
Featherweight Breeze: Step 3/4

Cătălin Hriţcu, Benôıt Montagu, Benjamin C. Pierce, and the Breeze team

December 8, 2011

1 Syntax

L, H , pc ::= label
| > M top secret
| ⊥ M unclassified
| L1 ∨ L2 M label join
| (L) S

c ::= constants
| () unit
| true true
| false false
| L label

t ::= terms
| c constant
| x variable
| λx .t bind x in t abstraction
| t1 t2 application
| let x = t1 in t2 bind x in t2 let
| (t1, t2) pairing
| fst t first projection
| snd t second projection
| if t1 then t2 else t3 conditional
| t1 == t2 equality on constants
| t1@t2 classify t1 with label t2
| t1〈t2〉 executes t2, labels result with t1, restores pc
| labelOf t returns the label of t
| getPc () returns the current pc
| valueOf t takes label of t and joins it to pc

1



| [t ] M wrong attempt to define brackets uses this
| (t) S

v ::= values
| c constants
| 〈ρ, λx . t〉 bind x in t closures
| (a1, a2) pairs

a ::= atoms
| v@L labeled value

ρ ::= environments
| empty
| ρ, x : a
| (ρ) S

2 Evaluation with Dynamic IF Control

ρ ` t , pc ⇓ a, pc′

ρ ` c, pc ⇓ c@⊥, pc
Eval Const

ρ(x ) = a

ρ ` x , pc ⇓ a, pc
Eval Var

ρ ` (λx .t), pc ⇓ 〈ρ, λx . t〉@⊥, pc
Eval Abs

ρ ` t ′, pc ⇓ 〈ρ′, λx . t〉@L′, pc′

ρ ` t ′′, pc′ ⇓ a ′′, pc′′

(ρ′, x : a ′′) ` t , (pc′′ ∨ L′) ⇓ a, pc′′′

ρ ` (t ′ t ′′), pc ⇓ a, pc′′′
Eval App

ρ ` t ′, pc ⇓ a ′, pc′

(ρ, x : a ′) ` t ′′, pc′ ⇓ a ′′, pc′′

ρ ` (let x = t ′ in t ′′), pc ⇓ a ′′, pc′′
Eval Let

ρ ` t ′, pc ⇓ a ′, pc′

ρ ` t ′′, pc′ ⇓ a ′′, pc′′

ρ ` (t ′, t ′′), pc ⇓ (a ′, a ′′)@⊥, pc′′
Eval Pair

ρ ` t , pc ⇓ (v ′
@L′, a ′′)@L, pc′

ρ ` (fst t), pc ⇓ v ′@L′, (pc′ ∨ L)
Eval Fst

ρ ` t , pc ⇓ (a ′, v ′′
@L′′)@L, pc′

ρ ` (snd t), pc ⇓ v ′′@L′′, (pc′ ∨ L)
Eval Snd

2



ρ ` t , pc ⇓ true@L, pc′

ρ ` t ′, (pc′ ∨ L) ⇓ a ′, pc′′

ρ ` (if t then t ′ else t ′′), pc ⇓ a ′, pc′′
Eval If True

ρ ` t , pc ⇓ false@L, pc′

ρ ` t ′′, (pc′ ∨ L) ⇓ a ′′, pc′′

ρ ` (if t then t ′ else t ′′), pc ⇓ a ′′, pc′′
Eval If False

ρ ` t ′, pc ⇓ c′@L′, pc′

ρ ` t ′′, pc′ ⇓ c′′@L′′, pc′′

v , c′ = c′′

ρ ` (t ′ == t ′′), pc ⇓ v@(L′ ∨ L′′), pc′′
Eval Eq

ρ ` t , pc ⇓ v@L, pc′

ρ ` t ′, pc′ ⇓ L′
@L′′, pc′′

ρ ` (t@t ′), pc ⇓ v@(L ∨ L′), (pc′′ ∨ L′′)
Eval Classify

ρ ` t ′, pc ⇓ L@L′, pc′

ρ ` t ′′, (pc′ ∨ L′) ⇓ v@L′′, pc′′

L′′ ∨ pc′′ v L ∨ (pc′ ∨ L′)

ρ ` t ′〈t ′′〉, pc ⇓ v@L, (pc′ ∨ L′)
Eval Bracket

ρ ` t , pc ⇓ v@L, pc′

ρ ` labelOf t , pc ⇓ L@⊥, pc′
Eval LabelOf

ρ ` getPc (), pc ⇓ pc@⊥, pc
Eval GetPc

ρ ` t , pc ⇓ v@L, pc′

ρ ` valueOf t , pc ⇓ v@⊥, (pc′ ∨ L)
Eval ValueOf

3 Brackets

Brackets are constructs for executing a computation and restoring the initial pc
when the computation ends.

