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Breeze 

• High-level PL for writing secure software 

– user programs & system services (+ security policies) 

• functional core (λ) + concurrency (π) + state (!) … 

• dynamically typed (for now) 

– easier to experiment with 

– directly reflects capabilities of HW 

– dynamically-checked first-class contracts  

• fine-grained dynamic information flow control 

• access control (more later on why we need both) 



Fine-grained dynamic IFC 
• Every Breeze value has an IFC label: 

• At the SAFE HW level, every word is tagged 
– tags are pointers to arbitrary metadata 

– checking happens in parallel 
(HW rule cache speeds this up) 

– TMU is programmable  
(rules defined in software) 

– composable rule models 
(IFC labels = one of many models) 

– primitive TMU rule models: 
• can’t add two pointers, 

• can’t execute an integer, etc. 

• only scheduler can create threads 



SAFE hardware prototype 

PCI2e 2 GB/s each direction 

DRAM (2GB) 

FPGA 



IFC Labels in Breeze 

• Started with Decentralized Label Model (DLM) by 
Liskov & Meyers (A → *B, C+, D → *C,D+) 

• Later realized DLM is not the only option 
– Asbestos, HiStar/DStar, FLUME, HAILS, … 

all have their own decentralized … label models 

• Breeze has “generalized label model”  
– parameterized by join, meet, principals, authority, etc. 
– hope to also support HAILS DC labels in the future 

• How labels look like = the boring part of the story 
– in the dynamic IFC setting: 

the interesting part is how labels behave at runtime 



Dynamic IFC: is it even possible? 

• Non-interference is not a property (2-hyperproperty) 

• Until around 2007 folklore in PL community:  
non-interference can’t be enforced dynamically 
because of implicit flows 
– at least not without multi-execution or static information 

about the branches that are not executed 

• Dynamic techniques pioneered IFC [Fenton, CJ ’74+ 

• The lack of non-interference proofs didn’t stop the OS 
community from building dynamic IFC systems 
(Asbestos, HiStar/DStar, FLUME …) 



Purely dynamic IFC: Yes We Can! 

• “From dynamic to static and back: Riding the roller 
coaster of IFC research” *Sabelfeld & Russo, PSI 2009] 

• purely dynamic analysis (monitor) for 
termination-insensitive non-interference 
– termination-sensitivity hard to achieve in any way 

• “flow insensitive” analysis 
– labels of mutable variables can’t change 

– precise flow sensitive dynamic analysis proved impossible 
[Sabelfeld&Russo, CSF 2010] 

– flow insensitivity is not such a big deal for a new language 
• ML references / Java variables + fields only have weak updates 

• Breeze channels have label for contents fixed at creation time 



Purely-dynamic IFC: functional setting 

• “Efficient purely-dynamic information flow analysis” 
[Austin & Flanagan, PLAS 2009] 
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• pc automatically “tracks” branch labels 
– in order to prevent implicit flows 
– copy = (if secret@H then true@L else false@L) 

• pc “infects” all values created on high branch 
• this leads to deeply high-labeled values: 

– if true@H then [1,2] else [] ==> 
(cons (1@H) (cons (2@H) (nil@H))@H)@H 

• we needed “infectious pc” because of automatic 
pc lowering on control flow merge points 

The “infectious pc” problem 



First attempt to “manual pc lowering” 

• Using pc declassification, really bad idea 
(adds tons of completely spurious audit points) 



The “poison pill” problem 

• Fine-grained, dynamic IFC with decentralized LM 

• Any code can classify data 
– (P,_,_) = newPrin “P”; pill = 42@(P -> [P]) 

• High data can be hidden under low labels 
– x = [1,2,pill]@L; send cpub x 

• IFC violations are dynamic errors 
– recv cpub x; map ((+) 1) x 

• Labels themselves are an IF channel 
– x = (if secret@H then ()@H else ()@top); 
copy = (labelOf x == H) 



Non solution(s)  

• Labels are an IF channel, so hide labels 
 

 

• Threads get killed on IFC errors 
– critical components (scheduler, allocator, drivers, …) 

get killed on reading poison pill 

• Make channels unreliable? 
– contract on channel, silently discards poison pills 

– restore reliability using threads and timeouts? 

– so we can still write labelOf using a timing channel 



Brackets: killing two birds with one stone 

• Brackets = construct for manual pc lowering / restoring 
– automatic pc lowering played big role in creating our 2 problems 

• Programmer has to predict pc + label on all c.f. branches 
 
 

• Brackets are not a declassification construct 
– always safe, unlike manual pc declassification 

• Final label cannot depend on secrets 
– top<if secret@H then ()@H else ()@top> ==> ()@top 

• Labels are now public, no more “poison pills” 
• No more “infectious pc” 

– H<if true@H then [1,2] else []> ==> [1,2]@H 



Attacker model 

• Why does Breeze also have access control? 

– Isn’t IFC enough? 

• IFC doesn’t protect against malicious code! 

– there will always be covert channels 

– malicious code can extremely easily exfiltrate secrets 

– I can write exfiltrator in 5 minutes, without timer 

• Big part of IFC community seems to ignore the 
problem and accept bogus attacker model 

– We won’t! 



Authorities in Breeze 

• Unprivileged Breeze code cannot 
– read and compute with secrets 

(and thus leak them over covert channels) 
– declassify secrets / endorse tainted values 

• Authorities are first-class values  = capabilities 
– (P,Pe,Pd) = newPrin “P”; setAuth Pe in … 

• Ambient authority makes this workable 
– otherwise pass authority on each little ISA instruction? 
– authority can also be attenuated (least privilege) 

• Access control decision based on: 
– ambient read authority + IFC label of the data 

separate 
capabilities 



Ambient authority propagation strategies 

• Q: Do closures capture 
creation-time authority? 
(S = lexical propagation) 

• Q: Is authority passed 
from caller to callee? 
(D = dynamic propagation) 

• Capable experiment by G. 
Mallecha & G. Morrisett 

• Breeze-du-jour does “S” 

• What’s the relation with 
SBAC, HBAC, IBAC? 

Q: What do “least privilege”, “well-compartimentalized” mean? 



Status of Breeze 

• Interpreter with lots of different flags & externals 

– standard library in different variants 

– programming experiments; exploring design space 

– compiler to SAFE architecture planned for the future 

• Various subsets formalized in Coq & Isabelle 

– proved termination-insensitive non-interference 

– big-step semantics (concurrency not formalized yet) 

• Ongoing effort on releasing a 1st stable version 


