
Foundational Property-Based Testing

Cătălin Hrițcu
INRIA Paris

My research projects
• Micro-Policies: Formally Verified, Hardware-

 Assisted, Tag-Based Security Monitors

• F*: ML-like Programming Language
 + Verification System + Proof Assistant

• Property-Based Testing for Verified Languages & Systems

– QuickChick & Foundational & Luck & Mutants & Testing IFC ...

2 this talk

Collaborators

3

Maxime Dénès
(Inria)

John Hughes
(Chalmers)

Leo Lampropoulos
(UPenn)

Benjamin Pierce
(UPenn)

Antal Spector-Zabusky
(UPenn)

Dimitris Vytiniotis
(MSR Cambridge)

Arthur Azevedo de Amorim
(UPenn, Inria intern 2014)

Cătălin Hrițcu
(Inria)

Li-yao Xia
(ENS Paris,
Inria intern

2015)

Zoe Paraskevopoulou
(Princeton,

 Inria intern 2014)

Verification is expensive

• When designing and verifying languages and systems,

most enlightenment comes from counterexamples

• but finding counterexamples via failed proofs is very costly

• Counterexample convinces engineer better than failed proof

• Designs evolve, definitions and properties often wrong

• Even when design correct & stable, proving still costly:

countless iterations for discovering lemmas and invariants

• this is the itch we’re trying to scratch ...

• our hope: property-based testing can help
4

A QUICK INTRODUCTION
TO PBT USING QUICKCHICK

5

Red-Black Trees Implementation

6

Declarative Proposition

7

Property Checker
(efficiently executable definitions)

8

Generator for Arbitrary Trees
(this could potentially be produced automatically)

9

Finding a Bug

10

Generator for Red-Black Trees
(handwritten property-based generator)

11

...........

Property-Based Generator at Work

12

.... in seconds

QuickChick

• Coq clone of Haskell QuickCheck

• Mostly written in Coq, extracted to OCaml

• Code at https://github.com/QuickChick

13

https://github.com/QuickChick

TESTING NONINTERFERENCE, QUICKLY

Larger case study on

14

[ICFP 2013 and beyond]

Can we quickcheck noninterference?

• Context

– designing real machine with dynamic IFC (>100 instructions)

• Experiment

– very simple stack machine (10 instructions)

– standard end-to-end noninterference property

– manually introduced 14 plausible IFC errors,

and measured how fast they are found

• Encouraging results

– however, not using QuickCheck naïvely

[ICFP 2013]

3 secret ingredients

1. Fancy program generation strategies

– s1 ≈ s2 – generate s1 then vary secrets to get s2 ≈ s1

– distributions, instruction sequences, smart integers

– best one: “generation by execution”

• 19 instructions counterexample takes minutes to find

2. Strengthening the tested property

– best one: “unwinding conditions” (inductive invariant)

• all errors found in milliseconds, even with simple generation

– requires finding stronger invariants, like for proving

3. Fancy counterexample shrinking

Rather simple custom generator

17

....
Biased generator

Guarded (add needs 2 arguments)

Store only to valid address

Return only after call

Scaling this up

• More complex register machine

– with dynamic memory allocation

• Fancier IFC features:

– public first-class labels, flow sensitive analysis

• Used property-based testing to

– design novel highly-permissive dynamic IFC mechanism

– discover complex invariants of noninterference proof

– Coq proof took only ~2 weeks afterwards and found only one error

– prior (paper) proof attempt timed out after ~3 weeks of work

• Extra ingredient: 4. polarized mutation testing

– 33 mutants: covering all missing taints / check bugs

18

[JFP 2015 submission]

PBT is not very reliable

• PBT is not push button ... users has to write testing code

– property checkers (efficiently executable variants of properties)

– property-based generators (producing data satisfying properties)

• writing correct probabilistic programs is hard

• easy to test things badly and not notice it until proving

(e.g. test weaker property); this reduces benefit of testing

• how can we find the bugs in our testing?

• when testing finds no bugs ... is the property true?

– are we are testing things well?

– are we even testing the right property?

19

How can make PBT more reliable?

• Gather statistics

– discard rates, distributions, coverage, etc.

– can discover bugs if one looks at the “right” thing

• Add bugs and make sure they are found

– polarized mutation testing

• Formally verify the testing code

– foundational property-based testing

• Better languages for writing testing code

– Luck: new language for generators

20

POLARIZED MUTATION TESTING
Are we testing things right? Introducing true bugs!

21

Maxime Dénès
(Inria)

Leo Lampropoulos
(UPenn)

Benjamin Pierce
(UPenn)

Cătălin Hrițcu
(Inria)

Mutation testing

• Automatically introduce bugs

– test the testing infrastructure (e.g. the generator)

– in ICFP 2013 experiments we added bugs manually

• does not scale, tedious and turns code into spaghetti

– enumerate all missing taints and missing checks

• especially easy when IFC split into separate “rule table”

22

Rule table

23

Results encouraging

• Our generator had tons of bugs

– could only kill 9 out of 51 mutants (17.6%)!

• Finding and fixing generator bugs

– gathering statistics, constructing counterexamples by hand

– fixing one generator bug usually killed many more mutants

– sometimes found extra bugs in un-mutated artifact & property

• After a couple of days only live 2 mutants

– for which we still couldn’t find counterexamples by hand

– we applied these mutantions ... started proving

• Mutation testing gamifies invariant finding

– to the point it’s actually fun and addictive!

24

Mutant game (final output)

25

So why did this work so well?

