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Coq Verification Is Expensive 

 

• When designing and verifying real systems, 
most enlightenment comes from counterexamples 

• but finding counterexamples via failed proofs very costly 

• Want to find counterexamples as early as possible 

• Counterexample convinces engineer better than failed proof 

• Designs evolve, definitions and properties often wrong 

• Even when design correct & stable, proving still costly: 
countless iterations for discovering lemmas and invariants 

• this is the itch we’re trying to scratch with QuickChick 
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QuickChick: Property-Based Testing for Coq 

• We believe that property-based testing can 
– lower the cost of Coq proofs 

– become a part of the Coq proving process 
(similarly to Isabelle, ACL2, PVS, TLA+, etc) 

• Not there yet ... but at the moment we have 
– a working clone of Haskell’s QuickCheck 

• Prototype Coq plugin written mostly in Coq itself 
https://github.com/QuickChick 

– various other prototypes and experiments 

– lots of ideas we’re trying out 
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• writing our testing framework in Coq enables 

proving formal statements about testing itself 

• this is the main topic of this talk 
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Verified Property-Based Testing? Why? 

1. QuickChick is not push button 

– users will always have to write some code 
• property checkers  (efficiently executable variants of properties) 

• property-based generators (producing data satisfying properties) 

– writing correct probabilistic programs is hard 

– easy to test things badly and not notice it until proving 
(e.g. test weaker property); this reduces benefit of testing 

– when testing finds no bugs, how can we know that we are 
testing things right? are we even testing the right thing? 
• answer #1: formal verification 

• answer #2: polarized mutation testing 
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Verified Property-Based Testing? Why? 

2. Need to trust QuickChick itself 

– Subtle bugs found in Haskell QuickCheck 
even after 14 years of widespread usage 

– The more smarts we add to QuickChick, 
the bigger this issue becomes 

– Any extension we make needs to be correct 

• e.g. we would like to work out the metatheory of our 
upcoming property-based generator language 

• but for this we need at first define what generator and 
checker correctness means 
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A Coq Framework for Verified PBT 

• Formally verify QuickChick generators and checkers 

– wrt high-level properties they are supposed to test 

• Methodology for verification of probabilistic programs 

– abstraction: reasoning about the sets of outcomes a they 

can produce with non-zero probability 

• Framework integrated in QuickChick, used to verify 

– almost all the QuickChick combinators 

– red-black trees and noninterference examples 

• Modular, scalable, requires minimal code changes 
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A QUICK INTRODUCTION 
TO QUICKCHICK 
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Red-Black Trees Implementation 
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Declarative Proposition 
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Property Checker 
(efficiently executable definitions) 
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Generator for Arbitrary Trees 
(this could one day be produced automatically) 

13 



Finding a Bug 
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Generator for Red-Black Trees 
(handwritten property-based generator) 
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........... 



Property-Based Generator at Work 
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in less than 4 seconds 



VERIFIED PROPERTY-BASED TESTING 

Are we testing the right property? 
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Proving correctness of generators 
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Proving correctness of checkers 
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Set of outcomes semantics 

– semantics of a generator is a set 

• intuitively containing the values that can be generated 

with >0 probability 

– semantics of a checker is a Coq proposition 
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Formally we define 
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QuickChick/Proof Organization 
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Low-Level Generators 
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& Checkers 
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Internal Primitives & Axiom(s) 

• random seed type + 8 primitive functions written only in 
OCaml and only assumed in Coq 

• 5 axioms about these primitive functions 

– 4 of them would disappear if we implemented a splittable 
random number generator in Coq 

– remaining axiom is inherent to our abstraction! 

 

 

• makes the type RandomSeed infinite in Coq, 
while in OCaml it is finite (seeds are bounded integers) 

– we assume real randomness (an oracle) in the proofs, 
but can only implement pseudo-randomeness 
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Lemmas for Low-Level QC Generators (10) 
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• bind proof crucially relies on axiom about rndSplit 
• we can’t abstract over the sizes (existentially quantify) 

• they rely on primitives and concrete representation of Gen 



High-Level Generators & Checkers (12) 
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Summary 

• Coq framework for verified PBT 

• Integrated in QuickChick 

– https://github.com/QuickChick 

• Reasoning about sets of outcomes 

• The first verified QuickCheck implementation 

• Examples: red-black trees and noninterference 

• Modular, scalable, minimal code changes 
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Future Work 

• More proof automation and infrastructure 

– changing to efficient data representations 

– SMT-based verification for sets of outcomes 

• Verify property-based generator language 

• Probabilistic verification 

• Splittable RNG in Coq 

• Try to reduce testing cost, now significant 

– break even point very much problem-specific 
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THANK YOU 
Code at https://github.com/QuickChick 
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