
QuickChick
Speeding up Formal Proofs with Property-Based Testing

Cătălin Hrițcu
INRIA Paris-Rocquencourt

(Prosecco team, Place d’Italie office)

About me and how I use Coq

• Working on formal methods for security, broadly

• Still rather naïve Coq user (after ~4 years of learning)

• Some teaching: Software Foundations and a bit of CPDT

• “Mechanized Metatheory for the Masses”

 Soundness of static & dynamic enforcement mechanisms

– expressive type systems using SMT solvers:
ZKTypes [CCS 2008], F5 [TOSCA 2011, JCS2014],
DMinor [ICFP 2010, JFP 2013], recently joined F* effort

– verification condition generator: DVerify [CPP 2011]

– certified translations: Expi2Java [NFM 2012]

 machine with dynamic IFC [S&P 2013, POPL 2014]

– micro-policies: generic hardware-accelerated tagging schemes

3

About me and how I use Coq

• Working on formal methods for security, broadly

• Still rather naïve Coq user (after ~4 years of learning)

• Some teaching: Software Foundations and a bit of CPDT

• “Mechanized Metatheory for the Masses”

 Soundness of static & dynamic enforcement mechanisms

– expressive type systems using SMT solvers:
ZKTypes [CCS 2008], F5 [TOSCA 2011, JCS2014],
DMinor [ICFP 2010, JFP 2013], recently joined F* effort

– verification condition generator: DVerify [CPP 2011]

– certified translations: Expi2Java [NFM 2012]

 machine with dynamic IFC [S&P 2013, POPL 2014]

– micro-policies: generic hardware-accelerated tagging schemes

4

• Devising correct security mechanisms is hard

– full confidence only with mechanized proofs

– this is why I’m a Coq addict

Problem: proving is very costly

• My proofs are boring, but designing security mechanisms is not

– definitions and properties often broken, and evolve over time

• Proving does aid design ... but only at a very high cost

 most enlightenment comes from failed, not from successful proofs

– a failed proof attempt is a very costly way to discover a design flaw

 fixing flaws not always easy, might require serious redesign

– failed proof attempt will generally not convince an engineer

– proving while designing is frustrating, tedious, time consuming

 Even when design correct & stable, proving still costly

 countless iterations for discovering lemmas and invariants

– my proofs are often “fragile”, so the cost of each iteration is high

7

Problem: proving is very costly

• My proofs are boring, but designing security mechanisms is not

– definitions and properties often broken, and evolve over time

• Proving does aid design ... but only at a very high cost

 most enlightenment comes from failed, not from successful proofs

– a failed proof attempt is a very costly way to discover a design flaw

 fixing flaws not always easy, might require serious redesign

– failed proof attempt will generally not convince an engineer

– proving while designing is frustrating, tedious, time consuming

 Even when design correct & stable, proving still costly

 countless iterations for discovering lemmas and invariants

– my proofs are often “fragile”, so the cost of each iteration is high

8

• This is the itch I’m trying to scratch

– other people might have similar itches though

Could testing help with this problem?

• Can property-based testing

– lower the cost of formal proofs?

– become an important part of the
theorem proving process in Coq?

• Yes, I believe / hope so

– own recent positive experience with testing

– I’m not the only one (e.g. Isabelle, FocalTest, ...)

• We are basically just starting on this

– A lot of research & engineering work left

4

This talk

• Introduction to property-based testing with QuickCheck

• Testing noninterference, quickly

• Polarized mutation testing

• A simple QuickCheck clone for Coq (prototype)

• Some ideas for deeper integration with Coq/SSReflect

5

Collaborators

6

Maxime Dénès
(UPenn)

John Hughes
(Chalmers)

Leo Lampropoulos
(UPenn)

Benjamin Pierce
(UPenn)

Antal Spector-Zabusky
(UPenn)

Dimitris Vytiniotis
(MSR Cambridge)

Zoe Paraskevopoulou
(NTU Athens, ..

 soon INRIA intern)

Arthur Azevedo de Amorim
(UPenn, now INRIA intern)

PROPERTY-BASED TESTING
WITH QUICKCHECK

An introduction to

7

[Claessen & Hughes, ICFP 2000]

8

9

Custom input data generator

10

Broken definition

Counterexample

11

Small counterexample

TESTING NONINTERFERENCE,
QUICKLY

Own experience with

12

Can we quickcheck noninterference?

• Context

– designing real machine with dynamic IFC (>100 instructions)

• Experiment

– very simple stack machine (10 instructions)

– standard end-to-end noninterference property

– manually introduced 14 plausible IFC errors,

and measured how fast they are found

• Encouraging results

– however, not using QuickCheck naïvely

[ICFP 2013 and beyond]

3 secret ingredients

1. Fancy program generation strategies

– s1 ≈ s2 – generate s1 then vary secrets to get s2 ≈ s1

– distributions, instruction sequences, smart integers

– best one: “generation by execution”
• 19 instructions counterexample takes minutes to find

2. Strengthening the tested property

– best one: “unwinding conditions” (next slide)
• all errors found in milliseconds, even with simple generation

– requires finding stronger invariants, like for proving

3. Fancy shrinking

1. Rather simple custom generator

15

....
Biased generator

Guarded (add needs 2 arguments)

Store only to valid address

Return only after call

2. Stronger: Unwinding conditions

L

L

*

*

inductive invariants for noninterference are easiest to test

L

L

*

*

H

H

L

L

H

H

H

POLARIZED MUTATION TESTING
When should one stop? How to test the testing infrastructure?

