CRASH/SAFE: Clean-slate Co-design of a Secure Host Architecture

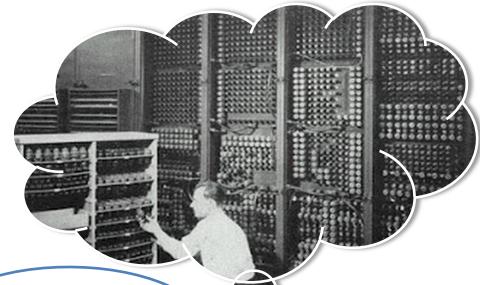
Cătălin Hrițcu

CRASH/SAFE project

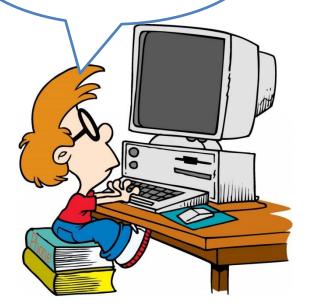
- Academic partners (16):
 - University of Pennsylvania (11)
 - Harvard University (4)
 - Northeastern University (1)
- Industrial partners (24):
 - BAE systems (21) + Clozure (3)
- Funded by DARPA
 - Clean-Slate Design of Resilient, Adaptive, Secure Hosts

40!

Clean-slate co-design of net host

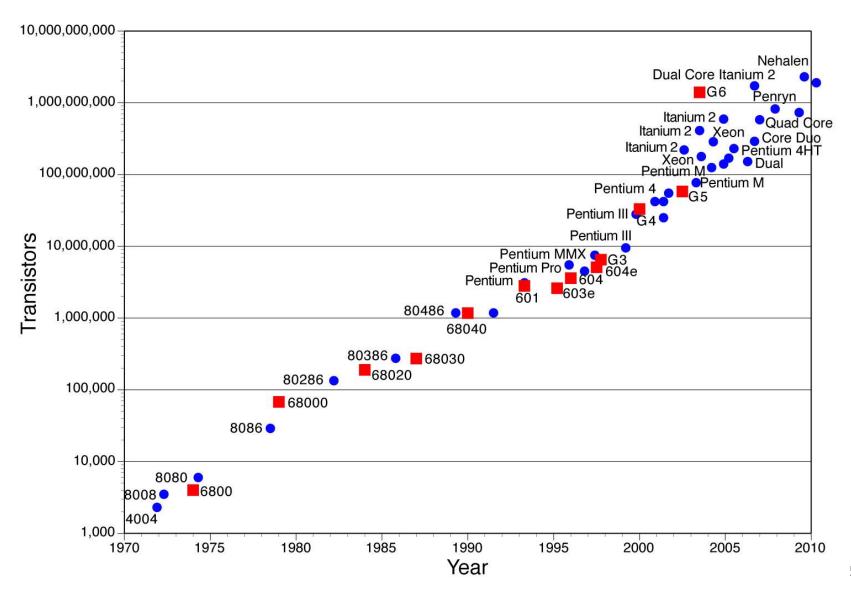

Primary goal:

design and implement a significantly more secure architecture, without backwards compatibility concerns

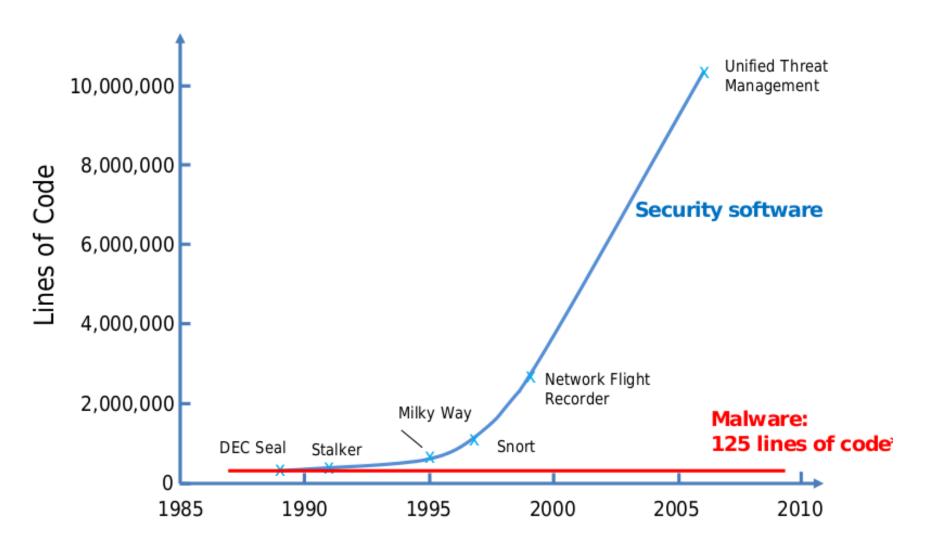

Secondary goal: verify that it's secure (whatever that means)

