
CRASH/SAFE: Clean-slate Co-design
of a Secure Host Architecture

Cătălin Hrițcu

Outline

• Overview of CRASH/SAFE project

– clean-slate co-design of a secure host architecture

• Exceptions and information flow control (IFC)

– to appear at IEEE S&P 2013 (Oakland)

• Testing noninterference with QuickCheck

– ready for ICFP 2013 (deadline in 24 hours)

• Future directions

2

CRASH/SAFE project

• Academic partners (16):

– University of Pennsylvania (11)

– Harvard University (4)

– Northeastern University (1)

• Industrial partners (24):

– BAE systems (21) + Clozure (3)

• Funded by DARPA
– Clean-Slate Design of Resilient, Adaptive, Secure Hosts

3

40!

Clean-slate co-design of net host

4

Clean-slate co-design of net host

5

Primary goal:
design and implement a
significantly more secure
architecture, without
backwards compatibility
concerns

Clean-slate co-design of net host

New stack:

• language

• system

• hardware

6

Primary goal:
design and implement a
significantly more secure
architecture, without
backwards compatibility
concerns

Clean-slate co-design of net host

New stack:

• language

• system

• hardware

7

Secondary goal:
verify that it’s secure
(whatever that means)

Primary goal:
design and implement a
significantly more secure
architecture, without
backwards compatibility
concerns

Transistors were
precious back

then, my boy ...

Grandpa! Why
are computers
so insecure?

8

Hardware is now abundant

9

Time for a redesign targeting security!

10

language

system

hardware

Time for a redesign targeting security!

11

language

system

hardware

cool ideas

Time for a redesign targeting security!

12

language

system

hardware

cool ideas

cool ideas

cool ideas

Time for a redesign targeting security!

13

language

system

hardware

Time for a redesign targeting security!

14

language

system

hardware

fine-grained protection basic abstraction

Time for a redesign targeting security!

15

language

system

hardware V
er

if
ic

at
io

n

fine-grained protection basic abstraction

Language (Breeze)

• testing ground for ideas we port to lower levels

• type and memory safe high-level language
– dynamically typed + dynamically-checked contracts

• functional core (λ) + state(!) + concurrency (π)
– message-passing communication (channels)

16

Language (Breeze)

• testing ground for ideas we port to lower levels

• type and memory safe high-level language
– dynamically typed + dynamically-checked contracts

• functional core (λ) + state(!) + concurrency (π)
– message-passing communication (channels)

• built-in fine-grained protection mechanisms:
– values are attached security labels (e.g. public/secret)

– dynamic information flow control (IFC)

– discretionary access control (clearance)

17

Language (Breeze)

• testing ground for ideas we port to lower levels

• type and memory safe high-level language

– dynamically typed + dynamically-checked contracts

• functional core (λ) + state(!) + concurrency (π)

– message-passing communication (channels)

• built-in fine-grained protection mechanisms:

– values are attached security labels (e.g. public/secret)

– dynamic information flow control (IFC)

– discretionary access control (clearance)

• novel exception handling mechanism (more later)

 18

Runtime/operating system

• manages:
– time - scheduler

– memory - allocator, garbage collector

– communication and devices - channels

– protection – dynamic IFC and access control

19

Runtime/operating system

• manages:

– time - scheduler

– memory - allocator, garbage collector

– communication and devices - channels

– protection – dynamic IFC and access control

• zero-kernel operating system

– reduced TCB even wrt microkernel

– least privilege & privilege separation taken to extreme

– kernel split into mutually distrustful federated services

20

Hardware

• all instructions have well-defined semantics
– abstractions strictly enforced

21

Hardware

• all instructions have well-defined semantics
– abstractions strictly enforced

• low-fat pointers
– can’t access/write out of frame bounds

22

Hardware

• all instructions have well-defined semantics
– abstractions strictly enforced

• low-fat pointers
– can’t access/write out of frame bounds

• dynamic types
– can’t turn ints into pointers (unforgeable capabilities)

