
Featherweight Breeze: Step 2/4

Cătălin Hriţcu, Benôıt Montagu, Benjamin C. Pierce, and the Breeze team

December 14, 2011

1 Syntax

Untyped lambda calculus with booleans, pairs, classification, and first-class la-
bels.

L, H , pc ::= label
| > M top secret
| ⊥ M unclassified
| L1 ∨ L2 M label join
| (L) S

c ::= constants
| () unit
| true true
| false false
| L label

t ::= terms
| c constant
| x variable
| λx .t bind x in t abstraction
| t1 t2 application
| let x = t1 in t2 bind x in t2 let
| (t1, t2) pairing
| fst t first projection
| snd t second projection
| if t1 then t2 else t3 conditional
| t1 == t2 equality on constants
| t1@t2 classify t1 with label t2
| labelOf t returns the label of t
| (t) S

1



v ::= values
| c constants
| 〈ρ, λx . t〉 bind x in t closures
| (a1, a2) pairs

a ::= atoms
| v@L labeled value

ρ ::= environments
| empty
| ρ, x : a
| (ρ) S

2 Evaluation with Dynamic IF Control

ρ, pc ` t ⇓ a

ρ, pc ` c ⇓ c@pc
Eval Const

ρ(x ) = v@L

ρ, pc ` x ⇓ v@(L ∨ pc)
Eval Var

ρ, pc ` (λx .t) ⇓ 〈ρ, λx . t〉@pc
Eval Abs

ρ, pc ` t ′ ⇓ 〈ρ′, λx . t〉@L′

ρ, pc ` t ′′ ⇓ a ′′

(ρ′, x : a ′′), (pc ∨ L′) ` t ⇓ a

ρ, pc ` t ′ t ′′ ⇓ a
Eval App

ρ, pc ` t ⇓ a
(ρ, x : a), pc ` t ′ ⇓ a ′

ρ, pc ` let x = t in t ′ ⇓ a ′ Eval Let

ρ, pc ` t ′ ⇓ a ′

ρ, pc ` t ′′ ⇓ a ′′

ρ, pc ` (t ′, t ′′) ⇓ (a ′, a ′′)@pc
Eval Pair

ρ, pc ` t ⇓ (v ′
@L′, a ′′)@L

ρ, pc ` fst t ⇓ v ′@(L′ ∨ L)
Eval Fst

ρ, pc ` t ⇓ (a ′, v ′′
@L′′)@L

ρ, pc ` snd t ⇓ v ′′@(L′′ ∨ L)
Eval Snd

ρ, pc ` t ⇓ true@L
ρ, (pc ∨ L) ` t ′ ⇓ a ′

ρ, pc ` if t then t ′ else t ′′ ⇓ a ′ Eval If True

2



ρ, pc ` t ⇓ false@L
ρ, (pc ∨ L) ` t ′′ ⇓ a ′′

ρ, pc ` if t then t ′ else t ′′ ⇓ a ′′ Eval If False

ρ, pc ` t ′ ⇓ c′
@L′

ρ, pc ` t ′′ ⇓ c′′
@L′′

v , c′ = c′′

ρ, pc ` t ′ == t ′′ ⇓ v@(L′ ∨ L′′)
Eval Eq

ρ, pc ` t ⇓ v@L
ρ, pc ` t ′ ⇓ L′

@L′′

ρ, pc ` t@t ′ ⇓ v@(L ∨ L′ ∨ L′′)
Eval Classify

ρ, pc ` t ⇓ v@L

ρ, pc ` labelOf t ⇓ L@L
Eval LabelOf

3 Changes wrt Step 1

• Added labels as abstract constants. The only operation we assume on
labels is join: L1 ∨ L2, computing the least secret/tainted label that is
more secret/tainted than both L1 and L2.

• Added new classification construct t1@t2

• Evaluation produces an atom = value together with its label (environ-
ments also store atoms now). Breeze does fine-grained dynamic informa-
tion flow control (IFC), so all values are labeled.

• Added pc label to the semantics in order to track implicit flows. The pc
is the least upper bound of the labels of all values on which the program
has currently branched. In this variant of Featherweight Breeze, the pc
is automatically lowered on control flow merge points (e.g. the end of a
conditional). Rule Eval Let shows that the pc is not threaded through
sequentially, and is automatically restored on control-flow merge points.
The pc infects all resulting values in order to preserve soundness in the
presence of automatic pc lowering/restoring.

• Added “castrated” labelOf construct. It is sound but useless, and shows
that labels can’t be made public in this setting, leading to the “poison
pill” problem.

• Added equality on constants; useful in (counter)examples, since it also
works on labels.

4 Counterexamples

• We need “infectious pc” to prevent implicit flows in the presence of auto-
matic pc lowering/restoring:
let copy = (if x@H then true else false) in publish copy

3



• Exercise: Rule Eval App needs to raise the pc; encode Church booleans
to see that.

• Labels are an information-flow channel, we can’t have unrestricted labelOf
in the presence of automatic pc lowering/restoring:
let y = (if x@H then ()@H else ()@>) in publish ((labelOf y) == H ).

5 Termination-insensitive Non-interference

Claim 1 (Infectious PC). If ρ, pc ` t ⇓ v@L then pc v L.

Claim 2 (Non-interference). If ρ1, pc ` t ⇓ a1, and ρ2, pc ` t ⇓ a2, and
ρ1 'l ρ2, then a1 'L a2.
(For some “unspecified” definitions of ρ1 'l ρ2 and a1 'L a2)

6 Two Problems (fixed in Step 3)

6.1 The “Infectious pc” Problem

empty ,⊥ ` if (true@H ) then (true, (false, ())) else () ⇓ (true@H , (false@H , ()@H )@H )@H

6.2 The “Poison Pill” Problem

• Breeze does fine-grained, dynamic IFC with decentralized LM

• Any code can classify data:

let (P,_,__) = newPrin "P" in

let pill = 42@(P -> [P]) in

• High data can be hidden under low labels

let xs = [1,2,pill]@L in

send cpub x

• IFC violations are dynamic errors

let xs = recv cpub;

let y = find ((==) 3) xs;

send cpub’ y

• If threads get killed on IFC errors (like in actual Breeze) critical system
components get killed on reading poison pill. Even without access control
checks the pc infects the result y, which then can make other things fail,
like the send cpub’ y at the end.

4


	Syntax
	Evaluation with Dynamic IF Control
	Changes wrt Step 1
	Counterexamples
	Termination-insensitive Non-interference
	Two Problems (fixed in Step 3)
	The ``Infectious pc'' Problem
	The ``Poison Pill'' Problem