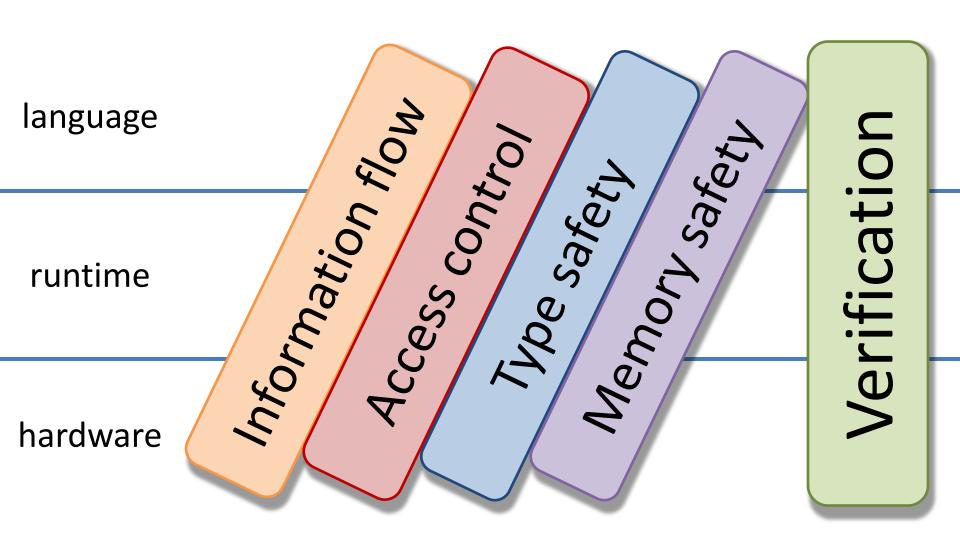
New stack:

- language
- runtime
- hardware


Grandpa! Why are computers so insecure?

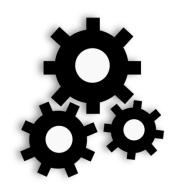
Transistors were precious back then, my boy ...


Hardware is now abundant


Formal methods are better now

- random testing
 - QuickCheck [Claessen & Hughes, ICFP'00]
- automatic theorem provers & SMT solvers
- machine-checked proofs
 - CompCert [Leroy, POPL'06]
 - seL4 [Klein et al, SOSP'09]
 - CertiCrypt [Barthe et al., POPL'09]
 - ZKCrypt [Almeida et al, CCS'12]

Security is much more important


Time for a redesign!

Language (Breeze)

- testing ground for ideas we port to lower levels
- type and memory safe high-level language
 - dynamically typed + dynamically-checked contracts
- functional core (λ) + state(!) + concurrency (π)
 - message-passing communication (channels)
- built-in fine-grained protection mechanisms:
 - values are attached security labels (e.g. public/secret)
 - dynamic information flow control (IFC)
 - discretionary access control (clearance)

Runtime system

- manages:
 - time: scheduler
 - memory: allocator, garbage collector
 - communication and resources: channels
 - protection: principals, authorities, and tags (PAT)
- small trusted computing base
- comparimentalized
 - a dozen mutually distrustful servers (least privilege)

Hardware

- all instructions have well-defined semantics
 - abstractions strictly enforced
- low-fat pointers
 - can't access/write out of frame bounds
- dynamic types
 - can't turn ints into pointers (unforgeable capabilities)
- authority + closures/gates (λ) + protected stack
 - fine-grained privilege separation
- programmable tag management unit (TMU)

Tag management

- every word tagged with arbitrary pointer
 - only runtime system interprets these pointers
- on each instruction TMU looks up tags of operands in a hardware rule cache
 - found → rule provides tags on results (no delay)
 - not found → trap to software (PAT server)
- access control + IFC enforced at lowest level

