type-checker enforces this strong type on honest provers

@A%
gy

* Attacker can also produce valid zk-proofs =
. 69
— successfully verifying zk-proof Sage st
« guarantees “Ixbirth,Xcert. check(Xcert,yvii)U(Yname,Xbirth) AYyear—Xbirth>18” age

Un-typed
* guarantees Ts,.. only if type-checker can infer that the verified P

zk-proof was produced by honest prover (i.e. type-checked)

— solution: statement-based inference + intersection types (/)
+ reasoning about type disjointness (UnAPrivate=0)

* Participants can be dynamically compromised

— inferred types conditioned on participants’ honesty QQ
— solution: union types {Private|-Bad(A)} V {Un|Bad(A)} “

+ logical subtyping Alice Malice

— automatically strengthened protocols [CSF 2009]

33

Type-checking zero-knowledge

* first type systems to analyze zk-protocols
[CCS 2008, TOSCA 2011, PhD thesis]

* same ideas for protocol models (m)
& simple implementations (A)

. . . e Ve U L
* formalized, implemented, experimented DI X

— type-checkers used independently in other projects

Why isn’t this enough?

* many real zk-applications are beyond current
state of the art in automatic protocol analysis;
my previous type systems:

— largest example:
simplified DAA ~250 lines of A-calculus (RCF)

— only authorization (robust safety), not “privacy”
— only non-interactive zero-knowledge

— crypto assumed perfect (symbolic model)

Goals of this proposal

remove these limitations

make the design, analysis, and correct
implementation of zk-applications practical

verify implementations of real zk-applications

produce better generally-useful tools

Goals of this proposal

remove these limitations

make the design, analysis, and correct
implementation of zk-applications practical

verify implementations of real zk-applications «—

produce better generally-useful tools

Verifying real zk-applications

e privacy-preserving digital identity management (e.g.
idemix, UProve), e-voting (e.g. Civitas/CaveatCoercitor),
and e-cash (e.g. ZeroCoin)

Verifying real zk-applications

e privacy-preserving digital identity management (e.g.
idemix, UProve), e-voting (e.g. Civitas/CaveatCoercitor),
and e-cash (e.g. ZeroCoin)

* formalize end-to-end security properties (i.e. “privacy”)

— relational, quantitative, probabilistic

Verifying real zk-applications

privacy-preserving digital identity management (e.g.
idemix, UProve), e-voting (e.g. Civitas/CaveatCoercitor),
and e-cash (e.g. ZeroCoin)
formalize end-to-end security properties (i.e. “privacy”)
— relational, quantitative, probabilistic
devise sound automated verification tools that
— work for real code (not abstract models)

— provide strong guarantees (computational crypto)
— support non-interactive + interactive zero-knowledge

Verifying real zk-applications

e privacy-preserving digital identity management (e.g.
idemix, UProve), e-voting (e.g. Civitas/CaveatCoercitor),
and e-cash (e.g. ZeroCoin)

* formalize end-to-end security properties (i.e. “privacy”)

— relational, quantitative, probabilistic
* devise sound automated verification tools that
— work for real code (not abstract models)

— provide strong guarantees (computational crypto)
— support non-interactive + interactive zero-knowledge

2 ways to approach this; capitalize previous experience (mine + Prosecco)

1.

Short term objectives (1/2)

reimplement applications in OCaml/F#
and use new, very expressive type-checker
— combine the strengths of existing type systems
* F5: non-interactive zero-knowledge [TOSCA 2011, PhD thesis]

e F7:computational guarantees (Prosecco)
* F*:relational properties (Prosecco)

— challenge: devise this super expressive type system

— challenge: interactive zero-knowledge proofs
 fixed interaction pattern (e.g. to 2-protocols)

42

Short term objectives (2/2)

2. generate code from verified abstract models

— extend CryptoVerif (Prosecco) to zero-knowledge proofs
e add indistinguishability axioms (e.g. zero-knowledge property)
* challenges: existentials (Skolemize?), guarded rewriting
— code generator targeting mainstream language like C
e experience: Expi2Java [NFM 2012], CryptoVerif20Caml (Prosecco)

* zero-knowledge implementation is statement dependent
— use existing cryptographic compiler — e.g. ZKCrypt (IMDEA)

* challenge: security of translation wrt. formal semantics of C

43

More speculative ideas

* tools aiding design of privacy-preserving applications
— automated synthesis from high-level specifications
— privacy-enhancing transformations

* studying other general privacy-enhancing techniques
— secure multi-party computation
— (fully) homomorphic encryption

R (1

QU

Catalin Hritcu

Publications: best conferences in security

— journals (2), textbook (1), Workshops (6); under review (2)

Software: >67.6k lines of code

— 13.2k OCaml/F#, 9.1k Haskell, 16k Java,
20.1k Breeze, 5.3k mt-calculus, 3.9k A-calculus (RCF)

Machine-checked formalizations: >57k lines of Coq

MSc + PhD Fellowships from Microsoft Research & MPI (IMPRS)
Gunter Hotz Medal for “outstanding CS graduates” @ Saarland Univ.
Best course award “Practical Aspects of Security” (TA+guest lecturer)

resulted i |n 3 conference publlcatlons

45

