A Cog Framework For
Verified Property-Based Testing

‘.f’"'

Catalin Hritcu
INRIA Paris .y,

(part of QuickChick)

DDDDDDDDDDDDDDDDDDDDDDDDDDD

Coq Verification Is Expensive

 When designing and verifying real systems,
most enlightenment comes from counterexamples

* but finding counterexamples via failed proofs very costly
 Want to find counterexamples as early as possible

* Counterexample convinces engineer better than failed proof
* Designs evolve, definitions and properties often wrong

* Even when design correct & stable, proving still costly:
countless iterations for discovering lemmas and invariants

* this is the itch we’re trying to scratch with QuickChick

QuickChick: Property-Based Testing for Coq

 We believe that property-based testing can
— lower the cost of Coq proofs

— become a part of the Coq proving process
(similarly to Isabelle, ACL2, PVS, TLA+, etc)

* Not there yet ... but at the moment we have

— a working clone of Haskell’s QuickCheck

* Prototype Coq plugin written mostly in Coq itself
https://github.com/QuickChick

— various other prototypes and experiments
— lots of ideas we’re trying out

—

https://github.com/QuickChick
https://github.com/QuickChick
https://github.com/QuickChick

Collaborators

- i N
Arthur Azevedo de Amorim Maxime Déneés John Hughes Catilin Hritcu Leo Lampropoulos
(UPenn, recent Inria intern) (Inria) (Chalmers) (Inria) (UPenn)
A= TS
=
- R 2B
Zoe Paraskevopoulou Benjamin Pierce Antal Spector-Zabusky Dimitris Vytiniotis Li-yao Xia
(ENS Cachan, (UPenn) (UPenn) (MSR Cambridge) (ENS Paris,
Inria intern upcoming
last summer) Inria intern)

e writing our testing framework in Coq enables
proving formal statements about testing itself

* this is the main topic of this talk

Verified Property-Based Testing? Why?

1. QuickChick is not push button

— users will always have to write some code
* property checkers (efficiently executable variants of properties)
* property-based generators (producing data satisfying properties)

— writing correct probabilistic programs is hard

— easy to test things badly and not notice it until proving
(e.g. test weaker property); this reduces benefit of testing

— when testing finds no bugs, how can we know that we are
testing things right? are we even testing the right thing?
* answer #1: formal verification
* answer #2: polarized mutation testing

Verified Property-Based Testing? Why?

2. Need to trust QuickChick itself

— Subtle bugs found in Haskell QuickCheck
even after 14 years of widespread usage

— The more smarts we add to QuickChick,
the bigger this issue becomes

— Any extension we make needs to be correct

« e.g. we would like to work out the metatheory of our
upcoming property-based generator language

* but for this we need at first define what generator and
checker correctness means

A Cog Framework for Verified PBT

Formally verify QuickChick generators and checkers
— wrt high-level properties they are supposed to test
Methodology for verification of probabilistic programs

— abstraction: reasoning about the sets of outcomes a they
can produce with non-zero probability

Framework integrated in QuickChick, used to verify
— almost all the QuickChick combinators

— red-black trees and noninterference examples

Modular, scalable, requires minimal code changes

A QUICK INTRODUCTION
TO QUICKCHICK

. .

Red-Black Trees Implementation

Inductive color := Red | Black.

Inductive tree :=
| Leaf : tree
| Node : color -> tree -> nat -> tree -> tree.

Fixpoint ins X s :=
match s with
| Leaf => Node Red Leaf x Leaf
| Node c ay b == 1if x <y then balance c (ins x a) y b
else if y < x then balance c a y (ins x b)
else Node c a x b

end.

Definition makeBlack t :=
match t with
| Leaf => Leaf
| Node a x b => Node Black a x b

end.

Definition insert x s := makeBlack (ins x s).

10

Declarative Proposition

(* Red-Black Tree invariant: declarative definition *)
Inductive is redblack' : tree -> color -> nat -> Prop :=
| IsRB leaf: forall c, is redblack' Leaf c 0
| IsRB r: forall n tl tr h,
is redblack' tl Red h -> is redblack' tr Red h ->
is redblack' (Node Red tl n tr) Black h
| IsRB b: forall c n tl tr h,
is redblack' tl Black h -> is redblack' tr Black h ->
is redblack' (Node Black tl n tr) c (S h).

Definition 1s redblack t := exists h, is redblack' t Red h.

Definition insert preserves redblack : Prop :=
forall x s, 1s redblack s -> is redblack (insert x s).

(* Declarative Proposition *)
Lemma insert preserves redblack correct : insert preserves redblack.
Abort. (* if this wasn't about testing, we would just prove this *)

11

Property Checker

(efficiently executable definitions)

Definition is black balanced (t : tree) : bool :=
isSome (black h61ght bool t).