17

Testing ... when should one stop?

• When testing finds no bugs

– either there are indeed none

– or our testing is simply not good enough
• “testing can only show the presence of bugs, not their absence” – Dijkstra

• Mutation testing: automatically introduce realistic bugs

– test the testing infrastructure (e.g. the generator)

– in ICFP 2013 experiments we added bugs manually

• does not scale, tedious and turns code into spaghetti

• One should one stop testing and start proving

– when testing finds all mutants but no new bugs

18

Extended IFC experiment

• More realistic IFC machine

– extra features: registers, public labels, dynamic allocation

– unwinding conditions use more complex invariants:

• noninterference uses stamp-based memory indistinguishability

• H stamped regions cannot be reached through L labeled pointers

– prior (paper) proof attempt timed out after 3 weeks of work

• Easy to enumerate all missing taints and missing checks
• especially easy when IFC split into separate “rule table”

19

Rule table

20

Results encouraging

• Our generator had tons of bugs

– could only kill 9 out of 51 mutants (17.6%)!

• Finding and fixing generator bugs

– gathering statistics, constructing counterexamples by hand

– fixing one generator bug usually killed many more mutants

– sometimes found extra bugs in un-mutated artifact & property

• After a couple of days only live 2 mutants

– for which we still couldn’t find counterexamples by hand

– we applied these mutantions, started proving ... results still pending

• Mutation testing gamifies invariant finding

– to the point it’s actually fun and addictive!

21

Mutant game (final output)

22

So why did this work so well?

• Yes, human is in the loop (debugging, finding counterexamples)

– but we don’t waste human cycles

• Each unkilled mutant thought us something

– either exposed real bugs in the testing

– or was apparently better than the original (more permissive)

• This is usually not the case for mutation testing

– purely syntactic mutations (replace “+” by “-”)

– human cycles wasted on silly (“equivalent”)
mutants that don’t break the tested property

– kill count just alternative to code coverage metrics, never 100%

– what we do seems to go beyond the state of the art

23

Polarized mutation testing

• Generalizing this technique beyond IFC

• Started with STLC experiment

– break progress by strengthening the step relation
 (e.g. dropping whole stepping rules)

– break preservation

• by strengthening positive occurrence of typing relation

• or by weakening negative occurrence of typing relation

• or by weakening (negative occurrence of) step relation

• Used Coq relational extraction plugin [Dubois et al]

• Tested against MuCheck (new Haskell mutation framework)

• No-shadowing bug in fancy generator for well-typed terms

24

Other experiments

• Looking at PLT Redex for already tested large formalizations

• Removed precondition for tail call optimization in CompCert
– CSmith couldn’t find the bug, despite small counterexample

– “This is a good example to show how much more Csmith can improve”

25

QUICKCHECK CLONE FOR COQ

26

QuickCheck clone for Coq (prototype)

• ICFP 2013 work used Haskell QuickCheck

• Since then Leo ported Haskell QuickCheck to Coq

• Largest part implemented in Coq itself

• Using extraction to Haskell for

– efficient evaluation, random seed, tracing

• At this point no big advantage over

– writing equivalent executable spec

– extracting it to Haskell

– using Haskell QuickCheck

27

Same thing as before, just in Coq

28

Custom generator in Coq

29

DEEPER INTEGRATION
WITH COQ/SSREFLECT

Some ideas about

30

Testing actual lemmas & proof goals

• Currently

– write executable spec in Coq

– prove equivalence

– test this executable variant

• Ideally, switch freely between

– proving and testing

– declarative and executable ...

31

SSReflect

• in small-scale reflection proofs

– defining both declarative and computational specs

– switching freely between them

 ... is already the normal proving process

• testing would add small(er) additional overhead

• SSReflect computational specifications are
often not fully / efficiently executable, but
– could use CoqEAL refinement framework [Maxime et al, ITP

2012, CPP 2013] for switching to efficiently executable code

32

Potential workflow

• Reify proof goal to syntactic representation of formula
(Coq plugin)

• Normalize formula (DNF, classically equivalent)

• Associate computations to atoms (type classes)

– negative atoms (premises) get generator views

– positive atoms (conclusions) get checker views

• Associate Skolem functions to existentials (type class)

• User would still have to provide type class instances

– could try to use existing work for partially automating this

– full automation not our main concern, customization is

33

Related work (Coq)

• Sean Wilson [PhD thesis, Edinburgh, 2011]

– qc tactic, part of larger a Coq plugin (rippling)

– dependently-typed programming in Matthieu’s Russel

– seems rather basic, no user customization

– only a couple of very simple examples about lists and trees

– seems discontinued since 2011 (Coq 8.3)

• Plugins for Coq extracting inductives to ...

– OCaml [Delahaye, Dubois, Étienne, TPHOLs 2007]

– certified Coq [Tollitte, Delahaye, Dubois, CPP 2012]

• anything else?

38

THANK YOU

collaborators, CRASH/SAFE team, Amin Alipour, Johannes Borgström,
Thomas Braibant, Cristian Cadar, Delphine Demange, Catherine Dubois,
Matthias Felleisen, Robby Findler, Alex Groce, Rahul Gopinath,
Andy Gordon, Casey Klein, Ben Karel, Scott Moore, Ulf Norell,
Rishiyur S. Nikhil, Michal Palka, Manolis Papadakis, John Regehr,
Howard Reubenstein, Alejandro Russo, Nick Smallbone, Deian Stefan,
Greg Sullivan, Andrew Tolmach, Meng Wang, Xuejun Yang,

34

