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CRASH/SAFE project 

• Academic partners (16): 

– University of Pennsylvania (11) 

– Harvard University (4) 

– Northeastern University (1) 

• Industrial partners (24): 

– BAE systems (21) + Clozure (3) 

• Funded by DARPA 
– Clean-Slate Design of Resilient, Adaptive, Secure Hosts 
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40! 



Clean-slate co-design of net host 

New stack: 

• language 

• runtime 

• hardware 
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Secondary goal: 
verify that it’s secure 
(whatever that means) 

Primary goal: 
design and implement a 
significantly more secure 
architecture, without 
backwards compatibility 
concerns 



Transistors were 
precious back 

then, my boy ... 

Grandpa! Why 
are computers 
so insecure? 
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Hardware is now abundant 
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Formal methods are now better 

• random testing 

– QuickCheck [Claessen & Hughes, ICFP’00] 

• automatic theorem provers & SMT solvers 

• machine-checked proofs 

– CompCert [Leroy, POPL’06] 

– seL4 [Klein et al, SOSP’09] 

– CertiCrypt [Barthe et al., POPL’09] 

– ZKCrypt [Almeida et al, CCS’12] 
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Security is much more important 
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Time for a redesign! 

8 

language 

runtime 

hardware V
er

if
ic

at
io

n
 

fine-grained 



Language (Breeze) 

• testing ground for ideas we port to lower levels 

• type and memory safe high-level language 

– dynamically typed + dynamically-checked contracts 

• functional core (λ) + state(!) + concurrency (π) 

– message-passing communication (channels) 

• built-in fine-grained protection mechanisms: 

– values are attached security labels (e.g. public/secret) 

– dynamic information flow control (IFC) 

– discretionary access control (clearance) 
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Runtime system 

• manages: 

– time: scheduler 

– memory: allocator, garbage collector 

– communication and resources: channels 

– protection: principals, authorities, and tags (PAT) 

• small trusted computing base 

• comparimentalized 

– a dozen mutually distrustful servers (least privilege) 
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Hardware 

• all instructions have well-defined semantics 
– abstractions strictly enforced 

• low-fat pointers 
– can’t access/write out of frame bounds 

• dynamic types 
– can’t turn ints into pointers (unforgeable capabilities) 

• authority + closures/gates (λ) + protected stack 
– fine-grained privilege separation 

• programmable tag management unit (TMU) 
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Tag management 

• every word tagged with arbitrary pointer 

– only runtime system interprets these pointers 

• on each instruction TMU looks up tags of 
operands in a hardware rule cache 

– found → rule provides tags on results (no delay) 

– not found → trap to software (PAT server) 

• access control + IFC enforced at lowest level 
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Project status (2/4 years) 

• language: 
– stable interpreter, work-in-progress compiler 
– applications: e.g. web server running wiki 
– Coq proofs for various core calculi (non-interference) 

• runtime: 
– detailed design, some prototype servers 
– work on testing+/verifying simplified PAT server 

• hardware: 
– full-fledged un-optimized FPGA prototype 
– novel instruction set, simulators, debugger, ... 
– executable instruction set semantics in Coq 
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Research outcomes 

• position papers / talks 
– PLOS’11: Preliminary Design of the SAFE Platform 

– PLPV’12: Verification Challenges of Pervasive Information Flow 

– AHNS’12: Hardware Support for Safety Interlocks and Introspection 

• language-based security 
– under review at Oakland: All Your IFCException Are Belong To Us 

– likely CSF submission: A Theory of IFC Labels 

• hardware mechanisms 
– FPGA’13: Area-Efficient Near-Associative Memories on FPGAs 

– under review at Oakland: Low-Fat Pointers 
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MY RESEARCH 
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Pre-SAFE work 

• crypto protocols 
– tools aiding design, analysis, and implementation 

– more expressive type systems (e.g. first one for ZK) 
[CCS’08, CSF’09, TOSCA’11, PhD thesis] 

– remote electronic voting [CSF’08] 

– code generation (Expi2Java) [NFM’12] 

• data processing language (Microsoft “M”) 
– semantic subtyping [ICFP’10, JFP’12] 

– verification condition generation [CPP’11] 
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Robust Exception Handling for 
Sound Fine-Grained Dynamic IFC 

All Your IFCException Are Belong To Us 
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joint work with Michael Greenberg, Ben Karel, 
Benjamin Pierce, and Greg Morrisett 

SAFE work 



Exception handling 

• we wanted all Breeze errors to be recoverable 

– including IFC violations 

• however, existing work assumes errors are fatal 

– makes some things easier ... at the expense of others 
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Problem #1: IFC exceptions reveal 
information about labels 