Fixpoint has no red red (t : tree) : bool :=
match t with
| Leaf => true
| Node Red (Node Red) => false

| Node Red (Node Red) = false

| Node tl tr => has no red red tl & has no red red tr
end.

Definition is redblack bool (t : tree) : bool :=
is black balanced t && has no red red t.

Definition insert is redblack checker : Gen QProp :=
forAll arbltrary (fun n =>
(forAll genTree (fun t =>
(1s redblack bool t ==>
is redblack bool (insert n t)) : Gen QProp)) : Gen QProp).

12

Generator for Arbitrary Trees
(this could one day be produced automatically)

Definition genColor := elements Red [Red; Black].

Fixpoint genAnyTree max height (h : nat) : Gen tree :=

match h with

| © => returnGen Leaf

ISh':'.‘P
bindGen genColor (fun ¢ =>
bindGen (genAnyTree max height h') (fun t1 =>
bindGen (genAnyTree max height h') (fun t2 =>
bindGen arbitraryNat (fun n =>
returnGen (Node c t1 n t2)))))

end.

Definition genAnyTree : Gen tree := sized genAnyTree max height.

QuickCheck testInsertNaive.

*** Gave up! Passed only 3 tests
Discarded: 200

13

Finding a Bug

Fixpoint has no red red (t : tree) : bool :=
match t with
| Leaf => true

| Node Red (Node Red) => false
| Node Red 2 (Node Red @) => false
| Node tl tr => has no red red|tr|&& has no red red tr

end.

QuickCheck testInsertNaive.

Node Black (Node |Red| (Node|Red| (Leaf) 63 (Leaf)) 155 (Node Red (Leaf) 55 (Node Red »
***% Failed! After 4021 tests and O shrinks

14

Generator for Red-Black Trees
(handwritten property-based generator)

Fixpoint genRBTree height (h : nat) (c : color) :=
match h with
IE]:‘.‘.‘*
match ¢ with

| Red => returnGen Leaf

| Black => oneof (returnGen Leaf)
[returnGen Leaf;

bindGen arbitraryNat (fun n =>

returnGen (Node Red Leaf n Leaf))]
end

| S h =>
match ¢ with
| Red =>
bindGen (genRBTree height h Black) (fun t1 =>
bindGen (genRBTree height h Black) (fun t2 =>
bindGen arbitraryNat (fun n =>

returnGen (Node Black t1 n t2))))
| Black =>

Definition genRBTree :

sized (fun h => genRBTree height h Red).

Property-Based Generator at Work

Definition testInsert :=
showDiscards (quickCheck (insert is redblack checker genRBTree)).

QuickCheck testInsert.

success: number of successes 10000

number of discards © in less than 4 seconds

16

L4 i &
Zoe Paraskevopoulou Catilin Hritcu
(ENS Cachan, (Inria)
Inria intern last summer)

Are we testing the right property?

VERIFIED PROPERTY-BASED TESTING

17

Proving correctness of generators

Definition genColor := elements Red [Red; Black].

Lemma semElements :
forall {A} (1: list A) (def : A),
(semGen (elements def 1)) <-->
(fun e => List.In e L \/ (L = nil /\ e = def)).

Lemma genColor correct:

semGen genColor <--> (fun _ => True).
Proof.

rewrite /genColor. intros c. rewrite semElements.

split == // . left.

destruct c; by [constructor | constructor(constructor)].
Qed.

Lemma genRBTree height correct: forall c h,
(genRBTree height h c¢) <--> (fun t => 1is redblack' t c h).

Theorem genRBTree correct:
semGen genRBTree <--> 1is redblack.

18

Proving correctness of checkers

Lemma is redblackP :
forall (t : tree),
reflect (is redblack t) (is redblack bool t).

Lemma semImplication:
forall {prop : Type} {H : Checkable prop}
(p : prop) (b : bool) (s : nat),
semCheckerSize (b ==> p) s <-> b = true -> semCheckableSize p s.

Lemma semForAll :
forall {A prop : Type} {H : Checkable prop} "“{Show A}
(gen : G A) (f : A -> prop) (size: nat),
semCheckerSize (forAll gen f) size <->
forall (a : A), semSize gen size a -> semCheckableSize (f a) size.

Lemma insert is redblack checker correct:
semChecker (insert is redblack checker genRBTree) <-> insert preserves redblack.

19

Set of outcomes semantics

— semantics of a generator is a set

* intuitively containing the values that can be generated
with >0 probability

— semantics of a checker is a Coq proposition

Formally we define

Definition Ensemble (A : Type) := A -> Prop.

