
Semantic Subtyping with an SMT Solver

Cătălin Hrițcu, Saarland University, Saarbrücken, Germany

Joint work with Andy Gordon, Gavin Bierman, and Dave Langworthy

(all from Microsoft)

Refinement Types + Type-test
• Microsoft’s “M” language has two very interesting features

– General refinement types

• The subtype containing all values that satisfy a Boolean expression

– Dynamic type tests

• Boolean expression testing whether expression belongs to a type

• Each useful in isolation

– Refinement types can express pre-/post-conditions + invariants

• Combination very powerful

2

The Big Promise
• Union types

• Intersection types

• Negation types

• Sum types

• Dependent pairs

• Recursive types

• Algebraic datatypes

• Expresivity: very simple core calculus that can encode:
all these typing idioms (and more) + all essential features of M

3

The Big Challenge
• Q: Is well-typed (safe) when has type …?

YES! the same as above

YES! the same as above

YES! is a record (entity) with (at least) integer field

YES! is always the integer

YES! vacuously

YES!

NO! could be a string

NO! is a string

4

The Big Challenge
• Q: Is well-typed (safe) when has type …?

YES! the same as above

YES! the same as above

YES! is a record (entity) with (at least) integer field

YES! is always the integer

YES! vacuously

YES!

NO! could be a string

NO! is a string

Expressivity

Statically type-checking even toy examples
becomes hard in this setting.

Type information can be hidden deep inside
arbitrarily complicated refinements

Such “strange” types (just much larger) do
appear in practice: e.g. all our encodings

4

Observation: it’s all about subtyping!

• But structural subtyping simply can’t handle this

5

Our Solution
• We use semantic subtyping

– Types are interpreted as FOL formulas

• For instance:

– Subtyping is defined logical implication

• So clearly:

– We use an SMT solver to discharge such proof obligations

6

DMINOR: THE CORE OF M

7

8

Accumulate example

9

Purity
• Dminor side-effects: non-termination and non-determinism

• Expressions in refinement types have to be “pure” (and Logical)

• Pure expressions are terminating and have unique normal form

• Checking expression purity:

– f(e1, …, en) is pure only if f terminates on all inputs

• Syntactic termination condition enforces that recursive calls
are made only on structurally smaller arguments

– from x in e1 let y = e2 accumulate e3 should converge
(“λx y. e3” needs to be associative and commutative)

10

Singleton + “OK” types
• We have seen encodings for: union, intersection, negation,

sum, dependent pair, recursive, algebraic types

• Singleton types

• “OK” types

11

Declarative type system

• Sound: well-typed expressions don’t cause typing errors

• Declarative: uses magic non-determinism; specifies what, not how

12

Declarative type system

• Sound: well-typed expressions don’t cause typing errors

• Declarative: uses magic non-determinism; specifies what, not how

12

Bidirectional typing rules
• Two additional algorithmic judgments

– Type synthesis: (computes the “strongest” type for e)

– Type checking: (tests whether e has type T)

• Expressivity strikes [us] again!

???
13

Bidirectional typing rules
• Two additional algorithmic judgments

– Type synthesis: (computes the “strongest” type for e)

– Type checking: (tests whether e has type T)

• Expressivity strikes [us] again!

13

Semantic subtyping
• Types interpreted as FOL formulas

• Subtyping is just implication between interpretations

• These formulas interpreted in specific FOL model

– We formalized this model in Coq (once and for all, ~2000LOC)

• FOL sort → Coq type

• FOL function symbol → Coq function

– We feed properties of the model as “axioms” to the SMT solver

14

Logical Semantics
• We define three mutually recursive translations

– – formula: is value x in type T?

– – term: the result of evaluating pure e (a value or Error)

– – formula: does checking whether x is in T go wrong?

• This error-tracking semantics is fully abstract, but complicated

15

Optimized Logical Semantics
• Observation: we only care about well-formed types

and well-typed (+ pure) expressions

• We don’t need to track errors, which simplifies things a lot

16

17

Axiomatizing Model in SMT-LIB
• FOL with the following (combination of) standard theories

– equality + uninterpreted function symbols

– integer arithmetic (not necessarily linear)

– algebraic datatypes (Z3-specific extension.to.SMT-LIB)

– extensional arrays (Z3-specific extension.to.SMT-LIB)

• Main concerns:

– tradeoff between performance and completeness

– finding the right quantifier patterns

18

Implementation
• Around 2700 lines of F#

• Uses Z3 SMT solver (Microsoft Research)

– Really amazing, gets 1s per proof obligation by default

• But it usually solves 150 POs/s

– Much ongoing research on SMT, solvers always getting faster

• Type-checking really fast: 1-3s (tested on 130 files)

