
QuickChick: Property-Based Testing for Coq

Maxime Dénès1, Cătălin Hri̧tcu2, Leonidas Lampropoulos1, Zoe Paraskevopoulou2,3,
Benjamin C. Pierce1

1University of Pennsylvania 2Inria Paris-Rocquencourt 3NTU Athens

April 4, 2014

Co-designing software or hardware systems and their formal proofs is an appealing idea, with the
expectation that the rigor enforced by formal methods will percolate the whole design. In practice how-
ever, carrying out formal proofs while designing even a relatively simple system can be an exercise in
frustration, with a great deal of time spent attempting to prove things about broken definitions, and
countless iterations for discovering the correct lemmas and strengthening inductive invariants. We be-
lieve that property-based testing (PBT) can dramatically decrease the number of failed proof attempts
and reduce the overall cost of producing formally verified systems. Despite the existence of experi-
mental tools [Wil11], Coq is still lagging behind proof assistants like Isabelle, which provides several
mature PBT tools (e.g. [Bul12]). We aim to improve the PBT support in Coq, while also investigating
several innovations we could add into the mix like polarized mutation testing and a language-based
approach to custom generation. We are also exploring whether PBT could bring more confidence to the
implementation of Coq itself.

1 A random testing framework for Coq

As a first step, we implemented a prototype1 PBT framework for Coq, very similar to QuickCheck [CH00].
We then took a previous development that was using QuickCheck to test non-interference for increasingly
sophisticated dynamic information flow control mechanisms for low-level code [Hri+13] and ported it
to Coq. In particular, the abstract machines are now formalized in Coq, making it possible to test and
then prove properties on the same artifacts. Our prototype has most of the features of QuickCheck. It
relies on Coq’s extractor to Haskell, but we are still exploring the design space. In particular, we may
port it to OCaml, or even try to do most of the computations inside Coq.

One issue when integrating PBT into the normal Coq proving process is that our current prototype
only works for executable specifications, which doesn’t match the regular practice of using inductive
definitions. We could try to lift this limitation using an existing plugin [DDÉ07; TDD12] for produc-
ing executable variants of inductively defined functional relations. More ambitiously, we would like to
use PBT at any point during a proof, by freely switching between declarative and efficiently executable
definitions. We believe we can achieve this by integrating PBT into small-scale reflection proofs, as sup-
ported by SSReflect. However, while traditional SSReflect proofs use evaluation to remove the need for
some reasoning in small proof steps, the objects defined in the SSReflect library and used in proofs are
often not fully and efficiently executable. We believe we can support efficient testing in SSReflect by ex-
ploiting a recent refinement framework [DMS12; CDM13], which allows maintaining a correspondence
and switching between proof-oriented and computation-oriented views of objects and properties.

2 Testing Coq itself

We are also leading a separate research effort, motivated by the fact that the trust brought by a Coq proof
is always modulo potential implementation bugs in its kernel. While this may seem not to be a practical

1Our prototype is available online: https://github.com/lemonidas/QuickChick

1

mailto:mail@maximedenes.fr
mailto:catalin.hritcu@inria.fr
mailto:llamp@cis.upenn.edu
mailto:zoe.paraskevopoulou@gmail.com
mailto:bcpierce@cis.upenn.edu
https://github.com/lemonidas/QuickChick


matter of concern, the verification of critical software meant to be used in industry increases the need
for guarantees on the tools used to carry out this verification. For example, certification authorities in
avionics have precise requirements on such tools. Although only a limited number of critical bugs have
been found in Coq’s kernel over the years, this number is not zero.

We are investigating the use of PBT to detect some of these bugs. For example, the first author
recently found (manually) a critical bug in a function implementing restrictions on pattern matching.
Although a full executable specification of this function would probably be nothing less than its imple-
mentation, the bug could have been caught by checking if the result of the function is preserved by the
reduction rules of the calculus, on randomly generated terms. We also want to check syntactic prop-
erties of the calculus actually implemented by Coq, like Church-Rosser or subject reduction, on which
consistency and normalization proofs often rely. Some counterexamples to these properties are known
for given fragments of the calculus (e.g. subject reduction with co-inductive types), the question being
if unknown examples could be found as well.

The main difficulty is that testing such properties most often relies on generating well-typed CIC
terms. Which might sound overambitious, because the Curry-Howard isomorphism tells us that it
amounts to proof search. However, unlike automated theorem proving, we can generate a term in
any type that we like, i.e. we can also choose the theorem. Also, our goal is not to implement a press-
button procedure that would tell if an inconsistency has been found somewhere (it would probably not
be realistic), but rather a framework that could aid developers when studying parts of the kernel that
may be problematic.

We are reusing some ideas from the existing work [Pał+11], which has been successful in the con-
text of GHC (the Glasgow Haskell Compiler). In particular, combining constructs of the language (ab-
stractions, applications,...) and constants already present in the environment. Of course dependent
types (and full polymorphism) bring new challenges, like more complex dependencies between sub-
goals created during the generation. We believe that implementation techniques for higher-order logic
programming languages could give interesting answers to some of these challenges.

References

[Bul12] L. Bulwahn. “The New Quickcheck for Isabelle - Random, Exhaustive and Symbolic Testing
under One Roof”. CPP. 2012.

[CDM13] C. Cohen, M. Dénès, and A. Mörtberg. “Refinements for free!” CPP. 2013.

[CH00] K. Claessen and J. Hughes. “QuickCheck: a lightweight tool for random testing of Haskell
programs”. ICFP. 2000.

[DDÉ07] D. Delahaye, C. Dubois, and J.-F. Étienne. “Extracting Purely Functional Contents from Log-
ical Inductive Types”. TPHOLs. 2007.

[DMS12] M. Dénès, A. Mörtberg, and V. Siles. “A Refinement-Based Approach to Computational Alge-
bra in Coq”. ITP. 2012.

[Hri+13] C. Hritcu, J. Hughes, B. C. Pierce, A. Spector-Zabusky, D. Vytiniotis, A. A. de Amorim, and
L. Lampropoulos. “Testing noninterference, quickly”. ICFP. 2013.

[Pał+11] M. H. Pałka, K. Claessen, A. Russo, and J. Hughes. “Testing an optimising compiler by gen-
erating random lambda terms”. AST. ACM. 2011.

[TDD12] P.-N. Tollitte, D. Delahaye, and C. Dubois. “Producing Certified Functional Code from Induc-
tive Specifications”. CPP. 2012.

[Wil11] S. Wilson. “Supporting dependently typed functional programming with proof automation
and testing”. PhD thesis. University of Edinburgh, 2011.

2


	A random testing framework for Coq
	Testing Coq itself

