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Outline 

• Overview of CRASH/SAFE project 

– clean-slate co-design of a secure host architecture 

• Exceptions and information flow control (IFC) 

– to appear at IEEE S&P 2013 (Oakland) 

• Testing noninterference with QuickCheck 

– ready for ICFP 2013 (deadline in 24 hours) 

• Future directions 
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CRASH/SAFE project 

• Academic partners (16): 

– University of Pennsylvania (11) 

– Harvard University (4) 

– Northeastern University (1) 

• Industrial partners (24): 

– BAE systems (21) + Clozure (3) 

• Funded by DARPA 
– Clean-Slate Design of Resilient, Adaptive, Secure Hosts 
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Primary goal: 
design and implement a 
significantly more secure 
architecture, without 
backwards compatibility 
concerns 
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Secondary goal: 
verify that it’s secure 
(whatever that means) 

Primary goal: 
design and implement a 
significantly more secure 
architecture, without 
backwards compatibility 
concerns 

 

 



Transistors were 
precious back 

then, my boy ... 

Grandpa! Why 
are computers 
so insecure? 
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Hardware is now abundant 
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Time for a redesign targeting security! 
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Language (Breeze) 

• testing ground for ideas we port to lower levels 

• type and memory safe high-level language 
– dynamically typed + dynamically-checked contracts 

• functional core (λ) + state(!) + concurrency (π) 
– message-passing communication (channels) 
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Language (Breeze) 

• testing ground for ideas we port to lower levels 

• type and memory safe high-level language 

– dynamically typed + dynamically-checked contracts 

• functional core (λ) + state(!) + concurrency (π) 

– message-passing communication (channels) 

• built-in fine-grained protection mechanisms: 

– values are attached security labels (e.g. public/secret) 

– dynamic information flow control (IFC) 

– discretionary access control (clearance) 

• novel exception handling mechanism (more later) 
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Runtime/operating system 

• manages: 
– time - scheduler 

– memory - allocator, garbage collector 

– communication and devices - channels 

– protection – dynamic IFC and access control 
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Runtime/operating system 

• manages: 

– time - scheduler 

– memory - allocator, garbage collector 

– communication and devices - channels 

– protection – dynamic IFC and access control 

• zero-kernel operating system 

– reduced TCB even wrt microkernel 

– least privilege & privilege separation taken to extreme 

– kernel split into mutually distrustful federated services 
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Hardware 

• all instructions have well-defined semantics 
– abstractions strictly enforced 

                  
                                        

               
                                                          

                                     
                                                  

                                                        

                                        

21 



Hardware 

• all instructions have well-defined semantics 
– abstractions strictly enforced 

• low-fat pointers 
– can’t access/write out of frame bounds 

               
                                                          

                                     
                                                  

                                                        

                                        

22 



Hardware 

• all instructions have well-defined semantics 
– abstractions strictly enforced 

• low-fat pointers 
– can’t access/write out of frame bounds 

• dynamic types 
– can’t turn ints into pointers (unforgeable capabilities) 

                                     
                                                  

                                                        

                                        

23 



Hardware 

• all instructions have well-defined semantics 
– abstractions strictly enforced 

• low-fat pointers 
– can’t access/write out of frame bounds 

• dynamic types 
– can’t turn ints into pointers (unforgeable capabilities) 

• closures (λ) + protected call stack 
                                                  

                                                        

                                        

24 



Hardware 

• all instructions have well-defined semantics 
– abstractions strictly enforced 

• low-fat pointers 
– can’t access/write out of frame bounds 

• dynamic types 
– can’t turn ints into pointers (unforgeable capabilities) 

• closures (λ) + protected call stack 
• authority + gates (authority switching closures) 

– fine-grained privilege separation / cheap system calls 

                                        

25 



Hardware 

• all instructions have well-defined semantics 
– abstractions strictly enforced 

• low-fat pointers 
– can’t access/write out of frame bounds 

• dynamic types 
– can’t turn ints into pointers (unforgeable capabilities) 

• closures (λ) + protected call stack 
• authority + gates (authority switching closures) 

