Breeze: A Language For Writing
Secure Software

Catalin Hritcu

PENN
UNIVERSITY of PENNSYLVANIA i

Clean-slate design of Resilient, Adaptive, Secure Hosts

BAE SYSTEMS

The SAFE team

v
7
/ 7

{
£

/
" 4

601\3 A
C‘y\e o z ¥ " \'v'
\\% Y ot o Ne.""':o 'o‘ﬁ«;“ ¢

A o4 ” bx\““w\e o B

{3 Order Reprinis
.d Reaper drones may have b
al- Al ak

Lafron st ANWar

OIl SIm
artphones
‘:l;u‘::c::t:;; :-Qw(la

October 5, 2011

on the repor

put '\mportani
(1S Air Force declined comment

Smart
pho
N€ Maker HTC has a4

S agm#«

aK
~trifuge
\ g 'smystﬂ““‘
Naied by Wired.

Smartph
€ing vulnr me sunet putbre
in the €€

t: F. d

off and 1 ke=ps comng back,”

keep wiping it
g official sad o e publicaton

ikely carfirm 1S nas

mess
=35a
o 9eS 10 and disaple
n . Anunuy
A Tu.eSday Fa‘rfa.x Medi sep TN ZY 0| rom e ¥ B
Phones that V-
2 P P
i, ’ the Pentagon would unl
.‘ & ‘ ‘] X cted to y=t another L)-';ef-alc ack, the Wrus €
- : L Qs i ger one of the most deadly #nd populal Il
NG which have proved especialy effectve in
Ysion 3F wall 3¢ nrhar wantiee liva Yamat

app that :
IS grant
acze;i'tonce granted ac: .
® 10 data that was hess
= Showr

Common Weaknesses Enumeration: Top 25

|Rank|[score| 1D || Name

1] 938 |CWE-89 |[Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection)
21 |[833 |CWE-78 |Improper Neutralization of Special Elements used in an OS Command ('OS Command Injection’)
31 [79.0 |CwE-120 |Buffer Copy without Checking Size of Input (‘Classic Buffer Overflow’)

4] 777 |CwE-79 |[mproper Neutralization of Input During Web Page Generation (‘'Cross-site Scripting’)
51 [76.9 |CwvE-306 [Mmissing Authentication for Critical Function

6] |[76.8 |CwE-862 |[Missing Authorization

71 750 |cwE-798 |use of Hard-coded Credentials

8] [75.0 |CwE-311 |Missing Encryption of Sensitive Data

[[8] [740 |CWE-434 |Unrestricted Upload of File with Dangerous Type

[[20] [73.8 |CwE-807 |Reliance on Untrusted Inputs in a Security Decision

[11] [73.1 |CwE-250 |Execution with Unnecessary Privileges

[[12] [701 |cwvE-352 |[Cross-Site Request Forgery (CSRF)

[[13] [69.3 |CwE-22 |Improper Limitation of a Pathname to a Restricted Directory (Path Traversal)

[[14] [685 |CwE-494 |Download of Code Without Integrity Check

[[15] [67.8 |CWE-863 [Incorrect Authorization

[[16] |[66.0 |CWE-829 |[Inclusion of Functionality from Untrusted Control Sphere

[[17] [65.5 |CwE-732 [Incorrect Permission Assignment for Critical Resource

[[18] [64.6 |CWE-676 |Use of Potentially Dangerous Function

[[19] [64.1 |CwE-327 |Use of a Broken or Risky Cryptographic Algorithm

[[20] [62.4 |CWE-131 [incorrect Calculation of Buffer Size

[[21] [615 |CwE-307 [Improper Restriction of Excessive Authentication Attempts

[[22] [61.1 |CwE-601 |URL Redirection to Untrusted Site (Open Redirect)

[[23] [61.0 |CWE-134 |Uncontrolled Format String

[[24] [60.3 |CwvE-190 |[Integer Overflow or Wraparound

[[25] [59.9 |CWE-759 |Use of a One-Way Hash without a Salt

http://cwe.mitre.org/top25/index.html#Listing

The SAFE project

UOIleOLLIOA

HW

PL
OS

improves

. N

Clean slate design Formal methods

facilitates

Occasion to try new abstractions Precise specifications

Simpler, cleaner design Global guarantees
Fully correct wrt. specs Machine checked proofs

