
 A Coq Framework For
Verified Property-Based Testing

Cătălin Hrițcu
INRIA Paris

(part of QuickChick)

Coq Verification Is Expensive

• When designing and verifying real systems,
most enlightenment comes from counterexamples

• but finding counterexamples via failed proofs very costly

• Want to find counterexamples as early as possible

• Counterexample convinces engineer better than failed proof

• Designs evolve, definitions and properties often wrong

• Even when design correct & stable, proving still costly:
countless iterations for discovering lemmas and invariants

• this is the itch we’re trying to scratch with QuickChick

2

QuickChick: Property-Based Testing for Coq

• We believe that property-based testing can
– lower the cost of Coq proofs

– become a part of the Coq proving process
(similarly to Isabelle, ACL2, PVS, TLA+, etc)

• Not there yet ... but at the moment we have
– a working clone of Haskell’s QuickCheck

• Prototype Coq plugin written mostly in Coq itself
https://github.com/QuickChick

– various other prototypes and experiments

– lots of ideas we’re trying out

3

https://github.com/QuickChick
https://github.com/QuickChick
https://github.com/QuickChick

Collaborators

4

Maxime Dénès
(Inria)

John Hughes
(Chalmers)

Leo Lampropoulos
(UPenn)

Benjamin Pierce
(UPenn)

Antal Spector-Zabusky
(UPenn)

Dimitris Vytiniotis
(MSR Cambridge)

Arthur Azevedo de Amorim
(UPenn, recent Inria intern)

Cătălin Hrițcu
(Inria)

Li-yao Xia
(ENS Paris,
upcoming

Inria intern)

Zoe Paraskevopoulou
(ENS Cachan,
 Inria intern
last summer)

• writing our testing framework in Coq enables

proving formal statements about testing itself

• this is the main topic of this talk
5

Verified Property-Based Testing? Why?

1. QuickChick is not push button

– users will always have to write some code
• property checkers (efficiently executable variants of properties)

• property-based generators (producing data satisfying properties)

– writing correct probabilistic programs is hard

– easy to test things badly and not notice it until proving
(e.g. test weaker property); this reduces benefit of testing

– when testing finds no bugs, how can we know that we are
testing things right? are we even testing the right thing?
• answer #1: formal verification

• answer #2: polarized mutation testing

6

Verified Property-Based Testing? Why?

2. Need to trust QuickChick itself

– Subtle bugs found in Haskell QuickCheck
even after 14 years of widespread usage

– The more smarts we add to QuickChick,
the bigger this issue becomes

– Any extension we make needs to be correct

• e.g. we would like to work out the metatheory of our
upcoming property-based generator language

• but for this we need at first define what generator and
checker correctness means

7

A Coq Framework for Verified PBT

• Formally verify QuickChick generators and checkers

– wrt high-level properties they are supposed to test

• Methodology for verification of probabilistic programs

– abstraction: reasoning about the sets of outcomes a they

can produce with non-zero probability

• Framework integrated in QuickChick, used to verify

– almost all the QuickChick combinators

– red-black trees and noninterference examples

• Modular, scalable, requires minimal code changes

8

A QUICK INTRODUCTION
TO QUICKCHICK

9

Red-Black Trees Implementation

10

Declarative Proposition

11

Property Checker
(efficiently executable definitions)

12

Generator for Arbitrary Trees
(this could one day be produced automatically)

13

Finding a Bug

14

Generator for Red-Black Trees
(handwritten property-based generator)

15

...........

Property-Based Generator at Work

16

in less than 4 seconds

VERIFIED PROPERTY-BASED TESTING

Are we testing the right property?

17

Cătălin Hrițcu
(Inria)

Zoe Paraskevopoulou
(ENS Cachan, ..

 Inria intern last summer)

Proving correctness of generators

18

Proving correctness of checkers

19

Set of outcomes semantics

– semantics of a generator is a set

• intuitively containing the values that can be generated

with >0 probability

– semantics of a checker is a Coq proposition

20

Formally we define

21

22

QuickChick/Proof Organization

23

Internal Primitives (OCaml)

Low-Level Generators

High-Level Generators
& Checkers

User Code

Internal Primitives & Axiom(s)

• random seed type + 8 primitive functions written only in
OCaml and only assumed in Coq

• 5 axioms about these primitive functions

– 4 of them would disappear if we implemented a splittable
random number generator in Coq

– remaining axiom is inherent to our abstraction!

• makes the type RandomSeed infinite in Coq,
while in OCaml it is finite (seeds are bounded integers)

– we assume real randomness (an oracle) in the proofs,
but can only implement pseudo-randomeness

24

Lemmas for Low-Level QC Generators (10)

25

• bind proof crucially relies on axiom about rndSplit
• we can’t abstract over the sizes (existentially quantify)

• they rely on primitives and concrete representation of Gen

High-Level Generators & Checkers (12)

26

Summary

• Coq framework for verified PBT

• Integrated in QuickChick

– https://github.com/QuickChick

• Reasoning about sets of outcomes

• The first verified QuickCheck implementation

• Examples: red-black trees and noninterference

• Modular, scalable, minimal code changes

27

https://github.com/QuickChick
https://github.com/QuickChick
https://github.com/QuickChick

Future Work

• More proof automation and infrastructure

– changing to efficient data representations

– SMT-based verification for sets of outcomes

• Verify property-based generator language

• Probabilistic verification

• Splittable RNG in Coq

• Try to reduce testing cost, now significant

– break even point very much problem-specific

28

THANK YOU
Code at https://github.com/QuickChick

29

https://github.com/QuickChick