• Yes, human is in the loop (debugging, finding counterexamples)

– but we don’t waste human cycles

• Each unkilled mutant thought us something

– either exposed real bugs in the testing

– or was better than the original (more permissive)

• Property-based: strengthening a supposedly “tight” property

• This is usually not the case for mutation testing

– purely syntactic mutations (replace “+” by “-”)

– human cycles wasted on silly (“equivalent”)
mutants that don’t break the tested property

– kill count just alternative to code coverage metrics, never 100%

26

Polarized mutation testing

• Generalizing this technique beyond IFC

– we eventually want a framework

• Started with STLC experiment

– break progress by strengthening the step relation
 (e.g. dropping whole stepping rules)

– break preservation

• by strengthening positive occurrence of typing relation

• or by weakening negative occurrence of typing relation

• or by weakening (negative occurrence of) step relation

– no-shadowing bug in fancy generator for well-typed terms

• We broke tail call optimization in CompCert (made all calls tail),
found that CSmith couldn’t find the problem

• This works well in practice, but hard to formalize

27

FOUNDATIONAL PROPERTY-BASED TESTING

Are we testing the right property?

28

[ITP 2015]

Maxime Dénès
(Inria)

Leo Lampropoulos
(UPenn)

Benjamin Pierce
(UPenn)

Cătălin Hrițcu
(Inria)

Zoe Paraskevopoulou
(Princeton,

 Inria intern 2014)

• writing our testing framework in Coq enables

proving formal statements about testing itself

• this is the main topic of this talk
29

Verified Property-Based Testing? Why?

1. Testing code easy to get wrong

2. Need to trust QuickChick itself
– Subtle bugs found in Haskell QuickCheck

even after 14 years of widespread usage

– The more smarts we add to QuickChick,
the bigger this issue becomes

– Any extension we make needs to be correct
• e.g. we would like to work out the metatheory of our

upcoming property-based generator language

• but for this we need at first define what generator and
checker correctness means

30

A Coq Framework for Foundational PBT

• Formally verify QuickChick generators and checkers

– wrt high-level properties they are supposed to test

• Methodology for verification of probabilistic programs

– abstraction: reasoning about the sets of outcomes a they

can produce with non-zero probability

• Framework integrated in QuickChick, used to verify

– almost all the QuickChick combinators

– red-black trees and noninterference examples

• Modular, scalable, requires minimal code changes

31

Proving correctness of generators

32

Proving correctness of checkers

33

Set of outcomes semantics

– semantics of a generator is a set

• intuitively containing the values that can be generated

with >0 probability

– semantics of a checker is a Coq proposition

34

Formally we define

35

QuickChick/Proof Organization

36

Internal Primitives (OCaml)

Low-Level Generators

High-Level Generators
& Checkers

User Code

Internal Primitives & Axiom(s)

• random seed type + 8 primitive functions written only in
OCaml and only assumed in Coq

• 5 axioms about these primitive functions

– 4 of them would disappear if we implemented a splittable
random number generator in Coq

– remaining axiom is inherent to our abstraction!

• makes the type RandomSeed infinite in Coq,
while in OCaml it is finite (seeds are bounded integers)

– we assume real randomness (an oracle) in the proofs,
but can only implement pseudo-randomeness

37

38

Summary

• Coq framework for foundational PBT

• Integrated in QuickChick

– https://github.com/QuickChick

• Reasoning about sets of outcomes

• The first verified QuickCheck implementation

• Examples: red-black trees and noninterference

• Modular, scalable, minimal code changes

39

https://github.com/QuickChick

LUCK: LANGUAGE FOR GENERATORS

Better languages for writing testing code

40

John Hughes
(Chalmers)

Leo Lampropoulos
(UPenn)

Benjamin Pierce
(UPenn)

Cătălin Hrițcu
(Inria)

Li-yao Xia
(ENS Paris,
Inria intern

2015)

Zoe Paraskevopoulou
(Princeton,

 Inria intern 2014)

Luck

• Functional programming language

• Expressions have dual semantics
– checkers when all variables are fully instantiated

– generators when variables are partially defined

• Puts together:
– lazy instantiation

• “narrowing” from functional logic programming

– constraint propagation for integers

– local control over probability distribution

41

Red-black trees in Luck

42

sig isRBT' :: Int -> Int -> Int -> Color -> RBT Int -> Bool
fun isRBT' {h @i} {low @i} {high @i} c t =
 if h == 0 then
 case c of
 | Red -> isLeaf t
 | Black ->
 case t of
 | Leaf -> True
 | Node k x l r -> [| x | low < x && x < high |]
 && isLeaf l && isLeaf r && isBlack k
 end
 end
 else ...

Luck is work in progress ...

• Experimental results vary: 1.5x-50x overhead

• Semantics is challenging

– generalize from bool to arbitrary result types

– preserve sharing between values

• Final meta theorems we’re aiming for

– soundness & completeness

• inspired from foundational PBT work

– but also capturing probabilities and backtracking

43

Future Work

• A lot of this is ongoing / unfinished work:

– Luck, polarized mutation

• Foundational PBT

– SMT-based verification for sets of outcomes

• Further reduce testing cost

– more automation (e.g. for inductives)

– hopefully as certificate producing metaprograms

• Integration:

– bring Luck to Haskell and Coq

44

THANK YOU

45

Lemmas for Low-Level QC Generators (10)

46

• bind proof crucially relies on axiom about rndSplit
• we can’t abstract over the sizes (existentially quantify)

• they rely on primitives and concrete representation of Gen

High-Level Generators & Checkers (12)

47

