DDDDDDDDDDDDDDDDDDDDDDDDDD

A Cog Framework For

Verified Property-Based Testing
(part of QuickChick)

Catalin Hritcu

INRIA Paris-Rocquencourt
(Prosecco team, Place d’Italie office)

A .

Problem: proving in Coq is very costly 7’}__,/

My proofs are boring, but designing security mechanisms is not
— definitions and properties often broken, and evolve over time

14

Problem: proving in Coq is very costly

My proofs are boring, but designing security mechanisms is not
— definitions and properties often broken, and evolve over time

* Proving does aid design ... but only at a very high cost
— most enlightenment comes from failed, not from successful proofs
a failed proof attempt is a very costly way to discover a design flaw
fixing flaws not always easy, might require serious redesign
— failed proof attempt will generally not convince an engineer
proving while designing is frustrating, tedious, time consuming

14

Problem: proving in Coq is very costly

My proofs are boring, but designing security mechanisms is not
— definitions and properties often broken, and evolve over time

* Proving does aid design ... but only at a very high cost
— most enlightenment comes from failed, not from successful proofs
a failed proof attempt is a very costly way to discover a design flaw
fixing flaws not always easy, might require serious redesign
— failed proof attempt will generally not convince an engineer
proving while designing is frustrating, tedious, time consuming

Even when design correct & stable, proving still costly
— countless iterations for discovering lemmas and invariants
— my proofs are often “fragile”, so the cost of each iteration is high

Problem: proving in Coq is very costly 7’}_,/

4)
* Thisis the itch I’'m trying to scratch

— many people seem to have similar itches though
_ Y,

Could testing help with this problem?

* Can property-based testing
— lower the cost of formal proofs?

— become an important part of the
theorem proving process in Coq?

Could testing help with this problem?

* Can property-based testing
— lower the cost of formal proofs?

— become an important part of the
theorem proving process in Coq?

* Yes, | believe / hope so

own recent positive experience with testing

I’'m not the only one (e.g. Isabelle, FocalTest, ...)

Could testing help with this problem?

* Can property-based testing
— lower the cost of formal proofs?

— become an important part of the
theorem proving process in Coq?

* Yes, | believe / hope so

own recent positive experience with testing

I’'m not the only one (e.g. Isabelle, FocalTest, ...)

We are basically just starting on this

— A lot of research & engineering work left
.,

—

Collaborators

Arthur Azevedo de Amorim Maxime Dénés John Hughes Leo Lampropoulos
(UPenn, recent Inria intern) (Inria) (Chalmers) (UPenn)

—= ’:{_

Zoe Paraskevopoulou Benjamin Pierce Antal Spector- Zabusky D|m|tr|s Vytiniotis
(ENS Cachan, MPRI, (UPenn) (UPenn) (MSR Cambridge)

recent Inria intern)
9

This talk

* Property-based testing with QuickChick

Our QuickCheck clone for Coq (prototype plugin)
Everything at https://github.com/QuickChick

* Framework for verified property-based testing

e Other things we are doing that | won’t discuss today

Case studies: noninterference, security monitors, type-checkers
Relating executable and declarative artifacts in Coq/SSReflect
Language for property-based generators

Evaluating testing quality: polarized mutation testing

https://github.com/QuickChick
https://github.com/QuickChick
https://github.com/QuickChick

Zoe Paraskevopoulou Maxime Dénés Leo Lampropoulos
(ENS Cachan, MPRI, (Inria) (UPenn)
recent Inria intern)

Property-based testing with QuickChick

TESTING RED-BLACK TREES

11

Red-Black Tree Implementation

Inductive color := Red | Black.

Inductive tree :=
| Leaf : tree
| Node : color -> tree -> nat -> tree -> tree.

