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My research projects 
• Micro-Policies: Formally Verified, Hardware- 

            Assisted, Tag-Based Security Monitors 
 

• F*: ML-like Programming Language 
   + Verification System + Proof Assistant 
 

• Property-Based Testing for Verified Languages & Systems 

– QuickChick & Foundational & Luck & Mutants & Testing IFC ... 
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Verification is expensive 

• When designing and verifying languages and systems, 

most enlightenment comes from counterexamples 

• but finding counterexamples via failed proofs is very costly 

• Counterexample convinces engineer better than failed proof 

• Designs evolve, definitions and properties often wrong 

• Even when design correct & stable, proving still costly: 

countless iterations for discovering lemmas and invariants 

• this is the itch we’re trying to scratch ... 

• our hope: property-based testing can help 
4 



A QUICK INTRODUCTION 
TO PBT USING QUICKCHICK 
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Red-Black Trees Implementation 
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Declarative Proposition 
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Property Checker 
(efficiently executable definitions) 
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Generator for Arbitrary Trees 
(this could potentially be produced automatically) 
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Finding a Bug 
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Generator for Red-Black Trees 
(handwritten property-based generator) 
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........... 



Property-Based Generator at Work 
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.... in seconds 



QuickChick 

• Coq clone of Haskell QuickCheck 

• Mostly written in Coq, extracted to OCaml 

• Code at https://github.com/QuickChick 
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https://github.com/QuickChick


TESTING NONINTERFERENCE, QUICKLY 

Larger case study on 
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[ICFP 2013 and beyond] 



Can we quickcheck noninterference? 

• Context 

– designing real machine with dynamic IFC (>100 instructions) 

• Experiment 

– very simple stack machine (10 instructions) 

– standard end-to-end noninterference property 

– manually introduced 14 plausible IFC errors, 

and measured how fast they are found 

• Encouraging results 

– however, not using QuickCheck naïvely 

[ICFP 2013] 



3 secret ingredients 

1. Fancy program generation strategies 

– s1 ≈ s2 – generate s1 then vary secrets to get s2 ≈ s1 

– distributions, instruction sequences, smart integers 

– best one: “generation by execution” 

• 19 instructions counterexample takes minutes to find 

2. Strengthening the tested property 

– best one: “unwinding conditions” (inductive invariant) 

• all errors found in milliseconds, even with simple generation 

– requires finding stronger invariants, like for proving 

3. Fancy counterexample shrinking 

 



Rather simple custom generator 
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.... 
Biased generator 

Guarded (add needs 2 arguments) 

Store only to valid address 

Return only after call 



Scaling this up 

• More complex register machine 

– with dynamic memory allocation 

• Fancier IFC features: 

– public first-class labels, flow sensitive analysis 

• Used property-based testing to 

– design novel highly-permissive dynamic IFC mechanism 

– discover complex invariants of noninterference proof 

– Coq proof took only ~2 weeks afterwards and found only one error 

– prior (paper) proof attempt timed out after ~3 weeks of work 

• Extra ingredient: 4. polarized mutation testing 

– 33 mutants: covering all missing taints / check bugs 
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PBT is not very reliable 

• PBT is not push button ... users has to write testing code 

– property checkers  (efficiently executable variants of properties) 

– property-based generators (producing data satisfying properties) 

• writing correct probabilistic programs is hard 

• easy to test things badly and not notice it until proving 

(e.g. test weaker property); this reduces benefit of testing 

• how can we find the bugs in our testing? 

• when testing finds no bugs ... is the property true? 

– are we are testing things well? 

– are we even testing the right property? 

19 



How can make PBT more reliable?  

• Gather statistics 

– discard rates, distributions, coverage, etc. 

– can discover bugs if one looks at the “right” thing 

• Add bugs and make sure they are found 

– polarized mutation testing 

• Formally verify the testing code 

– foundational property-based testing 

• Better languages for writing testing code 

– Luck: new language for generators 
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POLARIZED MUTATION TESTING 
Are we testing things right? Introducing true bugs! 
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Mutation testing 

• Automatically introduce bugs 

– test the testing infrastructure (e.g. the generator) 

– in ICFP 2013 experiments we added bugs manually 

• does not scale, tedious and turns code into spaghetti 

– enumerate all missing taints and missing checks 

• especially easy when IFC split into separate “rule table” 
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Rule table 
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Results encouraging 

• Our generator had tons of bugs 

– could only kill 9 out of 51 mutants (17.6%)! 

• Finding and fixing generator bugs 

– gathering statistics, constructing counterexamples by hand 

– fixing one generator bug usually killed many more mutants 

– sometimes found extra bugs in un-mutated artifact & property 

• After a couple of days only live 2 mutants 

– for which we still couldn’t find counterexamples by hand 

– we applied these mutantions ... started proving 

• Mutation testing gamifies invariant finding 

– to the point it’s actually fun and addictive! 
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Mutant game (final output) 
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So why did this work so well? 