23

Hardware

• all instructions have well-defined semantics
– abstractions strictly enforced

• low-fat pointers
– can’t access/write out of frame bounds

• dynamic types
– can’t turn ints into pointers (unforgeable capabilities)

• closures (λ) + protected call stack

24

Hardware

• all instructions have well-defined semantics
– abstractions strictly enforced

• low-fat pointers
– can’t access/write out of frame bounds

• dynamic types
– can’t turn ints into pointers (unforgeable capabilities)

• closures (λ) + protected call stack
• authority + gates (authority switching closures)

– fine-grained privilege separation / cheap system calls

25

Hardware

• all instructions have well-defined semantics
– abstractions strictly enforced

• low-fat pointers
– can’t access/write out of frame bounds

• dynamic types
– can’t turn ints into pointers (unforgeable capabilities)

• closures (λ) + protected call stack
• authority + gates (authority switching closures)

– fine-grained privilege separation / cheap system calls

• programmable tag management unit (TMU)

26

Tag management

• every word tagged with arbitrary pointer
– only operating system interprets these pointers

• on each instruction TMU looks up tags of
operands in a hardware rule cache
– found → rule provides tags on results (no delay)

– not found → trap to software (protection server)

• extremely fine-grained access control + dynamic
IFC enforced at the lowest level

27

Robust Exception Handling for
Sound Fine-Grained Dynamic IFC

All Your IFCException Are Belong To Us

28

Cătălin Hrițcu, Michael Greenberg, Ben Karel,
Benjamin Pierce, Greg Morrisett

IEEE Symposium on Security & Privacy 2013 (Oakland)

Exception handling

• we wanted reliable error recovery in Breeze

– recovery from all exceptions including IFC violations

• however, existing work assumes errors are fatal

29

Exception handling

• we wanted reliable error recovery in Breeze

– recovery from all exceptions including IFC violations

• however, existing work assumes errors are fatal

– makes some things easier ... at the expense of others

30

+secrecy +integrity –availability

Problem #1: IFC exceptions reveal
information about labels

label
channel

31

• labels are themselves information channels

• get soundness by preventing secrets from
leaking either into or out of label channel

Problem #1: IFC exceptions reveal
information about labels

label
channel

labels must be hidden allow labels to
depend on secrets

32

• labels are themselves information channels

• get soundness by preventing secrets from
leaking either into or out of label channel

• secret bit: s@secret low <= secret <= top-secret

Problem #1: IFC exceptions reveal
information about labels

33

• labels are themselves information channels

• get soundness by preventing secrets from
leaking either into or out of label channel

• secret bit: s@secret low <= secret <= top-secret

(if s then ()@secret
 else ()@top-secret);

Problem #1: IFC exceptions reveal
information about labels

34

encode s into label

• labels are themselves information channels

• get soundness by preventing secrets from
leaking either into or out of label channel

• secret bit: s@secret low <= secret <= top-secret

(if s then ()@secret
 else ()@top-secret);

Problem #1: IFC exceptions reveal
information about labels

35

if branch − assignment works
else branch − IFCException

href :=

let href = ref secret () in
.......

• labels are themselves information channels

• get soundness by preventing secrets from
leaking either into or out of label channel

• secret bit: s@secret low <= secret <= top-secret

try

 true
catch IFCException => false

(if s then ()@secret
 else ()@top-secret);

Problem #1: IFC exceptions reveal
information about labels

36

href :=

let href = ref secret () in
.......

• labels are themselves information channels

• get soundness by preventing secrets from
leaking either into or out of label channel

• labels are themselves information channels

• get soundness by preventing secrets from
leaking either into or out of label channel

Problem #1: IFC exceptions reveal
information about labels

label
channel

labels must be hidden allow labels to
depend on secrets

IFC errors must be hidden!
(and we don’t want that)

if s then ()@secret else ()@top-secret

37

• labels are themselves information channels

• get soundness by preventing secrets from
leaking either into or out of label channel