Definition balance rb tl1 k t2 :=
match rb with
| Red => Node Red t1 k t2
I_:.“-‘r
match t1 with
| Node Red (Node Red a x b
Node Red (Node Black a x
b
X

c =>
b) vy (Node Black c k t2)
y c) =
b) vy (Node Black c k t2)

)y
)

| Node Red a X (Node Red
Node Red (Node Black a
| a => match t2 with
| Node Red (Node Red by c) z d =
Node Red (Node Black tl1 k b) y (Node Black c z d)
| Node Red b y (Node Red c z d) =>
Node Red (Node Black t1 k b) y (Node Black ¢ z d)
| => Node Black t1 k t2
end
end
end.

12

Red-Black Trees Implementation

Inductive color := Red | Black.

Inductive tree :=
| Leaf : tree
| Node : color -> tree -> nat -> tree -> tree.

Fixpoint ins X s :=
match s with
| Leaf => Node Red Leaf x Leaf
| Node c ay b == 1if x <y then balance c (ins x a) y b
else if y < x then balance c a y (ins x b)
else Node c a x b

end.

Definition makeBlack t :=
match t with
| Leaf => Leaf
| Node a x b => Node Black a x b

end.

Definition insert x s := makeBlack (ins x s).

13

Declarative Proposition

(* Red-Black Tree invariant: declarative definition *)
Inductive is redblack' : tree -> color -> nat -> Prop :=
| IsRB leaf: forall c, is redblack' Leaf c 0
| IsRB r: forall n tl tr h,
is redblack' tl Red h -> is redblack' tr Red h ->
is redblack' (Node Red tl n tr) Black h
| IsRB b: forall c n tl tr h,
is redblack' tl Black h -> is redblack' tr Black h ->
is redblack' (Node Black tl n tr) c (S h).

Definition 1s redblack t := exists h, is redblack' t Red h.

Definition insert preserves redblack : Prop :=
forall x s, 1s redblack s -> is redblack (insert x s).

(* Declarative Proposition *)
Lemma insert preserves redblack correct : insert preserves redblack.
Abort. (* if this wasn't about testing, we would just prove this *)

14

Executable Definitions

(* Red-Black Tree invariant: executable definition *)

Fixpoint black height bool (t: tree) : option nat :=
match t with
| Leaf => Some 0
| Node c tl tr =>
let hl := black height bool tl in
let h2 := black height bool tr in
match hl, h2 with
| Some nl, Some n2 =>
if nl1 == n2 then
match ¢ with
| Black => Some (S nl)
| Red => Some nl
end
else None
| , _=> None
end
end.

Definition is black balanced (t : tree) : bool :
isSome (black height bool t).

Property Checker

Fixpoint has no red red (t : tree) : bool :=
match t with
| Leaf => true
| Node Red (Node Red) __ => false
| Node Red (Node Red _) => false

| Node tl tr => has no red red tl & has no red red tr

end.

Definition is redblack bool (t : tree) : bool :=
is black balanced t && has no red red t.

Definition insert is redblack checker : Gen QProp :
forAll arbltrary (fun n =>

(forAll genTree (fun t =>
(is redblack bool t ==>

is redblack bool (insert n t)) : Gen QProp)) : Gen QProp).

16

Custom Generator for Trees

Definition genColor := elements Red [Red; Black].

Fixpoint genAnyTree max height (h : nat) : Gen tree :=

match h with

| © => returnGen Leaf

ISh':'.‘P
bindGen genColor (fun ¢ =>
bindGen (genAnyTree max height h') (fun t1 =>
bindGen (genAnyTree max height h') (fun t2 =>
bindGen arbitraryNat (fun n =>
returnGen (Node c t1 n t2)))))

end.

Definition genAnyTree : Gen tree := sized genAnyTree max height.

17

Running QuickChick

Extract Constant defSize == "5".
Extract Constant Test.defNumTests => "100".

QuickCheck testInsertNaive.
[Extract Constant Test.defNumTests => "10000".

Warning: The extraction is currently set to bypass opacity,
the following opaque constant bodies have been accessed :

eqnP idP iffP.

*** Gave up! Passed only 3 tests
Discarded: 200

Finding a Bug

Fixpoint has no red red (t : tree) : bool :=
match t with
| Leaf => true
| Node Red (Node Red) => false
| Node Red 2 (Node Red @) => false
| Node tl tr => has no red red|tr|&& has no red red tr
end.

