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Today’s computer systems are insecure 

Formal methods will play a crucial role in 
building significantly more secure systems 
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all these tools are potentially useful 
 

choose the set of tools that 
best solves the problem at hand 

(cost vs benefit analysis) 

clearly specifying security goals 

+ techniques for achieving these goals 
(e.g. static analysis or dynamic enforcement) 

+ showing that goals were achieved 



1. PhD @ Saarland University: Security protocols 

– Expressive type systems – the first one for zero-knowledge proofs 
[CCS 2008, CSF 2009, TOSCA 2011, PhD thesis] 

– Defining security of e-voting protocols; ProVerif (Prosecco) [CSF 2008] 

– Expi2Java: code generator for realistic protocols (TLS) [NFM 2012] 
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Privacy in the age of “cloud computing” 

• lack of online privacy is one of the biggest 
problems of our time 
– technology is causing the problem 

– solution not simple and not solely technologic 
• also social, legal, economic, behavioral, philosophical 
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Privacy in the age of “cloud computing” 

• lack of online privacy is one of the biggest 
problems of our time 
– technology is causing the problem 

– solution not simple and not solely technologic 
• also social, legal, economic, behavioral, philosophical 

• “cloud computing” is making this worse 
– in order to obtain service, users have to entrust 

private information to 3rd party service providers that 
gather the data of millions of users 

– what could possibly go wrong? 
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zero-knowledge proofs could help users 
reveal less information to 3rd parties 



anonymous authentication 

security despite 

compromise 

electronic voting 

anonymous credentials 

privacy-preserving 
digital identity management 

e-cash 

electronic auctions 

anonymous trust 
and reputation decentralized 

social networks 
risk assurance 
for hedge funds 

anonymous electronic ticketing 
for public transportation biometric authentication 

privacy-friendly 
smart metering 

Applications of zero-knowledge proofs 
have skyrocketed in recent years 



+ ➔ 

digital credentials 

(authorization) 

protecting 

personal information 
privacy-preserving 

digital identity management 

Achieving privacy with zero-knowledge 

Alice proves to online store that she is over 18 , without revealing her age 
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Challenges of type-checking zero-knowledge 

• Zk-proofs don’t depend on crypto keys 
– previous type systems rely on assigning types to keys 
– solution: assign types to each zk-statement 

• refinement type “TSage={yname:Un,...|∃xbirth. Send(yname,xbirth)}” 
• type-checker enforces this strong type on honest provers 
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Un-typed 
zkSage 

[CCS 2008, CSF 2009, TOSCA 2011, PhD thesis] 

Sage 
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– successfully verifying zk-proof 

• guarantees “∃xbirth,xcert. check(xcert,yvki)⇓(yname,xbirth)∧yyear−xbirth≥18” 
• guarantees TSage  only if type-checker can infer that the verified 

zk-proof was produced by honest prover (i.e. type-checked) 

– solution: statement-based inference + intersection types (∧) 
                 + reasoning about type disjointness (Un∧Private=∅) 

• Participants can be dynamically compromised 
– inferred types conditioned on participants’ honesty 
– solution: union types {Private|¬Bad(A)} ∨ {Un|Bad(A)} 

                  + logical subtyping 
– automatically strengthened protocols [CSF 2009] 
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Un-typed 
zkSage 

Alice Malice 

[CCS 2008, CSF 2009, TOSCA 2011, PhD thesis] 

Sage 



Type-checking zero-knowledge 

• first type systems to analyze zk-protocols 

[CCS 2008, TOSCA 2011, PhD thesis] 

• same ideas for protocol models (π) 

& simple implementations (λ) 

• formalized, implemented, experimented 

– type-checkers used independently in other projects 
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Why isn’t this enough? 

• many real zk-applications are beyond current 

state of the art in automatic protocol analysis; 

my previous type systems: 

– largest example: 

simplified DAA ~250 lines of λ-calculus (RCF) 

– only authorization (robust safety), not “privacy” 

– only non-interactive zero-knowledge 

– crypto assumed perfect (symbolic model) 
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Goals of this proposal 

• remove these limitations 

• make the design, analysis, and correct 

implementation of zk-applications practical 

• verify implementations of real zk-applications 

• produce better generally-useful tools 
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2 ways to approach this; capitalize previous experience (mine + Prosecco) 



Short term objectives (1/2) 

1. reimplement applications in OCaml/F# 
and use new, very expressive type-checker 

– combine the strengths of existing type systems 

• F5: non-interactive zero-knowledge [TOSCA 2011, PhD thesis] 

• F7: computational guarantees (Prosecco) 

• F*: relational properties (Prosecco) 

–  challenge: devise this super expressive type system 

–  challenge: interactive zero-knowledge proofs 

• fixed interaction pattern (e.g. to Σ-protocols) 
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Short term objectives (2/2) 

2. generate code from verified abstract models 

– extend CryptoVerif (Prosecco) to zero-knowledge proofs 

• add indistinguishability axioms (e.g. zero-knowledge property) 

• challenges: existentials (Skolemize?), guarded rewriting 

– code generator targeting mainstream language like C 

• experience: Expi2Java [NFM 2012], CryptoVerif2OCaml (Prosecco) 

• zero-knowledge implementation is statement dependent 

– use existing cryptographic compiler – e.g. ZKCrypt (IMDEA) 

• challenge: security of translation wrt. formal semantics of C 
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More speculative ideas  

• tools aiding design of privacy-preserving applications 

– automated synthesis from high-level specifications 

– privacy-enhancing transformations 

• studying other general privacy-enhancing techniques 

– secure multi-party computation 

– (fully) homomorphic encryption 
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Cătălin Hrițcu 

• Publications: 

– conferences (8): IEEE S&P, ACM CCS, 2 x IEEE CSF, ACM ICFP, ... 

– journals (2); textbook (1); workshops (6); under review (2) 

• Software: >67.6k lines of code 

– 13.2k OCaml/F#, 9.1k Haskell, 16k Java, 
 20.1k Breeze, 5.3k π-calculus, 3.9k λ-calculus (RCF) 

• Machine-checked formalizations: >57k lines of Coq 

• MSc + PhD Fellowships from Microsoft Research & MPI (IMPRS) 

• Günter Hotz Medal for “outstanding CS graduates” @ Saarland Univ. 

• Best course award:“Practical Aspects of Security” (TA+guest lecturer) 

• Advised 3 MSc + 2 BSc theses; 4 of them on my own 

45 

best conferences in security 

resulted in 3 conference publications 