Problem #1: IFC exceptions reveal
information about labels

label
channel

enforce that labels don’t
depend on secrets

labels and IFC errors
can be observed
(“public labels”)

if s then ()@secret else ()@top-secret

38

• labels are themselves information channels

• get soundness by preventing secrets from
leaking either into or out of label channel

top-secret[if s then ()@secret else ()@top-secret]

Problem #1: IFC exceptions reveal
information about labels

label
channel

enforce that labels don’t
depend on secrets

labels and IFC errors
can be observed
(“public labels”)

Solution #1: brackets

39

Problem #2: exceptions destroy
control flow join points

• ending brackets need to be control flow join points,
otherwise...
– try

 let _ = secret[if h then throw Ex] in
 false
catch Ex => true

40

Problem #2: exceptions destroy
control flow join points

• ending brackets need to be control flow join points,
otherwise...
– try

 let _ = secret[if h then throw Ex] in
 false
catch Ex => true

• brackets need to delay all exceptions!
– secret[if true@secret then throw Ex] => “(Error Ex)@secret”

– secret [if false@secret then throw Ex] => “(Success ())@secret”

41

Problem #2: exceptions destroy
control flow join points

• ending brackets need to be control flow join points,
otherwise...
– try

 let _ = secret[if h then throw Ex] in
 false
catch Ex => true

• brackets need to delay all exceptions!
– secret[if true@secret then throw Ex] => “(Error Ex)@secret”

– secret [if false@secret then throw Ex] => “(Success ())@secret”

• similarly for failed brackets
– secret[42@top-secret] => “(Error EBracket)@secret”

42

Solution #2: Delayed exceptions

• delayed exceptions unavoidable
– still have a choice how to propagate them

• we studied two main alternatives:
1. mix active and delayed exceptions (λ[]

throw)

43

Solution #2: Delayed exceptions

• delayed exceptions unavoidable

– still have a choice how to propagate them

• we studied two main alternatives:

1. mix active and delayed exceptions (λ[]
throw)

2. only delayed exceptions (λ[]
NaV)

• delayed exception = not-a-value (NaV)

• NaVs are first-class replacement for values

• NaVs propagated solely via data flow

• NaVs are labeled and pervasive

• simpler and more radical solution; implemented in Breeze

44

What’s in a NaV? Debugging aids!

• error message
– `EDivisionByZero (“can’t divide %1 by 0”, 42)

• stack trace

– pinpoints error origin
(not the billion-dollar mistake!)

• propagation trace

– how did the error make it here?

45

What’s in a NaV? Debugging aids!

• error message
– `EDivisionByZero (“can’t divide %1 by 0”, 42)

• stack trace

– pinpoints error origin
(not the billion-dollar mistake!)

• propagation trace

– how did the error make it here?

46

NaVs are compiler writer’s
dream, especially if

compiler is allowed to be
imprecise about these

debugging aids
(Greg Morrisett)

NaV-lax vs. NaV-strict behavior
• all non-parametric operations are NaV-strict

– NaV@low + 42@high => NaV@high

• for parametric operations we can chose:
 NaV-lax or NaV-strict
– (fun x => 42) NaV => 42 or => NaV

47

NaV-lax vs. NaV-strict behavior
• all non-parametric operations are NaV-strict

– NaV@low + 42@high => NaV@high

• for parametric operations we can chose:
 NaV-lax or NaV-strict
– (fun x => 42) NaV => 42 or => NaV
– Cons NaV Nil => Cons NaV Nil or => NaV

48

NaV-lax vs. NaV-strict behavior
• all non-parametric operations are NaV-strict

– NaV@low + 42@high => NaV@high

• for parametric operations we can chose:
 NaV-lax or NaV-strict
– (fun x => 42) NaV => 42 or => NaV
– Cons NaV Nil => Cons NaV Nil or => NaV
– (r := NaV,r=7) => ((),r=NaV) or => (NaV,r=7)

49

NaV-lax vs. NaV-strict behavior
• all non-parametric operations are NaV-strict

– NaV@low + 42@high => NaV@high

• for parametric operations we can chose:
 NaV-lax or NaV-strict
– (fun x => 42) NaV => 42 or => NaV
– Cons NaV Nil => Cons NaV Nil or => NaV
– (r := NaV,r=7) => ((),r=NaV) or => (NaV,r=7)