Definition set eq {A} (ml m2 : Ensemble A) :=
forall (a : A), ml a <-> m2 a.
Infix "<-->" := set eq (at level 70, no associativity) : sem gen scope.

Definition semSize {A : Type} (g : Gen A) (size : nat) : Ensemble A :=
fun a => exists seed, (unGen g) seed size = a.

Definition semGen {A : Type} (g : Gen A) : Ensemble A :=
fun a => exists size, semSize g size a.

Record QProp : Type := MkProp { unProp : Rose Result }.

Definition Checker : Type := Gen QProp.

Definition semChecker (P : Checker) : Prop :
forall s gp, semSize P s gp -> success qp

true.

21

System Under Test

Implementation |_ equivalence Model L
'/ Executable Definitions proofs Declarative Definitions \“'\
I \\ 0\5\
1 e
A Y
i \
Q1
Y VeriQuickChick ‘\
\ \
“ QuickChick semantics Specifications ll
A) I
AR — equivalence — '
Property CheckersJ Proposmons} >[Prop05|t|ons
, , proofs
| | 1
| use | use use
| I *
y y equivalence
® [Generators] Predlcates} >(Pred|catesJ
b2} proofs
?
‘P% sets of outcomes
o; semantics
Q

O

informal
conjecture

QuickChick/Proof Organization

High-Level Generators
e
User Code & Checkers

l l

Low-Level Generators

l

Internal Primitives (OCaml)

23

Internal Primitives & Axiom(s)

 random seed type + 8 primitive functions written only in
OCaml and only assumed in Coq

5 axioms about these primitive functions

— 4 of them would disappear if we implemented a splittable
random number generator in Coq

— remaining axiom is inherent to our abstraction!

Axiom rndSplitAssumption :
forall sl s2 : RandomSeed, exists s, rndSplit s = (sl,s2).

* makes the type RandomSeed infinite in Coq,
while in OCaml it is finite (seeds are bounded integers)

— we assume real randomness (an oracle) in the proofs,
but can only implement pseudo-randomeness

Lemmas for Low-Level QC Generators (10)

* they rely on primitives and concrete representation of Gen

Lemma semReturnSize : forall A (x : A) (size : nat),
semSize (returnGen x) size <--> eq X.

Lemma semBindSize : forall AB (g : GA) (f : A -> G B) (size : nat),
semSize (bindGen g f) size <--> (fun b => exists a, (semSize g size) a /\
(semSize (f a) size) b).
* bind proof crucially relies on axiom about rndSplit

e we can’t abstract over the sizes (existentially quantify)

Lemma semSizedSize :
forall A (f : nat -> G A),
semGen (sized f) <--> (fun a => exists n, semSize (f n) n a).

Lemma semResize :
forall A (n : nat) (g : G A), semGen (resize n g) <--> semSize g n.

25

High-Level Generators & Checkers (12)

Lemma semElements :
forall {A} (L: list A) (def : A),
(semGen (elements def 1)) <-->
(fun e = List.In e L \/ (L = nil /\ e = def)).

Lemma semFrequency: forall {A} (L : list (nat * G A)) (def : G A),
semGen (frequency def 1) <-->
(fun e => (exists n, exists g, (List.In (n, g) 1 /\ semGen g e /\ n <> 0)) \/
((L = nil \/ (forall x, List.In x 1 -> fst x = 0)) /\ semGen def e)).

Lemma semImplication:
forall {prop : Type} {H : Checkable prop}
(p : prop) (b : bool) (s : nat),
semCheckerSize (b ==> p) s <-> b = true -> semCheckableSize p s.

Lemma semForAll :
forall {A prop : Type} {H : Checkable prop} "{Show A}
(gen : G A) (f : A -> prop) (size: nat),
semCheckerSize (forAll gen f) size <->
forall (a : A), semSize gen size a -> semCheckableSize (f a) size.

26

Summary

Coq framework for verified PBT ..

Integrated in QuickChick
— https://github.com/QuickChick -l

Reasoning about sets of outcomes
The first verified QuickCheck implementation
Examples: red-black trees and noninterference

Modular, scalable, minimal code changes

https://github.com/QuickChick
https://github.com/QuickChick
https://github.com/QuickChick

Future Work

More proof automation and infrastructure
— changing to efficient data representations
— SMT-based verification for sets of outcomes

Verify property-based generator language
Probabilistic verification

Splittable RNG in Coq

Try to reduce testing cost, now significant
— break even point very much problem-specific

THANK YOU
Code at https://github.com/QuickChick

v,

29

https://github.com/QuickChick

