
Breeze: A Language For Writing
Secure Software

Cătălin Hriţcu

The SAFE team

May 2011 @ San Jose: Sumit Ray, Howard Reubenstein, Andrew Sutherland, Tom Knight, Olin Shivers,
Benjamin Pierce, Ben Karel, Benoit Montagu, Jonathan Smith, Catalin Hritcu, Randy Pollack, André
DeHon, Gregory Malecha, Basil Krikeles, Greg Sullivan, Greg Frazier, Tim Anderson, Bryan Loyall.

Missing or added since May 2011: Greg Morrisett, Peter Trei, David Wittenberg, Amanda Strnad,
Justin Slepak, David Darais, Robin Morisset, Chris White, Anna Gommerstadt, Marty Fahey, Tom
Hawkins, Karl Fischer, Hillary Holloway, Andrew Kaluzniacki.

Breeze

• High-level PL for writing secure software

– user programs & system services (+ security policies)

• functional core (λ) + concurrency (π) + state (!) …

• dynamically typed (for now)

– easier to experiment with

– directly reflects capabilities of HW

– dynamically-checked first-class contracts

• fine-grained dynamic information flow control

• access control (more later on why we need both)

Fine-grained dynamic IFC
• Every Breeze value has an IFC label:

• At the SAFE HW level, every word is tagged
– tags are pointers to arbitrary metadata

– checking happens in parallel
(HW rule cache speeds this up)

– TMU is programmable
(rules defined in software)

– composable rule models
(IFC labels = one of many models)

– primitive TMU rule models:
• can’t add two pointers,

• can’t execute an integer, etc.

• only scheduler can create threads

SAFE hardware prototype

PCI2e 2 GB/s each direction

DRAM (2GB)

FPGA

IFC Labels in Breeze

• Started with Decentralized Label Model (DLM) by
Liskov & Meyers (A → *B, C+, D → *C,D+)

• Later realized DLM is not the only option
– Asbestos, HiStar/DStar, FLUME, HAILS, …

all have their own decentralized … label models

• Breeze has “generalized label model”
– parameterized by join, meet, principals, authority, etc.
– hope to also support HAILS DC labels in the future

• How labels look like = the boring part of the story
– in the dynamic IFC setting:

the interesting part is how labels behave at runtime

Dynamic IFC: is it even possible?

• Non-interference is not a property (2-hyperproperty)

• Until around 2007 folklore in PL community:
non-interference can’t be enforced dynamically
because of implicit flows
– at least not without multi-execution or static information

about the branches that are not executed

• Dynamic techniques pioneered IFC [Fenton, CJ ’74+

• The lack of non-interference proofs didn’t stop the OS
community from building dynamic IFC systems
(Asbestos, HiStar/DStar, FLUME …)

Purely dynamic IFC: Yes We Can!

• “From dynamic to static and back: Riding the roller
coaster of IFC research” *Sabelfeld & Russo, PSI 2009]

• purely dynamic analysis (monitor) for
termination-insensitive non-interference
– termination-sensitivity hard to achieve in any way

• “flow insensitive” analysis
– labels of mutable variables can’t change

– precise flow sensitive dynamic analysis proved impossible
[Sabelfeld&Russo, CSF 2010]

– flow insensitivity is not such a big deal for a new language
• ML references / Java variables + fields only have weak updates

• Breeze channels have label for contents fixed at creation time

Purely-dynamic IFC: functional setting

• “Efficient purely-dynamic information flow analysis”
[Austin & Flanagan, PLAS 2009]

• Termination-
insensitive
non-interference

• pc automatically “tracks” branch labels
– in order to prevent implicit flows
– copy = (if secret@H then true@L else false@L)

• pc “infects” all values created on high branch
• this leads to deeply high-labeled values:

– if true@H then [1,2] else [] ==>
(cons (1@H) (cons (2@H) (nil@H))@H)@H

• we needed “infectious pc” because of automatic
pc lowering on control flow merge points

The “infectious pc” problem

First attempt to “manual pc lowering”

• Using pc declassification, really bad idea
(adds tons of completely spurious audit points)

The “poison pill” problem

• Fine-grained, dynamic IFC with decentralized LM

• Any code can classify data
– (P,_,_) = newPrin “P”; pill = 42@(P -> [P])

• High data can be hidden under low labels
– x = [1,2,pill]@L; send cpub x

• IFC violations are dynamic errors
– recv cpub x; map ((+) 1) x

• Labels themselves are an IF channel
– x = (if secret@H then ()@H else ()@top);
copy = (labelOf x == H)

Non solution(s)

• Labels are an IF channel, so hide labels

• Threads get killed on IFC errors
– critical components (scheduler, allocator, drivers, …)

get killed on reading poison pill

• Make channels unreliable?
– contract on channel, silently discards poison pills

– restore reliability using threads and timeouts?

– so we can still write labelOf using a timing channel

Brackets: killing two birds with one stone

• Brackets = construct for manual pc lowering / restoring
– automatic pc lowering played big role in creating our 2 problems

• Programmer has to predict pc + label on all c.f. branches

• Brackets are not a declassification construct
– always safe, unlike manual pc declassification

• Final label cannot depend on secrets
– top<if secret@H then ()@H else ()@top> ==> ()@top

• Labels are now public, no more “poison pills”
• No more “infectious pc”

– H<if true@H then [1,2] else []> ==> [1,2]@H

Attacker model

• Why does Breeze also have access control?

– Isn’t IFC enough?

• IFC doesn’t protect against malicious code!

– there will always be covert channels

– malicious code can extremely easily exfiltrate secrets

– I can write exfiltrator in 5 minutes, without timer

• Big part of IFC community seems to ignore the
problem and accept bogus attacker model

– We won’t!

Authorities in Breeze

• Unprivileged Breeze code cannot
– read and compute with secrets

(and thus leak them over covert channels)
– declassify secrets / endorse tainted values

• Authorities are first-class values = capabilities
– (P,Pe,Pd) = newPrin “P”; setAuth Pe in …

• Ambient authority makes this workable
– otherwise pass authority on each little ISA instruction?
– authority can also be attenuated (least privilege)

• Access control decision based on:
– ambient read authority + IFC label of the data

separate
capabilities

Ambient authority propagation strategies

• Q: Do closures capture
creation-time authority?
(S = lexical propagation)

• Q: Is authority passed
from caller to callee?
(D = dynamic propagation)

• Capable experiment by G.
Mallecha & G. Morrisett

• Breeze-du-jour does “S”

• What’s the relation with
SBAC, HBAC, IBAC?

Q: What do “least privilege”, “well-compartimentalized” mean?

Status of Breeze

• Interpreter with lots of different flags & externals

– standard library in different variants

– programming experiments; exploring design space

– compiler to SAFE architecture planned for the future

• Various subsets formalized in Coq & Isabelle

– proved termination-insensitive non-interference

– big-step semantics (concurrency not formalized yet)

• Ongoing effort on releasing a 1st stable version