• NaV-strict behavior reveals errors earlier
– but it also introduces additional IFC constraints
– applied everywhere it makes brackets useless

• in Breeze the programmer can choose
– in formal development NaV-lax everywhere

50

Formal results

• proved termination-insensitive noninterference in Coq

for λ[], λ[]
NaV, and λ[]

throw

– for λ[]
NaV even with all debugging aids; error-sensitive

• in our setting NaVs and catchable exceptions have

equivalent expressive power

– translations validated by QuickChecking extracted code

51

λ[]

λ[]
throw λ[]

NaV

Summary for IFC exceptions

• reliable error handling possible even for sound
fine-grained dynamic IFC systems

• two mechanisms (λ[]
NaV and λ[]

throw)

– all errors recoverable, even IFC violations

– necessary ingredients: sound public labels (brackets)
 + delayed exceptions

– quite radical design (not backwards compatible!)

– we believe delayed exceptions applicable to static IFC

52

Testing Noninterference, Quickly

53

Cătălin Hriţcu, John Hughes, Benjamin C. Pierce,
Antal Spector-Zabusky, Dimitrios Vytiniotis,

Arthur Azevedo de Amorim, Leonidas Lampropoulos

ready for submission to
International Conference on Functional Programming (ICFP 2013)

protection server

• most security-critical & novel component of our system
– best target for verification

54

more concrete machine
running protection server code noninterference (security)

protection server

• most security-critical & novel component of our system
– best target for verification

55

more abstract machine with
built-in IFC (executable spec)

more concrete machine
running protection server code

more concrete
noninterference (security)

protection server

• most security-critical & novel component of our system
– best target for verification

56

more abstract machine with
built-in IFC (executable spec)

more concrete machine
running protection server code

correctness of
implementation

noninterference (security)

more concrete
noninterference (security)

+

protection server

• most security-critical & novel component of our system
– best target for verification

57

more abstract machine with
built-in IFC (executable spec)

more concrete machine
running protection server code

correctness of
implementation

noninterference (security)

more concrete
noninterference (security)

Can we QuickCheck this?

+

Yes we can!

• random testing noninterference of pico-machine
– simple stack machine with dynamic IFC (10 instrs.)

• Push, Load, Store, Add, Sub, Noop, Jump, Call, Ret, Halt

58

Yes we can!

• random testing noninterference of pico-machine
– simple stack machine with dynamic IFC (10 instrs.)

• Push, Load, Store, Add, Sub, Noop, Jump, Call, Ret, Halt

– designing sound IFC mechanism still tricky!
• Jump / Call – to secret address raises PC label
• Ret – unwinds stack, taints result, restores PC label
• Store – no-sensitive-upgrade check [Austin&Flanagan, ‘09]:

pc-label `join` label-of-address <= label-of-value-stored-at-address

59

Yes we can!

• random testing noninterference of pico-machine
– simple stack machine with dynamic IFC (10 instrs.)

• Push, Load, Store, Add, Sub, Noop, Jump, Call, Ret, Halt

– designing sound IFC mechanism still tricky!
• Jump / Call – to secret address raises PC label

• Ret – unwinds stack, taints result, restores PC label

• Store – no-sensitive-upgrade check [Austin&Flanagan, ‘09]:
pc-label `join` label-of-address <= label-of-value-stored-at-address

• we proved noninterference for this in Coq in 1 week!
why bother with testing?

60

Yes we can!

• random testing noninterference of pico-machine
– simple stack machine with dynamic IFC (10 instrs.)

• Push, Load, Store, Add, Sub, Noop, Jump, Call, Ret, Halt

– designing sound IFC mechanism still tricky!
• Jump / Call – to secret address raises PC label

• Ret – unwinds stack, taints result, restores PC label

• Store – no-sensitive-upgrade check [Austin&Flanagan, ‘09]:
pc-label `join` label-of-address <= label-of-value-stored-at-address

• we proved noninterference for this in Coq in 1 week!
why bother with testing?
– we hope that QuickCheck will scale better than Coq to the

much more complicated real SAFE machine (~110 instrs.)