Extract Constant defSize => "5".
Extract Constant Test.defNumTests => "10000".
QuickCheck testInsertNaive.

Node Black (Node |Red| (Node|Red| (Leaf) 63 (Leaf)) 155 (Node Red (Leaf) 55 (No
***% Failed! After 4021 tests and O shrinks

19

Property-Based Generator

Fixpoint genRBTree height (h : nat) (c : color) :=
match h with
IE]:‘.‘.‘*
match ¢ with
| Red => returnGen Leaf
| Black => oneof (returnGen Leaf)
[returnGen Leaf;

bindGen arbitraryNat (fun n =>
returnGen (Node Red Leaf n Leaf))]

end
| S h =>
match ¢ with
| Red =>

bindGen (genRBTree height h Black) (fun t1 =>
bindGen (genRBTree height h Black) (fun t2 =>
bindGen arbitraryNat (fun n =>
returnGen (Node Black t1 n t2))))

| Black =>

Definition genRBTree :

sized (fun h => genRBTree height h Red).

Property-Based Generator at Work

Variable genTree : Gen tree.

Definition insert is redblack checker : Gen QProp :=
forAll arbitraryNat (fun n =>
(forAll genTree (fun t =>
(is redblack bool t ==>
is redblack bool (insert n t)) : Gen QProp)) : Gen QProp).

Definition testInsert :=
showDiscards (quickCheck (insert is redblack checker genRBTree)).

Extract Constant defSize => "10".
Extract Constant Test.defNumTests => "10000".
QuickCheck testInsert.

success: number of successes 10000

number of discards © in less than 4 seconds

22

Zoe Paraskevopoulou
(ENS Cachan, MPRI,
recent Inria intern)

Are we testing the right property?

VERIFIED PROPERTY-BASED TESTING

23

Testing Code Can Be Wrong

 QuickChick user has to write effective checkers
and generators by hand

— [working on a new language in which one can write
both generator and checker as a single program]

— errors can result in testing the wrong conjecture
— randomness makes finding and fixing errors hard

Testing Code Can Be Wrong

 QuickChick user has to write effective checkers
and generators by hand

— [working on a new language in which one can write
both generator and checker as a single program]

— errors can result in testing the wrong conjecture
— randomness makes finding and fixing errors hard

* User generators and checkers
+ most of QuickChick itself written in Coq

— Can formally we verify them?

Verified Property-Based Testing

e Verification framework on top of QuickChick

* Prove correctness of generators and checkers
with respect to their declarative specs

* Main novelty: set of outcomes abstraction
— sem. of generator (Gen A) is an Ensemble (A -> Prop)
* the set of values that can be generated with >0 probability

— semantics of checker is a Coq proposition (Prop)

* internally checkers are also generators (Gen Result)
* all results are successful

System Under Test

Implementation |_ equivalence Model L
'/ Executable Definitions proofs Declarative Definitions \“'\
I \\ 0\5\
1 e
A Y
i \
Q1
Y VeriQuickChick ‘\
\ \
“ QuickChick semantics Specifications ll
A) I
AR — equivalence — '
Property CheckersJ Proposmons} >[Prop05|t|ons
, , proofs
| | 1
| use | use use
| I *
y y equivalence
® [Generators] Predlcates} >(Pred|catesJ
b2} proofs
?
‘P% sets of outcomes
o; semantics
Q

O

informal
conjecture

Proving correctness of generators

Definition set eq {A} (ml m2 : Pred A) := forall A, ml A <-> m2 A.
Infix "<-->" := set eq (at level 70, no associativity) : pred scope.

28

Proving correctness of generators

Definition set eq {A} (ml m2 : Pred A) := forall A, ml A <-> m2 A.
Infix "<-->" := set eq (at level 70, no associativity) : pred scope.

Definition genColor := elements Red [Red; Black].