• Yes, human is in the loop (debugging, finding counterexamples) 

– but we don’t waste human cycles 

• Each unkilled mutant thought us something 

– either exposed real bugs in the testing 

– or was better than the original (more permissive) 

• Property-based: strengthening a supposedly  “tight” property 

• This is usually not the case for mutation testing 

– purely syntactic mutations (replace “+” by “-”) 

– human cycles wasted on silly (“equivalent”) 
mutants that don’t break the tested property 

– kill count just alternative to code coverage metrics, never 100% 
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Polarized mutation testing 

• Generalizing this technique beyond IFC 

– we eventually want a framework 

• Started with STLC experiment 

– break progress by strengthening the step relation 
 (e.g. dropping whole stepping rules)  

– break preservation 

• by strengthening positive occurrence of typing relation 

• or by weakening negative occurrence of typing relation 

• or by weakening (negative occurrence of) step relation 

– no-shadowing bug in fancy generator for well-typed terms 

• We broke tail call optimization in CompCert (made all calls tail), 
found that CSmith couldn’t find the problem 

• This works well in practice, but hard to formalize 
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FOUNDATIONAL PROPERTY-BASED TESTING 

Are we testing the right property? 
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• writing our testing framework in Coq enables 

proving formal statements about testing itself 

• this is the main topic of this talk 
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Verified Property-Based Testing? Why? 

1. Testing code easy to get wrong 

2. Need to trust QuickChick itself 
– Subtle bugs found in Haskell QuickCheck 

even after 14 years of widespread usage 

– The more smarts we add to QuickChick, 
the bigger this issue becomes 

– Any extension we make needs to be correct 
• e.g. we would like to work out the metatheory of our 

upcoming property-based generator language 

• but for this we need at first define what generator and 
checker correctness means 

30 



A Coq Framework for Foundational PBT 

• Formally verify QuickChick generators and checkers 

– wrt high-level properties they are supposed to test 

• Methodology for verification of probabilistic programs 

– abstraction: reasoning about the sets of outcomes a they 

can produce with non-zero probability 

• Framework integrated in QuickChick, used to verify 

– almost all the QuickChick combinators 

– red-black trees and noninterference examples 

• Modular, scalable, requires minimal code changes 
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Proving correctness of generators 
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Proving correctness of checkers 
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Set of outcomes semantics 

– semantics of a generator is a set 

• intuitively containing the values that can be generated 

with >0 probability 

– semantics of a checker is a Coq proposition 
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Formally we define 
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QuickChick/Proof Organization 
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Internal Primitives (OCaml) 

Low-Level Generators 

High-Level Generators 
& Checkers 

User Code 



Internal Primitives & Axiom(s) 

• random seed type + 8 primitive functions written only in 
OCaml and only assumed in Coq 

• 5 axioms about these primitive functions 

– 4 of them would disappear if we implemented a splittable 
random number generator in Coq 

– remaining axiom is inherent to our abstraction! 

 

 

• makes the type RandomSeed infinite in Coq, 
while in OCaml it is finite (seeds are bounded integers) 

– we assume real randomness (an oracle) in the proofs, 
but can only implement pseudo-randomeness 
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Summary 

• Coq framework for foundational PBT 

• Integrated in QuickChick 

– https://github.com/QuickChick 

• Reasoning about sets of outcomes 

• The first verified QuickCheck implementation 

• Examples: red-black trees and noninterference 

• Modular, scalable, minimal code changes 
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LUCK: LANGUAGE FOR GENERATORS 

Better languages for writing testing code 
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Luck 

• Functional programming language 

• Expressions have dual semantics 
– checkers when all variables are fully instantiated 

– generators when variables are partially defined 

• Puts together: 
– lazy instantiation 

• “narrowing” from functional logic programming 

– constraint propagation for integers 

– local control over probability distribution 
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Red-black trees in Luck 
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sig isRBT' :: Int -> Int -> Int -> Color -> RBT Int -> Bool 
fun isRBT' {h @i} {low @i} {high @i} c t = 
  if h == 0 then 
      case c of 
        | Red -> isLeaf t 
        | Black ->  
           case t of 
             | Leaf -> True 
             | Node k x l r -> [| x | low < x && x < high |] 
                               && isLeaf l && isLeaf r && isBlack k 
           end 
      end 
  else ... 



Luck is work in progress ... 

• Experimental results vary: 1.5x-50x overhead 

• Semantics is challenging 

– generalize from bool to arbitrary result types 

– preserve sharing between values 

• Final meta theorems we’re aiming for 

– soundness & completeness 

• inspired from foundational PBT work 

– but also capturing probabilities and backtracking 
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Future Work 

• A lot of this is ongoing / unfinished work: 

– Luck, polarized mutation 

• Foundational PBT 

– SMT-based verification for sets of outcomes 

• Further reduce testing cost 

– more automation (e.g. for inductives) 

– hopefully as certificate producing metaprograms 

• Integration: 

– bring Luck to Haskell and Coq 
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THANK YOU 
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Lemmas for Low-Level QC Generators (10) 
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• bind proof crucially relies on axiom about rndSplit 
• we can’t abstract over the sizes (existentially quantify) 

• they rely on primitives and concrete representation of Gen 



High-Level Generators & Checkers (12) 
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