Userware
(written in Breeze)

Concreteware
(written in Tempest;
formally verified)

Hardware
(written in BlueSpec)

o

System Services User
(device drivers, persistent P
storage, networking, ...) rograms
S J L
TMU
Scheduler IPC
Mmanager

(

Memory manager / GC

TMU

.

rule cache
\. y,

SAFE
Processor

Breeze

High-level PL for writing secure software
— user programs & system services (+ security policies)

functional core (A) + concurrency (1T) + state (!) ...
dynamically typed (for now)
— easier to experiment with

— directly reflects capabilities of HW
— dynamically-checked first-class contracts

fine-grained dynamic information flow control
access control (more later on why we need both)

Fine-grained dynamic IFC

* Every Breeze value has an IFC label: (p, Az.z)@Ql

* At the SAFE HW level, every word is tagged
— tags are pointers to arbitrary metadata

— checking happens in parallel
(HW rule cache speeds this up)

— TMU is programmable
(rules defined in software)

— composable rule models

(IFC labels = one of many models)

— primitive TMU rule models:
* can’t add two pointers,
e can’t execute an integer, etc.
* only scheduler can create threads

| Authori

security
violation

I—D-

TMU

Combine
Tags

result tag

g dala |
| O P|C |
Y
|-Store
S ;
Relgister
ile
[
|— ' * ‘Memory
ALU
YV W

new PC tag

SAFE hardware prototype reon

XILINX. .

VIRTEX -6
XCBVLX240T"
FFI156ABCOSA2

DRAM (2GB)

ﬂln

.l '
<

nA

e r

- e '
we ol
-

Ho

-jc o <

2 %Y |
BETERD w222

VIRTEXW
$7 XILINX'

welpve) |

00:0A'35:01F3.08

PCl2e 2 GB/s each direction

IFC Labels in Breeze

Started with Decentralized Label Model (DLM) by
Liskov & Meyers (A - [B, C], D - [C,D])
Later realized DLM is not the only option

— Asbestos, HiStar/DStar, FLUME, HAILS, ...
all have their own decentralized ... label models

Breeze has “generalized label model”
— parameterized by join, meet, principals, authority, etc.
— hope to also support HAILS DC labels in the future

How labels look like = the boring part of the story

— in the dynamic IFC setting:
the interesting part is how labels behave at runtime

Dynamic IFC: is it even possible?

Non-interference is not a property (2-hyperproperty)

Until around 2007 folklore in PL community:
non-interference can’t be enforced dynamically
because of implicit flows

— at least not without multi-execution or static information
about the branches that are not executed

Dynamic techniques pioneered IFC [Fenton, CJ '74]

The lack of non-interference proofs didn’t stop the OS
community from building dynamic IFC systems
(Asbestos, HiStar/DStar, FLUME ...)

Purely dynamic IFC: Yes We Can!

“From dynamic to static and back: Riding the roller
coaster of IFC research” [Sabelfeld & Russo, PSI 2009]

purely dynamic analysis (monitor) for
termination-insensitive non-interference
— termination-sensitivity hard to achieve in any way

“flow insensitive” analysis
— labels of mutable variables can’t change

— precise flow sensitive dynamic analysis proved impossible
[Sabelfeld&Russo, CSF 2010]
— flow insensitivity is not such a big deal for a new language

* ML references / Java variables + fields only have weak updates
* Breeze channels have label for contents fixed at creation time

Purely-dynamic IFC: functional setting

e “Efficient purely-dynamic information flow analysis”
[Austin & Flanagan, PLAS 2009]
p(x) = vQl
p,pc = Az.e | (p,Ax.e)Qpc p,pc b x | vQ(lV pc)

p,pc F e | (p', A\x.e)@ly
p,pc = ex | 0@l
plr — vQly],peVi F e || v3Qlg

p,pc = e ex | v3Ql3

\

* Termination- p1,pc e | v @l
insensitive po,pcte || vo@ly » = v1Ql 2 vo,QI5
non-interference P1 =l P2 J

