
CRASH/SAFE: Clean-slate Co-design
of a Secure Host Architecture

Cătălin Hrițcu

CRASH/SAFE project

• Academic partners (16):

– University of Pennsylvania (11)

– Harvard University (4)

– Northeastern University (1)

• Industrial partners (24):

– BAE systems (21) + Clozure (3)

• Funded by DARPA
– Clean-Slate Design of Resilient, Adaptive, Secure Hosts

2

40!

Clean-slate co-design of net host

New stack:

• language

• runtime

• hardware

3

Secondary goal:
verify that it’s secure
(whatever that means)

Primary goal:
design and implement a
significantly more secure
architecture, without
backwards compatibility
concerns

Transistors were
precious back

then, my boy ...

Grandpa! Why
are computers
so insecure?

4

Hardware is now abundant

5

Formal methods are now better

• random testing

– QuickCheck [Claessen & Hughes, ICFP’00]

• automatic theorem provers & SMT solvers

• machine-checked proofs

– CompCert [Leroy, POPL’06]

– seL4 [Klein et al, SOSP’09]

– CertiCrypt [Barthe et al., POPL’09]

– ZKCrypt [Almeida et al, CCS’12]

6

Security is much more important

7

Time for a redesign!

8

language

runtime

hardware V
er

if
ic

at
io

n

fine-grained

Language (Breeze)

• testing ground for ideas we port to lower levels

• type and memory safe high-level language

– dynamically typed + dynamically-checked contracts

• functional core (λ) + state(!) + concurrency (π)

– message-passing communication (channels)

• built-in fine-grained protection mechanisms:

– values are attached security labels (e.g. public/secret)

– dynamic information flow control (IFC)

– discretionary access control (clearance)

9

Runtime system

• manages:

– time: scheduler

– memory: allocator, garbage collector

– communication and resources: channels

– protection: principals, authorities, and tags (PAT)

• small trusted computing base

• comparimentalized

– a dozen mutually distrustful servers (least privilege)

10

Hardware

• all instructions have well-defined semantics
– abstractions strictly enforced

• low-fat pointers
– can’t access/write out of frame bounds

• dynamic types
– can’t turn ints into pointers (unforgeable capabilities)

• authority + closures/gates (λ) + protected stack
– fine-grained privilege separation

• programmable tag management unit (TMU)

11

Tag management

• every word tagged with arbitrary pointer

– only runtime system interprets these pointers

• on each instruction TMU looks up tags of
operands in a hardware rule cache

– found → rule provides tags on results (no delay)

– not found → trap to software (PAT server)

• access control + IFC enforced at lowest level

12

Project status (2/4 years)

• language:
– stable interpreter, work-in-progress compiler
– applications: e.g. web server running wiki
– Coq proofs for various core calculi (non-interference)

• runtime:
– detailed design, some prototype servers
– work on testing+/verifying simplified PAT server

• hardware:
– full-fledged un-optimized FPGA prototype
– novel instruction set, simulators, debugger, ...
– executable instruction set semantics in Coq

13

Research outcomes

• position papers / talks
– PLOS’11: Preliminary Design of the SAFE Platform

– PLPV’12: Verification Challenges of Pervasive Information Flow

– AHNS’12: Hardware Support for Safety Interlocks and Introspection

• language-based security
– under review at Oakland: All Your IFCException Are Belong To Us

– likely CSF submission: A Theory of IFC Labels

• hardware mechanisms
– FPGA’13: Area-Efficient Near-Associative Memories on FPGAs

– under review at Oakland: Low-Fat Pointers

14

MY RESEARCH

15

Pre-SAFE work

• crypto protocols
– tools aiding design, analysis, and implementation

– more expressive type systems (e.g. first one for ZK)
[CCS’08, CSF’09, TOSCA’11, PhD thesis]

– remote electronic voting [CSF’08]

– code generation (Expi2Java) [NFM’12]

• data processing language (Microsoft “M”)
– semantic subtyping [ICFP’10, JFP’12]

– verification condition generation [CPP’11]

16

Robust Exception Handling for
Sound Fine-Grained Dynamic IFC

All Your IFCException Are Belong To Us

17

joint work with Michael Greenberg, Ben Karel,
Benjamin Pierce, and Greg Morrisett

SAFE work

Exception handling

• we wanted all Breeze errors to be recoverable

– including IFC violations

• however, existing work assumes errors are fatal

– makes some things easier ... at the expense of others

18

+secrecy +integrity –availability

Problem #1: IFC exceptions reveal
information about labels

• labels are themselves information channels

• get soundness by preventing secrets from
leaking either into or out of label channel