– fine-grained privilege separation / cheap system calls 

• programmable tag management unit (TMU) 
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Tag management 

• every word tagged with arbitrary pointer 
– only operating system interprets these pointers 

• on each instruction TMU looks up tags of 
operands in a hardware rule cache 
– found → rule provides tags on results (no delay) 

– not found → trap to software (protection server) 

• extremely fine-grained access control + dynamic 
IFC enforced at the lowest level 
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Robust Exception Handling for 
Sound Fine-Grained Dynamic IFC 

All Your IFCException Are Belong To Us 
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Cătălin Hrițcu, Michael Greenberg, Ben Karel, 
Benjamin Pierce, Greg Morrisett 

 
IEEE Symposium on Security & Privacy 2013 (Oakland) 



Exception handling 

• we wanted reliable error recovery in Breeze 

– recovery from all exceptions including IFC violations 

• however, existing work assumes errors are fatal 
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Exception handling 

• we wanted reliable error recovery in Breeze 

– recovery from all exceptions including IFC violations 

• however, existing work assumes errors are fatal 

– makes some things easier ... at the expense of others 
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Problem #1: IFC exceptions reveal 
information about labels 

label 
channel 
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• labels are themselves information channels 

• get soundness by preventing secrets from 
leaking either into or out of label channel 



Problem #1: IFC exceptions reveal 
information about labels 

label 
channel 

labels must be hidden allow labels to 
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• labels are themselves information channels 

• get soundness by preventing secrets from 
leaking either into or out of label channel 
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(if s then ()@secret      
 else ()@top-secret); 

Problem #1: IFC exceptions reveal 
information about labels 
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encode s into label 

• labels are themselves information channels 

• get soundness by preventing secrets from 
leaking either into or out of label channel 
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(if s then ()@secret      
 else ()@top-secret); 

Problem #1: IFC exceptions reveal 
information about labels 
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if branch − assignment works 
else branch − IFCException 

href := 

let href = ref secret () in 
....... 

• labels are themselves information channels 

• get soundness by preventing secrets from 
leaking either into or out of label channel 



• secret bit: s@secret      low <= secret <= top-secret 

 
 
try 
 
 
  true 
catch IFCException => false 

 

(if s then ()@secret      
 else ()@top-secret); 

Problem #1: IFC exceptions reveal 
information about labels 
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href := 
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• labels are themselves information channels 

• get soundness by preventing secrets from 
leaking either into or out of label channel 

Problem #1: IFC exceptions reveal 
information about labels 

label 
channel 

labels must be hidden allow labels to 
depend on secrets 

IFC errors must be hidden! 
(and we don’t want that) 

if s then ()@secret else ()@top-secret 
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• labels are themselves information channels 

• get soundness by preventing secrets from 
leaking either into or out of label channel 

Problem #1: IFC exceptions reveal 
information about labels 

label 
channel 

enforce that labels don’t 
depend on secrets 

labels and IFC errors 
can be observed 
(“public labels”) 

if s then ()@secret else ()@top-secret 
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• labels are themselves information channels 

• get soundness by preventing secrets from 
leaking either into or out of label channel 

top-secret[if s then ()@secret else ()@top-secret] 

Problem #1: IFC exceptions reveal 
information about labels 

label 
channel 

enforce that labels don’t 
depend on secrets 

labels and IFC errors 
can be observed 
(“public labels”) 

Solution #1: brackets 
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Problem #2: exceptions destroy 
control flow join points 

• ending brackets need to be control flow join points, 
otherwise... 
– try 

  let _ = secret[if h then throw Ex] in 
  false 
catch Ex => true 
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Problem #2: exceptions destroy 
control flow join points 

• ending brackets need to be control flow join points, 
otherwise... 
– try 

  let _ = secret[if h then throw Ex] in 
  false 
catch Ex => true 

• brackets need to delay all exceptions! 
– secret[if true@secret then throw Ex] => “(Error Ex)@secret” 

– secret [if false@secret then throw Ex] => “(Success ())@secret” 
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Problem #2: exceptions destroy 
control flow join points 

