
 A Coq Framework For
Verified Property-Based Testing

(part of QuickChick)

Cătălin Hrițcu
INRIA Paris-Rocquencourt

(Prosecco team, Place d’Italie office)

Problem: proving in Coq is very costly

• My proofs are boring, but designing security mechanisms is not

– definitions and properties often broken, and evolve over time

2

Problem: proving in Coq is very costly

• My proofs are boring, but designing security mechanisms is not

– definitions and properties often broken, and evolve over time

• Proving does aid design ... but only at a very high cost

– most enlightenment comes from failed, not from successful proofs

 a failed proof attempt is a very costly way to discover a design flaw

 fixing flaws not always easy, might require serious redesign

– failed proof attempt will generally not convince an engineer

 proving while designing is frustrating, tedious, time consuming

3

Problem: proving in Coq is very costly

• My proofs are boring, but designing security mechanisms is not

– definitions and properties often broken, and evolve over time

• Proving does aid design ... but only at a very high cost

– most enlightenment comes from failed, not from successful proofs

 a failed proof attempt is a very costly way to discover a design flaw

 fixing flaws not always easy, might require serious redesign

– failed proof attempt will generally not convince an engineer

 proving while designing is frustrating, tedious, time consuming

 Even when design correct & stable, proving still costly

– countless iterations for discovering lemmas and invariants

– my proofs are often “fragile”, so the cost of each iteration is high

4

Problem: proving in Coq is very costly

• My proofs are boring, but designing security mechanisms is not

– definitions and properties often broken, and evolve over time

• Proving does aid design ... but only at a very high cost

– most enlightenment comes from failed, not from successful proofs

 a failed proof attempt is a very costly way to discover a design flaw

 fixing flaws not always easy, might require serious redesign

– failed proof attempt will generally not convince an engineer

 proving while designing is frustrating, tedious, time consuming

 Even when design correct & stable, proving still costly

– countless iterations for discovering lemmas and invariants

– my proofs are often “fragile”, so the cost of each iteration is high

5

• This is the itch I’m trying to scratch

– many people seem to have similar itches though

Could testing help with this problem?

• Can property-based testing

– lower the cost of formal proofs?

– become an important part of the
theorem proving process in Coq?

6

Could testing help with this problem?

• Can property-based testing

– lower the cost of formal proofs?

– become an important part of the
theorem proving process in Coq?

• Yes, I believe / hope so

 own recent positive experience with testing

 I’m not the only one (e.g. Isabelle, FocalTest, ...)

7

Could testing help with this problem?

• Can property-based testing

– lower the cost of formal proofs?

– become an important part of the
theorem proving process in Coq?

• Yes, I believe / hope so

 own recent positive experience with testing

 I’m not the only one (e.g. Isabelle, FocalTest, ...)

 We are basically just starting on this

– A lot of research & engineering work left

8

Collaborators

9

Maxime Dénès
(Inria)

John Hughes
(Chalmers)

Leo Lampropoulos
(UPenn)

Benjamin Pierce
(UPenn)

Antal Spector-Zabusky
(UPenn)

Dimitris Vytiniotis
(MSR Cambridge)

Zoe Paraskevopoulou
(ENS Cachan, MPRI, ..

 recent Inria intern)

Arthur Azevedo de Amorim
(UPenn, recent Inria intern)

This talk

• Property-based testing with QuickChick

• Our QuickCheck clone for Coq (prototype plugin)

• Everything at https://github.com/QuickChick

• Framework for verified property-based testing

• Other things we are doing that I won’t discuss today

• Case studies: noninterference, security monitors, type-checkers

• Relating executable and declarative artifacts in Coq/SSReflect

• Language for property-based generators

• Evaluating testing quality: polarized mutation testing

10

https://github.com/QuickChick
https://github.com/QuickChick
https://github.com/QuickChick

TESTING RED-BLACK TREES

Property-based testing with QuickChick

11

Maxime Dénès
(Inria)

Leo Lampropoulos
(UPenn)

Zoe Paraskevopoulou
(ENS Cachan, MPRI, ..

 recent Inria intern)

12

Red-Black Tree Implementation

Red-Black Trees Implementation

13

Declarative Proposition

14

Executable Definitions

15

Property Checker

16

Custom Generator for Trees

17

Running QuickChick

18

Finding a Bug

19

Property-Based Generator

20

...........

Property-Based Generator at Work

22

in less than 4 seconds

VERIFIED PROPERTY-BASED TESTING

Are we testing the right property?

23

Zoe Paraskevopoulou
(ENS Cachan, MPRI, ..

 recent Inria intern)

Testing Code Can Be Wrong

• QuickChick user has to write effective checkers
and generators by hand

– [working on a new language in which one can write
both generator and checker as a single program]

– errors can result in testing the wrong conjecture

– randomness makes finding and fixing errors hard

24

Testing Code Can Be Wrong

• QuickChick user has to write effective checkers
and generators by hand

– [working on a new language in which one can write
both generator and checker as a single program]

– errors can result in testing the wrong conjecture

– randomness makes finding and fixing errors hard

• User generators and checkers
+ most of QuickChick itself written in Coq

– Can formally we verify them?

25

Verified Property-Based Testing

• Verification framework on top of QuickChick

• Prove correctness of generators and checkers
with respect to their declarative specs

• Main novelty: set of outcomes abstraction

– sem. of generator (Gen A) is an Ensemble (A -> Prop)

• the set of values that can be generated with >0 probability

– semantics of checker is a Coq proposition (Prop)

• internally checkers are also generators (Gen Result)

• all results are successful

26

27

Proving correctness of generators

28

Proving correctness of generators

29

Proving correctness of generators

30

Proving correctness of generators

31

Proving correctness of generators

32

Proving correctness of generators

33

Proving correctness of checkers

34

Relating Executable and Declarative Definitions (SSReflect Style)

35

Axioms for Primitive Combinators

36

Lemmas for Derived Generators

37

Lemmas for Checkers

38

Future Work

• More proof automation and infrastructure
– changing to efficient data representations

– SMT-based verif. for set of outcome abstraction?

• The first verified QuickCheck implementation
– reduce the number of axioms

– probabilistic verification?

• Verify property-based generator language
– in general, manually verify reusable infrastructure

• Motto: premature automation is the root of all evil

39

THANK YOU
Code at https://github.com/QuickChick

40

https://github.com/QuickChick
https://github.com/QuickChick