• Released under the Microsoft Research License:
http://research.microsoft.com/~adg/dminor.html

• Private demos available on request … also see the screencast

19

http://research.microsoft.com/~adg/dminor.html

Bonuses
1. Precise counterexamples to type-checking

2. Finding elements of types + highlighting empty types

20

Bonuses
1. Precise counterexamples to type-checking

2. Finding elements of types + highlighting empty types

3. Constraint programming in Dminor

20

Bonuses
1. Precise counterexamples to type-checking

2. Finding elements of types + highlighting empty types

3. Constraint programming in Dminor

20

Conclusions
• The first study of [refinement types + dynamic type-case]

• Combination yields great expressivity, but hard to type-check

• Semantic subtyping

– subtyping is logical implication between the semantics of types

• Type system

– specified by declarative rules; implemented by bidirectional ones

• Proof obligations discharged using SMT solver (Z3)

– Bonus: can exploit counterexamples produced by SMT solver

• … and it works: http://research.microsoft.com/~adg/dminor.html

21

http://research.microsoft.com/~adg/dminor.html

BACKUP SLIDES

22

Refinement Type-test Subtyping

1983 Nordström/Petersson Subset types {x:A | B(x)} no no
1986 Rushby/Owre/Shankar Predicate subtyping predicate subtype no limited

1989 Cardelli et al Modula-3 Report no on references structural
1991 Pfenning/Freeman Refinement types refined sorts no no

1993 Aiken and Wimmers Type inclusion... no no semantic
1999 Pfenning/Xi DML {x: General | e} no no

1999 Buneman/Pierce Unions for SSD no yes, as pattern structural

2000 Hosoya/Pierce XDuce no yes, as pattern semantic, ad hoc

2006 Flanagan et al SAGE {x: T | e} no (but has cast) structural, SMT
2006 Fisher et al PADS {x:T | e} no structural
2007 Frisch/Castagna CDuce no e in T semantic, ad hoc

2007 Sozeau Russell {x:T | e} no structural
2008 Bhargavan/Fournet/G F7/RCF {x: T | C} (formula C) no structural, SMT

2008 Rondon/Jhala Liquid Types {x: General | e} no structural, SMT
2010 Bierman/G/H/L M/Dminor {x: T | e} e in T semantic, SMT

Related Work

23

Other types we can encode
• We already did: union, intersection, negation, singleton, sum,

variant, recursive and algebraic types … so what else is left? 

• Multi-field entity types

• Closed entity types

• Pair types

• Variant types

• Self types

24

Formalizing Dminor Model in Coq
• FOL sort → math set – Coq type

• FOL function symbol → total function – Coq function

25

First-order theories
• Semantics given with respect to a particular logical model

• We use SMT-LIB (+Z3 extensions) to axiomatize this model

• Sorted first-order logic +

+ Integers: build-in sort Int + arithmetic operations
:formula (forall (x Int) (= (+ 0 x) x)) ; Z3: valid

+ Algebraic datatypes:
:datatypes((VList

Nil
(Cons (out_Head Value) (out_Tail VList))))

+ “Arrays” – updatable functions with finite support
:define_sorts ((VArray (array Int Value)) ; C arrays

(VBag (array Value Int)) ; M collections
(VMap (array String Value))) ; M entities

26

Axiomatizing model
• The semantic domain of values

:datatypes (
(Value

(G (out_G General)) ;; scalar values
(E (out_E (array String Value)) ;; entities
(C (out_C (array Value Int))) ;; collections

)

• Axiomatization of function and predicate symbols
:extrafuns((v_tt Value)(v_int Int Value)(O_Sum Value Value
Value))
:assumption (= v_tt (G(G_Logical true)))
:assumption (forall (n Int) (= (v_int n) (G(G_Integer n)))

:pat { (v_int n) } :pat { (G(G_Integer n)) }
:assumption (forall (i1 Int) (i2 Int)

(= (O_Sum (v_int i1) (v_int i2)) (v_int (+ i1 i2)))
:pat { (O_Sum (v_int i1) (v_int i2)) })

27

Axiomatizing collections
• Finiteness of bags

:assumption (forall (a (array Value Int))
(iff (Finite a) (= (default a) 0)))

• Only positive indices in bags
:assumption (forall (a (array Value Int))
(iff (Positive a) (forall (v Value) (>= (select a v) 0))

• Collections are finite bags with positive indices
:assumption (forall (v Value)
(iff (In_C v)

(and (is_C v)
(Finite (out_C v))
(Positive (out_C v)))))

• Collection membership
:assumption (forall (v Value) (a (array Value Int))
(iff (v_mem v (C a)) (> (select a v) 0)))

28

THE END

29