• ending brackets need to be control flow join points, 
otherwise... 
– try 

  let _ = secret[if h then throw Ex] in 
  false 
catch Ex => true 

• brackets need to delay all exceptions! 
– secret[if true@secret then throw Ex] => “(Error Ex)@secret” 

– secret [if false@secret then throw Ex] => “(Success ())@secret” 

• similarly for failed brackets 
– secret[42@top-secret] => “(Error EBracket)@secret” 
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Solution #2: Delayed exceptions 

• delayed exceptions unavoidable 
– still have a choice how to propagate them 

• we studied two main alternatives: 
1. mix active and delayed exceptions (λ[ ]

throw) 
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Solution #2: Delayed exceptions 

• delayed exceptions unavoidable 

– still have a choice how to propagate them 

• we studied two main alternatives: 

1. mix active and delayed exceptions (λ[ ]
throw) 

2. only delayed exceptions (λ[ ]
NaV) 

• delayed exception = not-a-value (NaV) 

• NaVs are first-class replacement for values 

• NaVs propagated solely via data flow 

• NaVs are labeled and pervasive 

• simpler and more radical solution; implemented in Breeze 

 
44 



What’s in a NaV? Debugging aids! 

• error message 
– `EDivisionByZero (“can’t divide %1 by 0”, 42) 

• stack trace 

– pinpoints error origin 
(not the billion-dollar mistake!) 

• propagation trace 

– how did the error make it here? 
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What’s in a NaV? Debugging aids! 

• error message 
– `EDivisionByZero (“can’t divide %1 by 0”, 42) 

• stack trace 

– pinpoints error origin 
(not the billion-dollar mistake!) 

• propagation trace 

– how did the error make it here? 
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NaVs are compiler writer’s 
dream, especially if 

compiler is allowed to be 
imprecise about these 

debugging aids 
(Greg Morrisett) 



NaV-lax vs. NaV-strict behavior 
• all non-parametric operations are NaV-strict 

– NaV@low + 42@high => NaV@high 

• for parametric operations we can chose: 
                                    NaV-lax           or     NaV-strict 
– (fun x => 42) NaV => 42            or   => NaV 
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NaV-lax vs. NaV-strict behavior 
• all non-parametric operations are NaV-strict 

– NaV@low + 42@high => NaV@high 

• for parametric operations we can chose: 
                                    NaV-lax           or     NaV-strict 
– (fun x => 42) NaV => 42            or   => NaV 
– Cons NaV Nil      => Cons NaV Nil  or   => NaV 
– (r := NaV,r=7)    => ((),r=NaV)    or   => (NaV,r=7) 

• NaV-strict behavior reveals errors earlier 
– but it also introduces additional IFC constraints 
– applied everywhere it makes brackets useless 

• in Breeze the programmer can choose 
– in formal development NaV-lax everywhere 
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Formal results 

• proved termination-insensitive noninterference in Coq  

for λ[ ], λ[ ]
NaV, and λ[ ]

throw  

– for λ[ ]
NaV even with all debugging aids; error-sensitive 

• in our setting NaVs and catchable exceptions have 

equivalent expressive power 

– translations validated by QuickChecking extracted code 
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λ[ ] 

λ[ ]
throw λ[ ]

NaV 



Summary for IFC exceptions 

• reliable error handling possible even for sound 
fine-grained dynamic IFC systems 

• two mechanisms (λ[ ]
NaV and λ[ ]

throw) 

– all errors recoverable, even IFC violations 

– necessary ingredients: sound public labels (brackets) 
                                      + delayed exceptions 

– quite radical design (not backwards compatible!) 

– we believe delayed exceptions applicable to static IFC 
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Testing Noninterference, Quickly 

53 

Cătălin Hriţcu,  John Hughes,  Benjamin C. Pierce, 
Antal Spector-Zabusky,  Dimitrios Vytiniotis, 

Arthur Azevedo de Amorim,  Leonidas Lampropoulos 
 

ready for submission to 
International Conference on Functional Programming (ICFP 2013) 



protection server 

• most security-critical & novel component of our system 
– best target for verification 
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more concrete  
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more abstract machine with 
built-in IFC (executable spec) 

more concrete machine 
running protection server code 

correctness of 
implementation 

noninterference (security) 

more concrete  
noninterference (security) 

Can we QuickCheck this? 