• labels are themselves information channels 

• get soundness by preventing secrets from 
leaking either into or out of label channel 
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channel 
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label 
channel 

labels must be hidden 
allow labels to 

depend on secrets 

if h@secret then ()@secret else ()@top-secret 



Problem #1: IFC exceptions reveal 
information about labels 

• labels are themselves information channels 

• get soundness by preventing secrets from 
leaking either into or out of label channel 
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label 
channel 

labels must be hidden 
allow labels to 

depend on secrets 
IFC errors must be hidden! 
(and we don’t want that) 

if h@secret then ()@secret else ()@top-secret 



Problem #1: IFC exceptions reveal 
information about labels 

• labels are themselves information channels 

• get soundness by preventing secrets from 
leaking either into or out of label channel 
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label 
channel 

enforce that labels don’t 
depend on secrets 

labels and IFC errors 
can be observed 

if h@secret then ()@secret else ()@top-secret 



top-secret[if h@secret then ()@secret else ()@top-secret] 

Problem #1: IFC exceptions reveal 
information about labels 

• labels are themselves information channels 

• get soundness by preventing secrets from 
leaking either into or out of label channel 
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label 
channel 

enforce that labels don’t 
depend on secrets 

labels and IFC errors 
can be observed 

Solution #1: brackets 



Problem #2: exceptions destroy 
control flow join points 

• ending brackets need to be control flow join points 
– try 

  let _ = secret[if h then throw Ex] in 
  false 
catch Ex => true 

• brackets need to delay all exceptions! 
– secret[if true@secret then throw Ex] => “(Error Ex)@secret” 

– secret [if false@secret then throw Ex] => “(Success ())@secret” 

• similarly for failed brackets 
– secret[42@top-secret] => “(Error EBracket)@secret” 

24 



Solution #2: Delayed exceptions 

• delayed exceptions unavoidable 

– still have a choice how to propagate them 

• we studied two alternatives for error handling: 

1. mix active and delayed exceptions (λ[ ]
throw) 

2. only delayed exceptions (λ[ ]
NaV) 

• delayed exception = not-a-value (NaV) 

• NaVs are first-class replacement for values 

• NaVs propagated solely via data flow 

• NaVs are labeled and pervasive 

• more radical solution; implemented in Breeze 
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What’s in a NaV? 

• error message 
– `EDivisionByZero (“can’t divide %1 by 0”, 42) 

• stack trace 

– pinpoints error origin 
(not the billion-dollar mistake) 

• propagation trace 

– how did the error make it here? 
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Formal results 

• proved termination-insensitive non-interference in 

Coq  for λ[ ], λ[ ]
NaV, and λ[ ]

throw  

– for λ[ ]
NaV even with all debugging aids; error-sensitive 

• in our setting NaVs and catchable exceptions have 

equivalent expressive power 

– translations validated by QuickChecking extracted code 
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Summary for IFC exceptions 

• reliable error handling possible even for 
sound fine-grained dynamic IFC systems 

• we study two mechanisms (λ[ ]
NaV and λ[ ]

throw) 

– all errors recoverable, even IFC violations 

– key ingredients: sound public labels (brackets) 
                          + delayed exceptions 

– quite radical design (not backwards compatible!) 
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Ongoing SAFE work 

• testing+/verifying PAT server 
– with Benjamin Pierce, Dimitrios Vytiontis, John Hughes, 

Andrew Tolmach, Delphine Demange, … 

• protecting data integrity with signature labels 
– on the meaning(lessness) of IFC endorsement 

– reviving trademarks [Moris ‘73] 

– beyond data abstraction (dynamic sealing): caching contracts 

• implementing Breeze labels cryptographically 
– potential collaboration with Deian Stefan / LIO team (DC labels) 

29 



Testing+/verifying PAT server 
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abstract machine 

concrete machine 
+ PAT server 

correctness of 
PAT server 

implementation 

security 
(non-interference) 

random 
testing 

Coq 
proving 

already done (most of) this for  
extremely simplified machines 

(6 instructions) 

future work: 
scale this up 

to the real thing 

future work: 
scale this up 

as much as possible 

challenge: 
very complex 

invariants 
challenges: 

- smart program generation 
- counterexample shrinking 



Some post-SAFE ideas … 

• software-hardware co-design for security-critical 
high-assurance devices 
– voting machines, automobile subsystems (e.g. driver 

assistance), medical devices (e.g. pacemakers, insulin 
pumps), crypto boxes (e.g. TPMs, HSMs, etc.) 
• limited/fixed functionality 
• security more important than backwards compatibility 

– existing devices often blatantly vulnerable 
– goal #1: make security analysis part of design process 
– goal #2: verify security of actual implementations 

• fine-grained access control and integrity protection 
for mobile devices 
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THE END 
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