19

label
channel

Problem #1: IFC exceptions reveal
information about labels

• labels are themselves information channels

• get soundness by preventing secrets from
leaking either into or out of label channel

20

label
channel

labels must be hidden
allow labels to

depend on secrets

if h@secret then ()@secret else ()@top-secret

Problem #1: IFC exceptions reveal
information about labels

• labels are themselves information channels

• get soundness by preventing secrets from
leaking either into or out of label channel

21

label
channel

labels must be hidden
allow labels to

depend on secrets
IFC errors must be hidden!
(and we don’t want that)

if h@secret then ()@secret else ()@top-secret

Problem #1: IFC exceptions reveal
information about labels

• labels are themselves information channels

• get soundness by preventing secrets from
leaking either into or out of label channel

22

label
channel

enforce that labels don’t
depend on secrets

labels and IFC errors
can be observed

if h@secret then ()@secret else ()@top-secret

top-secret[if h@secret then ()@secret else ()@top-secret]

Problem #1: IFC exceptions reveal
information about labels

• labels are themselves information channels

• get soundness by preventing secrets from
leaking either into or out of label channel

23

label
channel

enforce that labels don’t
depend on secrets

labels and IFC errors
can be observed

Solution #1: brackets

Problem #2: exceptions destroy
control flow join points

• ending brackets need to be control flow join points
– try

 let _ = secret[if h then throw Ex] in
 false
catch Ex => true

• brackets need to delay all exceptions!
– secret[if true@secret then throw Ex] => “(Error Ex)@secret”

– secret [if false@secret then throw Ex] => “(Success ())@secret”

• similarly for failed brackets
– secret[42@top-secret] => “(Error EBracket)@secret”

24

Solution #2: Delayed exceptions

• delayed exceptions unavoidable

– still have a choice how to propagate them

• we studied two alternatives for error handling:

1. mix active and delayed exceptions (λ[]
throw)

2. only delayed exceptions (λ[]
NaV)

• delayed exception = not-a-value (NaV)

• NaVs are first-class replacement for values

• NaVs propagated solely via data flow

• NaVs are labeled and pervasive

• more radical solution; implemented in Breeze

25

What’s in a NaV?

• error message
– `EDivisionByZero (“can’t divide %1 by 0”, 42)

• stack trace

– pinpoints error origin
(not the billion-dollar mistake)

• propagation trace

– how did the error make it here?

26

Formal results

• proved termination-insensitive non-interference in

Coq for λ[], λ[]
NaV, and λ[]

throw

– for λ[]
NaV even with all debugging aids; error-sensitive

• in our setting NaVs and catchable exceptions have

equivalent expressive power

– translations validated by QuickChecking extracted code

27

λ[]

λ[]
throw λ[]

NaV

Summary for IFC exceptions

• reliable error handling possible even for
sound fine-grained dynamic IFC systems

• we study two mechanisms (λ[]
NaV and λ[]

throw)

– all errors recoverable, even IFC violations

– key ingredients: sound public labels (brackets)
 + delayed exceptions

– quite radical design (not backwards compatible!)

28

Ongoing SAFE work

• testing+/verifying PAT server
– with Benjamin Pierce, Dimitrios Vytiontis, John Hughes,

Andrew Tolmach, Delphine Demange, …

• protecting data integrity with signature labels
– on the meaning(lessness) of IFC endorsement

– reviving trademarks [Moris ‘73]

– beyond data abstraction (dynamic sealing): caching contracts

• implementing Breeze labels cryptographically
– potential collaboration with Deian Stefan / LIO team (DC labels)

29

Testing+/verifying PAT server

30

abstract machine

concrete machine
+ PAT server

correctness of
PAT server

implementation

security
(non-interference)

random
testing

Coq
proving

already done (most of) this for
extremely simplified machines

(6 instructions)

future work:
scale this up

to the real thing

future work:
scale this up

as much as possible

challenge:
very complex

invariants
challenges:

- smart program generation
- counterexample shrinking

Some post-SAFE ideas …

• software-hardware co-design for security-critical
high-assurance devices
– voting machines, automobile subsystems (e.g. driver

assistance), medical devices (e.g. pacemakers, insulin
pumps), crypto boxes (e.g. TPMs, HSMs, etc.)
• limited/fixed functionality
• security more important than backwards compatibility

– existing devices often blatantly vulnerable
– goal #1: make security analysis part of design process
– goal #2: verify security of actual implementations

• fine-grained access control and integrity protection
for mobile devices

31

THE END

32