Project status (2/4 years)

language:

- stable interpreter, work-in-progress compiler
- applications: e.g. web server running wiki
- Coq proofs for various core calculi (non-interference)

runtime:

- detailed design, some prototype servers
- work on testing+verifying simplified PAT server

• hardware:

- full-fledged un-optimized FPGA prototype
- novel instruction set, simulators, debugger, ...
- executable instruction set semantics in Coq

MY RESEARCH

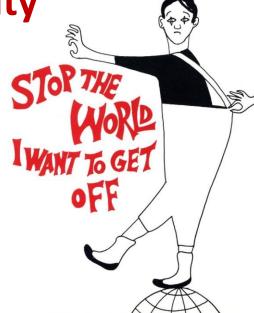
Pre-SAFE work

crypto protocols

- tools aiding design, analysis, and implementation
- more expressive type systems (e.g. first one for ZK) [CCS'08, CSF'09, TOSCA'11, PhD thesis]
- remote electronic voting [CSF'08]
- code generation [NFM'12]
- data processing language (Microsoft "M")
 - semantic subtyping [ICFP'10, JFP'12]
 - verification condition generation [CPP'11]

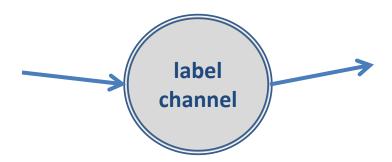
SAFE work

All Your IFCException Are Belong To Us

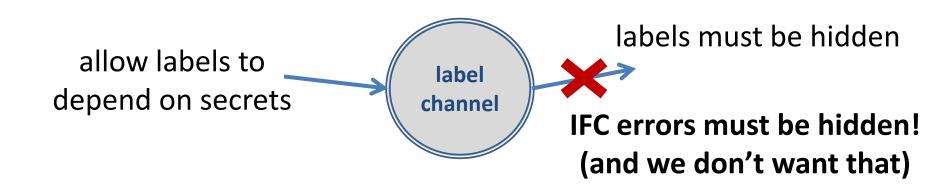

Robust Exception Handling for Sound Fine-Grained Dynamic IFC

joint work with Michael Greenberg, Ben Karel, Benjamin Pierce, and Greg Morrisett

Exception handling


- we wanted all Breeze errors to be recoverable
 - including IFC violations
- however, existing work assumes errors are fatal
 - makes some things easier ... at the expense of others

+secrecy +integrity -availability


Problem #1: IFC exceptions reveal information about labels

- labels are themselves information channels
- get soundness by preventing secrets from leaking either *into* or *out of* label channel

Problem #1: IFC exceptions reveal information about labels

- labels are themselves information channels
- get soundness by preventing secrets from leaking either *into* or *out of* label channel

if h@secret then ()@secret else ()@top-secret

Problem #1: IFC exceptions reveal information about labels

- labels are themselves information channels
- get soundness by preventing secrets from leaking either into or out of label channel

Solution #1: brackets

top-secret[if h@secret then ()@secret else ()@top-secret]

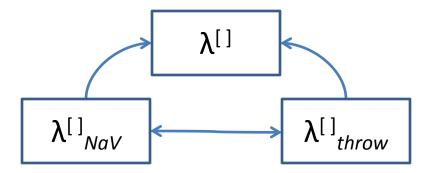
Problem #2: exceptions destroy control flow join points

ending brackets have to be control flow join points

```
- try
 let _ = secret[if h then throw Ex] in
 false
 catch Ex => true
```

- brackets need to delay all exceptions!
 - secret[if true@secret then throw Ex] => "(Error Ex)@secret"
 - secret [if false@secret then throw Ex] => "(Success ())@secret"
- similarly for failed brackets
 - secret[42@top-secret] => "(Error EBracket)@secret"

Solution #2: Delayed exceptions


- delayed exceptions unavoidable
 - still have a choice how to propagate them
- we studied two alternatives for error handling:
 - 1. mix active and delayed exceptions $(\lambda^{[]}_{throw})$
 - 2. only delayed exceptions $(\lambda^{[]}_{NaV})$
 - delayed exception = not-a-value (NaV)
 - NaVs are first-class replacement for values
 - NaVs propagated solely via data flow
 - NaVs are labeled and pervasive
 - more radical solution; implemented by Breeze

What's in a NaV?