+ 



Yes we can! 

• random testing noninterference of pico-machine 
– simple stack machine with dynamic IFC (10 instrs.) 

• Push, Load, Store, Add, Sub, Noop, Jump, Call, Ret, Halt 
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Yes we can! 

• random testing noninterference of pico-machine 
– simple stack machine with dynamic IFC (10 instrs.) 

• Push, Load, Store, Add, Sub, Noop, Jump, Call, Ret, Halt 

– designing sound IFC mechanism still tricky! 
• Jump / Call – to secret address raises PC label 

• Ret – unwinds stack, taints result, restores PC label 

• Store – no-sensitive-upgrade check [Austin&Flanagan, ‘09]: 
pc-label `join` label-of-address <= label-of-value-stored-at-address 

• we proved noninterference for this in Coq in 1 week! 
why bother with testing? 
– we hope that QuickCheck will scale better than Coq to the 

much more complicated real SAFE machine (~110 instrs.) 
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How do we do it? 

• Clever program generation strategies 
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gen. strategy # bugs found mean time to find max time to find 

naive 4 out of 6 3030.30ms > 300s 

weighted 4 out of 6 201.20ms > 300s 

+ sequences 6 out of 6 16.45ms 300s 

+ smart integers 6 out of 6 5.85ms 16.66s 

+ gen. by exec. 6 out of 6 1.51ms 1.52s 
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How do we do it? 

• Clever program generation strategies 
 

 

 

 

 

 

• Shrinking counterexamples 

• Stronger noninterference properties 
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noninterference 

EENI SNI 

LLNI 

SSNI 
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noninterference 

EENI SNI 

LLNI 

SSNI 

what we actually want 

for successfully 
terminating 

programs 

for server loops 

what’s 
easy 

to test 
what we can prove 
by (co)induction 
(“unwinding conditions”) 
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End-to-end noninterference (EENI) 

L1
init 

L2
init 

L1
halt 

L2
halt 

* 

what we actually want for terminating programs 

* 

differ only 
on secrets 



Single-step noninterference (SSNI) 

L 

L 

* 

* 

H H 

H 

H 

L 

L 

L 

Lhalt 

* 

easy to test and suitable for proof (“unwinding conditions”) 



Experiments 

• Stronger properties discover bugs much faster 
 
 
 
 
 

 

• SSNI is very cool, but ... 
– SSNI requires discovering stronger invariants 

– invariants of SAFE machine are very complicated 
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strategy # bugs found mean time to find max time to find 

EENI + GenByExec 14 out of 14 549.45ms 300.00s 

LLNI + GenByExec 14 out of 14 17.13ms 0.90s 

SSNI + Naive 14 out of 14 26.70ms 0.45s 

SSNI + TinyStates 14 out of 14 4.68ms 0.03s 



Ongoing work on CRASH/SAFE 

• verifying simple protection server in Coq 
– micro-machine: hardware types, dynamic allocation, principal 

generation, public labels 
– joint with Benjamin Pierce, Delphine Demange, Andrew Tolmach 

• protecting data integrity with signatures 
– meaning(lessness) of IFC endorsement; reviving trademarks [Moris ‘73] 
– beyond data abstraction (dynamic sealing): caching contracts 

• fine-grained higher-order containment 
• Breeze design paper 
• Tag management unit (TMU) design paper 
• implementing Breeze labels cryptographically 
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Future directions 

• Formally verified privacy-preserving distributed 
applications (e.g. ones based on zero-knowledge proofs) 
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digital credentials protecting 

personal information 
privacy-enabled identity systems 

“proving you are over 18 without revealing your age” 



Future directions 

• Formally verified privacy-preserving distributed 
applications (e.g. ones based on zero-knowledge proofs) 
 
 
 
 
 
 
 
 
 

• Fine-grained access control and integrity protection for 
mobile devices 
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+ ➔ 
digital credentials protecting 

personal information 
privacy-enabled identity systems 

“proving you are over 18 without revealing your age” 



THE END 

75 