The “infectious pc” problem

pc automatically “tracks” branch labels
— in order to prevent implicit flows
— copy = (if secret@H then true@L else false@L)

pc “infects” all values created on high branch

this leads to deeply high-labeled values:
— if true@H then [1,2] else [] ==>
(cons (1@H) (cons (2@H) (nil@H))@H)@H
we needed “infectious pc” because of automatic
pc lowering on control flow merge points

First attempt to “manual pc lowering”

* Using pc declassification, really bad idea
(adds tons of completely spurious audit points)

Ll
Glﬂ I I Catalin Hritcu <catalin.hritcu@gmail.com>

[Safe-breeze] Manual PC declassification
considered harmful

6 messages

Benjamin C. Pierce <bcpierce@cis.upenn.edu> Wed, Aug 17,2011 at 1:24 PM
To: safe-breeze@lists.crash-safe.org

A few months ago, we made the decision that it was better to remove the "automatic
declassification of the PC" at the ends of conditionals and functions in Breeze (and at return
instructions in the ISA) and, instead, demand that programmers lower the PC manually, if it
becomes higher than they want it. Over the past few days, we've finally made this change to
Breeze and have been experimenting with programming in this style. Our conclusion, sadly, is
that it doesn't work.

The “poison pill” problem

Fine-grained, dynamic IFC with decentralized LM

Any code can classify data

— (P, ,) = newPrin “P”; pill = 42@(P -> [P])
High data can be hidden under low labels

- x = [1,2,pill]@L; send cpub x

IFC violations are dynamic errors

— recv cpub x; map ((+) 1) x

Labels themselves are an IF channel

— X = (if secret@H then ()@H else ()@top);
copy = (labelOf x == H)

Non solution(s)

 Labels are an IF channel, so hide labels
p,pc F e | v@]
p, pc F labelOf e || (@]

* Threads get killed on IFC errors

— critical components (scheduler, allocator, drivers, ...)
get killed on reading poison pill

 Make channels unreliable?
— contract on channel, silently discards poison pills
— restore reliability using threads and timeouts?
— so we can still write labelOf using a timing channel

Brackets: killing two birds with one stone

Brackets = construct for manual pc lowering / restoring
— automatic pc lowering played big role in creating our 2 problems
Programmer has to predict pc + label on all c.f. branches
pEepcl v@Ql,pc’ [T pc CIb
p F Ib{e),pc || vQlb, pc

Brackets are not a declassification construct
— always safe, unlike manual pc declassification

Final label cannot depend on secrets
— top<if secret@H then ()@H else ()@top> ==> ()@top

Labels are now public, no more “poison pills”

No more “infectious pc”
— H<if true@H then [1,2] else []> ==> [1,2]@H

Attacker model

 Why does Breeze also have access control?
— Isn’t IFC enough?

* |IFC doesn’t protect against malicious code!
— there will always be covert channels
— malicious code can extremely easily exfiltrate secrets
— | can write exfiltrator in 5 minutes, without timer

* Big part of IFC community seems to ignore the
problem and accept bogus attacker model
— We won't!

Authorities in Breeze

Unprivileged Breeze code cannot

— read and compute with secrets
(and thus leak them over covert channels) } separbaylt.i
— declassify secrets / endorse tainted values Capabliities

Authorities are first-class values = capabilities
— (P,Pe,Pd) = newPrin “P”; setAuth Pein ...
Ambient authority makes this workable
— otherwise pass authority on each little ISA instruction?
— authority can also be attenuated (least privilege)
Access control decision based on:
— ambient read authority + IFC label of the data

Ambient authority propagation strategies

Q: Do closures capture
creation-time authority?
(S = lexical propagation)
* Q:lIs authority passed
from caller to callee?
(D = dynamic propagation)
e Capable experiment by G.
Mallecha & G. Morrisett

* Breeze-du-jour does “S”

e What’s the relation with
SBAC, HBAC, IBAC?

/(]

Q: What do “least privilege”, “well-compartimentalized” mean?

Status of Breeze

* Interpreter with lots of different flags & externals
— standard library in different variants
— programming experiments; exploring design space
— compiler to SAFE architecture planned for the future
e Various subsets formalized in Coqg & Isabelle
— proved termination-insensitive non-interference

— big-step semantics (concurrency not formalized yet)

* Ongoing effort on releasing a 15 stable version