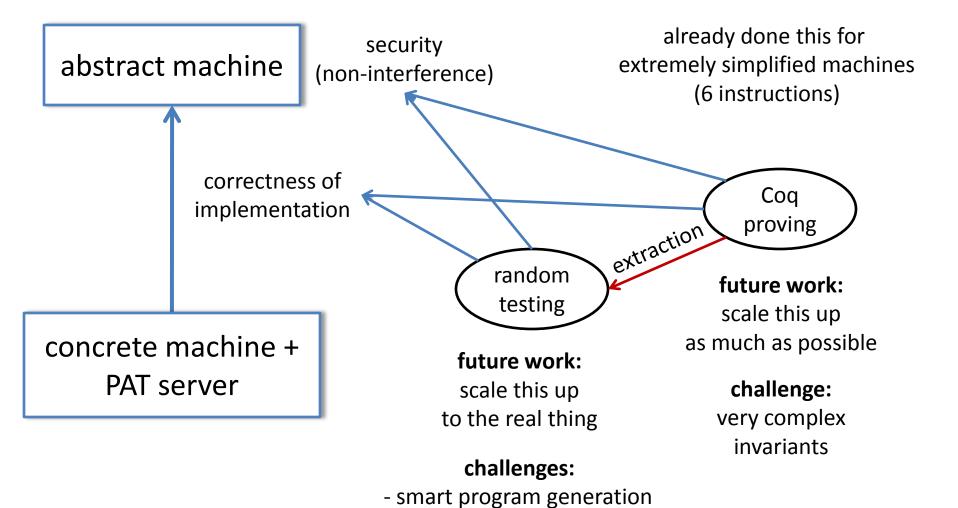
- error message
 - `EDivisionByZero ("can't divide %1 by 0", 42)
- stack trace
 - pinpoints error origin
 (not the billion-dollar mistake)
- propagation trace
 - how did the error make it here?

Formal results

- proved termination-insensitive **non-interference** in Coq for $\lambda^{[]}$, $\lambda^{[]}_{NaV}$, and $\lambda^{[]}_{throw}$
 - for $\lambda^{[]}_{NaV}$ even with all debugging aids; **error-sensitive**
- in our setting NaVs and catchable exceptions have equivalent expressive power
 - translations validated by QuickChecking extracted code

Summary for IFC exceptions

- reliable error handling possible even for sound fine-grained dynamic IFC systems
- we study two mechanisms $(\lambda^{[]}_{NaV}$ and $\lambda^{[]}_{throw})$
 - all errors recoverable, even IFC violations
 - key ingredients:sound public labels (brackets) + delayed exceptions
 - quite radical design (not backwards compatible!)
- gathering practical experience with NaVs:
 - issues are surmountable
 - writing good error recovery code is still hard


Ongoing work

- testing and verifying the PAT server
- protecting data integrity with signature labels
- implementing Breeze labels cryptography

Testing and verifying PAT server

- counterexample shrinking

Post-SAFE work?

- software-hardware co-design for security-critical high-assurance devices
 - electronic voting, driver assistance, medical devices
 - limited/fixed functionality
 - security more important than backwards compatibility
 - existing devices often blatantly vulnerable
 - making security analysis part of design process
 - focus more on research (compared to CRASH/SAFE)
- fine-grained access control and integrity protection for mobile devices

Possible collaborations at TU Darmstadt

- Prof. Heiko Mantel (dynamic IFC and concurrency)
- Prof. Ahmad-Reza Sadeghi (smartphone or automobile security),
- Prof. Melanie Volkamer (remote electronic voting),
- Dr. Thomas Schneider (formal proofs for SMPC & ZK compilers),
- Dr. Eric Bodden (security monitoring for mobile devices)
- Prof. Thomas Streicher (logics and semantics)

THE END

BACKUP SLIDES

Sound dynamic IFC possible

- Non-interference can be obtained purely dynamically!
 - [Krohn & Tromer, 2009], [Sabelfeld & Russo, 2009], [Austin & Flanagan, 2009]
- Preventing implicit flows:

- Even functional code can leak via control flow:
 - if h then true else false
 - semantics of conditional:
 - if true@high then true else false => true@high