61

How do we do it?

• Clever program generation strategies

62

gen. strategy # bugs found mean time to find max time to find

naive 4 out of 6 3030.30ms > 300s

weighted 4 out of 6 201.20ms > 300s

+ sequences 6 out of 6 16.45ms 300s

+ smart integers 6 out of 6 5.85ms 16.66s

+ gen. by exec. 6 out of 6 1.51ms 1.52s

How do we do it?

• Clever program generation strategies

• Shrinking counterexamples

63

gen. strategy # bugs found mean time to find max time to find

naive 4 out of 6 3030.30ms > 300s

weighted 4 out of 6 201.20ms > 300s

+ sequences 6 out of 6 16.45ms 300s

+ smart integers 6 out of 6 5.85ms 16.66s

+ gen. by exec. 6 out of 6 1.51ms 1.52s

How do we do it?

• Clever program generation strategies

• Shrinking counterexamples

• Stronger noninterference properties

64

gen. strategy # bugs found mean time to find max time to find

naive 4 out of 6 3030.30ms > 300s

weighted 4 out of 6 201.20ms > 300s

+ sequences 6 out of 6 16.45ms 300s

+ smart integers 6 out of 6 5.85ms 16.66s

+ gen. by exec. 6 out of 6 1.51ms 1.52s

noninterference

EENI SNI

LLNI

SSNI

65

noninterference

EENI SNI

LLNI

SSNI

what we actually want

for successfully
terminating

programs

for server loops

66

noninterference

EENI SNI

LLNI

SSNI

what we actually want

for successfully
terminating

programs

for server loops

what’s
easy

to test

67

noninterference

EENI SNI

LLNI

SSNI

what we actually want

for successfully
terminating

programs

for server loops

what’s
easy

to test
what we can prove
by (co)induction
(“unwinding conditions”)

68

End-to-end noninterference (EENI)

L1
init

L2
init

L1
halt

L2
halt

*

what we actually want for terminating programs

*

differ only
on secrets

Single-step noninterference (SSNI)

L

L

*

*

H H

H

H

L

L

L

Lhalt

*

easy to test and suitable for proof (“unwinding conditions”)

Experiments

• Stronger properties discover bugs much faster

• SSNI is very cool, but ...
– SSNI requires discovering stronger invariants

– invariants of SAFE machine are very complicated

71

strategy # bugs found mean time to find max time to find

EENI + GenByExec 14 out of 14 549.45ms 300.00s

LLNI + GenByExec 14 out of 14 17.13ms 0.90s

SSNI + Naive 14 out of 14 26.70ms 0.45s

SSNI + TinyStates 14 out of 14 4.68ms 0.03s

Ongoing work on CRASH/SAFE

• verifying simple protection server in Coq
– micro-machine: hardware types, dynamic allocation, principal

generation, public labels
– joint with Benjamin Pierce, Delphine Demange, Andrew Tolmach

• protecting data integrity with signatures
– meaning(lessness) of IFC endorsement; reviving trademarks [Moris ‘73]
– beyond data abstraction (dynamic sealing): caching contracts

• fine-grained higher-order containment
• Breeze design paper
• Tag management unit (TMU) design paper
• implementing Breeze labels cryptographically

72

Future directions

• Formally verified privacy-preserving distributed
applications (e.g. ones based on zero-knowledge proofs)

73

+ ➔
digital credentials protecting

personal information
privacy-enabled identity systems

“proving you are over 18 without revealing your age”

Future directions

• Formally verified privacy-preserving distributed
applications (e.g. ones based on zero-knowledge proofs)

• Fine-grained access control and integrity protection for
mobile devices

74

+ ➔
digital credentials protecting

personal information
privacy-enabled identity systems

“proving you are over 18 without revealing your age”

THE END

75

