

Automatic Verification of Remote Electronic Voting Protocols

Michael Backes, <u>Cătălin Hrițcu</u>, Matteo Maffei

Information Security & Cryptography Group

Max Planck Institute for Software Systems - Faculty Retreat, Berlin, March 2008

Remote voting is a reality!

Remote voting in Germany

- Did you know that ...
 - ... in the latest parliamentary elections **18.7%** of the votes were cast remotely by post (Briefwahl)?

- Cheaper and more convenient than supervised voting
 - This could increase voter participation

- Cheaper and more convenient than supervised voting
 - This could increase voter participation
- Voting by post raises many security concerns
 - An autograph signature does not authenticate the voter
 - An envelope does not guarantee secrecy or integrity
 - The post is not always a secure channel
 - Really easy to buy/sell votes
 - Not that hard to coerce someone to vote as you like

- Cheaper and more convenient than supervised voting
 - This could increase voter participation
- Voting by post raises many security concerns
 - An autograph signature does not authenticate the voter
 - An envelope does not guarantee secrecy or integrity
 - The post is not always a secure channel
 - Really easy to buy/sell votes
 - Not that hard to coerce someone to vote as you like
- Still, this has been used in Germany for 50+ years

- Seems even cheaper and even more convenient
- Promises better security (than voting by post at least)
 - better integrity, privacy, coercion-resistance, verifiability, trust is distributed, etc. ... all cryptographically enforced

- Seems even cheaper and even more convenient
- Promises better security (than voting by post at least)
 - better integrity, privacy, coercion-resistance, verifiability, trust is distributed, etc. ... all cryptographically enforced
- Different security risks
 - Easier to launch large-scale attacks and erase evidence
 - Clients are the weakest link: e.g. remotely exploitable software flaws, viruses, Internet worms, trojans, lack of physical security, social engineering attacks, etc.
 - Network also vulnerable: e.g. voter demographic-based DDOS, cache poisoning DNS attacks, etc.

- Seems even cheaper and even more convenient
- Promises better security (than voting by post at least)
 - better integrity, privacy, coercion-resistance, verifiability, trust is distributed, etc. ... all cryptographically enforced
- Different security risks
 - Easier to launch large-scale attacks and erase evidence
 - Clients are the weakest link: e.g. remotely exploitable software flaws, viruses, Internet worms, trojans, lack of physical security, social engineering attacks, etc.
 - Network also vulnerable: e.g. voter demographic-based DDOS, cache poisoning DNS attacks, etc.
- Still, Internet voting might be just around the corner

Some of the desired properties

Correctness

- soundness
 - eligibility
 - non-reusability
 - inalterability
- completeness
- fairness

Privacy

- vote-privacy
- immunity to forcedabstention attacks
- receipt-freeness
- coercion-resistance

Verifiability

- universal
- individual

Robustness

- fault tolerance
- availability
- scalability

Some of the desired properties

Correctness

- soundness
 - eligibility
 - non-reusability
 - inalterability
- completeness
- fairness

Privacy

- vote-privacy
- immunity to forcedabstention attacks
- receipt-freeness
- coercion-resistance

Verifiability

- universal
- individual

Robustness

- fault tolerance
- availability
- scalability
- Careful formalization and verification of these properties important before widespread adoption

What we did

- General technique for
 - modeling remote electronic voting protocols (in the applied pi-calculus)
 - and automatically verifying their security
- New formal definitions of
 - soundness trace property
 - coercion-resistance observational equivalence
 - Both definitions amenable to automation in ProVerif
- Proved that our coercion-resistance implies vote-privacy, immunity to forced-abstention attacks & receipt-freeness
- Automatically verified the security of the JCJ protocol

Vote-privacy Voters Alice Bob Charlie

Definition of vote-privacy

Definition of vote-privacy

Definition of vote-privacy

Immunity to forced-abstention

Receipt-freeness

Used it to automatically analyze important protocol (JCJ)

Future work

- Analyze more protocols
 - Started with Civitas variant of JCJ (has implementation)
- Better techniques for observational equivalence
 - for instance using symbolic bisimulation
- Analyzing other properties (in the same setting)
 - Immunity to randomization attacks (also privacy property)
 - Individual and universal verifiability
- More concrete protocol models
 - The ultimate goal would be to analyze implementations