3.1 First try

ρ ` t , pc ⇓ v@L, pc′

ρ ` [t ], pc ⇓ v@(L ∨ pc′), pc

The main idea is to move some of the protection from the pc to the label on
the resulting value. Since v is protected in the premise by L and by pc′, in the
result we can move all this protection to the label of v, which is now L∨pc′, and
the pc can safely be restored to the original one. The reason this doesn’t quite
work is that labels are public, and while in the premise the label L is protected
by pc′, in the conclusion L would only be protected by the (potentially lower)
pc. Here is a counterexample exploiting the label channel:
let y = [if x@H then ()@H else ()@>] in publish (labelOf y) == H

3



Another problem is that in the premise pc′ is protected by itself, while in the
conclusion pc′ is protected only by pc. The counterexample for this looks as
follows:
let y = [if x@H then raisePc H else raisePc>] in publish (labelOf y) == H
where raisePc , λx .((λy .y)@x ) () (in step 4/4 we’ll add a raisePc primitive).

3.2 Second try: closing the label channel

ρ ` t , pc ⇓ v@L′′, pc′′ L′′ ∨ pc′′ v L

ρ ` L〈t〉, pc ⇓ v@L, pc

We close the label channel by requiring the user to choose in advance the label on
the result. This way the label on the result cannot depend on secrets. This works
but is still too restrictive: because of the L′′ ∨ pc′ v L condition in the premise
we cannot use brackets to classify values to a low label in a high context. For
instance if x@> then⊥〈true〉 else () fails, although if x@> then true@⊥ else () works
fine.

3.3 Third try: making brackets the ultimate classification
construct

ρ ` t , pc ⇓ v@L′′, pc′′ L′′ ∨ pc′′ v L ∨ pc

ρ ` L〈t〉, pc ⇓ v@L, pc

The intuition is that the final value is not only protected by L, but also by the pc,
so we can relax the premise of the rule from L′′∨pc′ v L to L′′∨pc′ v L∨pc. This
works but is still too restrictive, since the label L is required to be a constant.

3.4 Fourth try: first-class labels on brackets

ρ ` t ′, pc ⇓ L@⊥, pc′ ρ ` t ′′, pc′ ⇓ v@L′′, pc′′ L′′ ∨ pc′′ v L ∨ pc

ρ ` t ′〈t ′′〉, pc ⇓ v@L, pc

This step is very easy, but only as long as the label on L is required to be ⊥.

3.5 Fifth try: the final rule

The final Eval Bracket rule additionally takes care of the label on L by
raising the pc appropriately, otherwise it’s the same as before.

4 Other Changes wrt Step 2

• Droped automatic pc lowering/restoring. Now threading the pc through
as a piece of state.

• Made pc be non-infectious.

• Made all labels public: labelOf no longer protects the resulting label with
itself, and added a new getPc construct.

4



• The old rules for pair projection (Eval Fst and Eval Snd) are unsound
in our new public label setting. The fix is to join the outer pair label to
the resulting pc.

• The old rule for classification would also be unsound in our new pub-
lic label setting; fixed. Classification is anyway completely subsumed by
brackets: t1@t2 , let x = t2 in x 〈t1〉.

• Added new valueOf construct that strips off the label of an atom and joins
it to the pc. This is roughly the dual of brackets, which take taint from
the pc and put it in the label of the result.

5 Counterexamples

• Here is why Eval Fst and Eval Snd had to change:
let y = H 〈if x@H then (()@H , ()) else (()@>, ())〉 in publish (labelOf (fst y) == H )

6 This Fixes the Two Problems from Step 2

6.1 The “Infectious pc” Problem Fixed

empty ` H 〈if (true@H ) then (true, (false, ())) else ()〉,⊥ ⇓ (true@⊥, (false@⊥, ()@⊥)@⊥)@H ,⊥

6.2 The “Poison Pill” Problem Fixed

• Labels are now public.

• Critical components can use labelOf to protect themselves from “poison
pills”.

• IFC violations no longer need to be fatal errors (still a lot of care needs
to be used when adding exceptions, they don’t interact too well with
brackets).

5


	Syntax
	Evaluation with Dynamic IF Control
	Brackets
	First try
	Second try: closing the label channel
	Third try: making brackets the ultimate classification construct
	Fourth try: first-class labels on brackets
	Fifth try: the final rule

	Other Changes wrt Step 2
	Counterexamples
	This Fixes the Two Problems from Step 2
	The ``Infectious pc'' Problem Fixed
	The ``Poison Pill'' Problem Fixed


