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Problem: proving in Coq is very costly 

• My proofs are boring, but designing security mechanisms is not 

– definitions and properties often broken, and evolve over time 
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Problem: proving in Coq is very costly 

• My proofs are boring, but designing security mechanisms is not 

– definitions and properties often broken, and evolve over time 

• Proving does aid design ... but only at a very high cost 

– most enlightenment comes from failed, not from successful proofs 

 a failed proof attempt is a very costly way to discover a design flaw 

 fixing flaws not always easy, might require serious redesign 

– failed proof attempt will generally not convince an engineer 

 proving while designing is frustrating, tedious, time consuming 
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• This is the itch I’m trying to scratch 

– many people seem to have similar itches though 



Could testing help with this problem? 

• Can property-based testing 

– lower the cost of formal proofs? 

– become an important part of the 
theorem proving process in Coq? 
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• Can property-based testing 

– lower the cost of formal proofs? 

– become an important part of the 
theorem proving process in Coq? 

• Yes, I believe / hope so 

 own recent positive experience with testing 
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Could testing help with this problem? 

• Can property-based testing 

– lower the cost of formal proofs? 

– become an important part of the 
theorem proving process in Coq? 

• Yes, I believe / hope so 

 own recent positive experience with testing 

 I’m not the only one (e.g. Isabelle, FocalTest, ...) 

 We are basically just starting on this 

– A lot of research & engineering work left 
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This talk 

• Property-based testing with QuickChick 

• Our QuickCheck clone for Coq (prototype plugin) 

• Everything at https://github.com/QuickChick 

• Framework for verified property-based testing 

 

• Other things we are doing that I won’t discuss today 

• Case studies: noninterference, security monitors, type-checkers 

• Relating executable and declarative artifacts in Coq/SSReflect 

• Language for property-based generators 

• Evaluating testing quality: polarized mutation testing 
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TESTING RED-BLACK TREES 

Property-based testing with QuickChick 
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Red-Black Tree Implementation 



Red-Black Trees Implementation 
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Declarative Proposition 
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Executable Definitions 
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Property Checker 
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Custom Generator for Trees 
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Running QuickChick 
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Finding a Bug 
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Property-Based Generator 
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........... 



Property-Based Generator at Work 
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in less than 4 seconds 



VERIFIED PROPERTY-BASED TESTING 

Are we testing the right property? 
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Testing Code Can Be Wrong 

• QuickChick user has to write effective checkers 
and generators by hand 

– [working on a new language in which one can write 
both generator and checker as a single program] 

– errors can result in testing the wrong conjecture 

– randomness makes finding and fixing errors hard 

                              
                                           

                              

24 



Testing Code Can Be Wrong 

• QuickChick user has to write effective checkers 
and generators by hand 

– [working on a new language in which one can write 
both generator and checker as a single program] 

– errors can result in testing the wrong conjecture 

– randomness makes finding and fixing errors hard 

• User generators and checkers 
+ most of QuickChick itself written in Coq 

– Can formally we verify them? 
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Verified Property-Based Testing 

• Verification framework on top of QuickChick 

• Prove correctness of generators and checkers 
with respect to their declarative specs 

• Main novelty: set of outcomes abstraction 

– sem. of generator (Gen A) is an Ensemble (A -> Prop) 

• the set of values that can be generated with >0 probability 

– semantics of checker is a Coq proposition (Prop) 

• internally checkers are also generators (Gen Result) 

• all results are successful 
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Proving correctness of generators 
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Proving correctness of generators 
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Proving correctness of generators 
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Proving correctness of checkers 
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Relating Executable and Declarative Definitions (SSReflect Style) 
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Axioms for Primitive Combinators 
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Lemmas for Derived Generators 
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Lemmas for Checkers 
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Future Work 

• More proof automation and infrastructure 
– changing to efficient data representations 

– SMT-based verif. for set of outcome abstraction? 

• The first verified QuickCheck implementation 
– reduce the number of axioms 

– probabilistic verification? 

• Verify property-based generator language 
– in general, manually verify reusable infrastructure 

• Motto: premature automation is the root of all evil 
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THANK YOU 
Code at https://github.com/QuickChick 
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