29

Proving correctness of generators

Definition set eq {A} (ml m2 : Pred A) := forall A, ml A <-> m2 A.
Infix "<-->" := set eq (at level 70, no associativity) : pred scope.

Definition genColor := elements Red [Red; Black].

Lemma genColor correct:

genColor <--> all.
Proof.

rewrite /genColor. intros c. rewrite elements equiv.

split => // . left.

destruct c; by [constructor | constructor(constructor)].
Qed.

30

Proving correctness of generators

Definition set eq {A} (ml m2 : Pred A) := forall A, ml A <-> m2 A.
Infix "<-->" := set eq (at level 70, no associativity) : pred scope.

Definition genColor := elements Red [Red; Black].

Lemma elements equiv :
forall {A} (l: list A) (def : A),
(elements def 1) <--> (fune = Ine Ll \/ (L = nil /\ e = def)).

Lemma genColor correct:

genColor <--> all.
Proof.

rewrite /genColor. intros c. rewrite elements equiv.

split => // . left.

destruct c; by [constructor | constructor(constructor)].
Qed.

31

Proving correctness of generators

Definition set eq {A} (ml m2 : Pred A) := forall A, ml A <-> m2 A.
Infix "<-->" := set eq (at level 70, no associativity) : pred scope.

Definition genColor := elements Red [Red; Black].

Lemma elements equiv :
forall {A} (l: list A) (def : A),
(elements def 1) <--> (fune = Ine Ll \/ (L = nil /\ e = def)).

Lemma genColor correct:

genColor <--> all.
Proof.

rewrite /genColor. intros c. rewrite elements equiv.

split => // . left.

destruct c; by [constructor | constructor(constructor)].
Qed.

Lemma genRBTree height correct:
forall c h,
(genRBTree height h c) <--> (fun t => is redblack' t c h).

32

Proving correctness of generators

Definition set eq {A} (ml m2 : Pred A) := forall A, ml A <-> m2 A.
Infix "<-->" := set eq (at level 70, no associativity) : pred scope.

Definition genColor := elements Red [Red; Black].

Lemma elements equiv :
forall {A} (l: list A) (def : A),
(elements def 1) <--> (fune = Ine Ll \/ (L = nil /\ e = def)).

Lemma genColor correct:

genColor <--> all.
Proof.

rewrite /genColor. intros c. rewrite elements equiv.

split => // . left.

destruct c; by [constructor | constructor(constructor)].
Qed.

Lemma genRBTree height correct:

forall c h,
(genRBTree height h c) <--> (fun t => is redblack' t c h).

Lemma genRBTree correct:
genRBTree <--> is redblack.

33

Proving correctness of checkers

Relating Executable and Declarative Definitions (SSReflect Style)

Lemma is redblackP :
forall (t : tree),
reflect (is redblack t) (is redblack bool t).

Lemma insert is redblack checker correct:
semChecker (insert is redblack checker genRBTree) <-> insert preserves redblack.

34

System Under Test

Implementation |_ equivalence Model L
'/ Executable Definitions proofs Declarative Definitions \“'\
I \\ 0\5\
1 e
A Y
i \
Q1
Y VeriQuickChick ‘\
\ \
“ QuickChick semantics Specifications ll
A) I
AR — equivalence — '
Property CheckersJ Proposmons} >[Prop05|t|ons
, , proofs
| | 1
| use | use use
| I *
y y equivalence
® [Generators] Predlcates} >(Pred|catesJ
b2} proofs
?
‘P% sets of outcomes
o; semantics
Q

O

informal
conjecture

Axioms for Primitive Combinators

returnGena = {zx |r=a}

bindGen G f = { |E|g,Gg/\fgﬂf}<—>Ufg
geG

fmapGen fG = {z |dg, Gg N z= f g}

choose (lo, hi) {z |lo<z<hi}

sized f { x |3n,fnT}<—>Ufn

nelN

suchThatMaybe g P = {x |2 = None V

dy, x=Somey N gy N Py}

36

Lemmas for Derived Generators

Lemma vector0f_equiv:
V {A: Type} (k : nat) (g : Pred A),
vectorOf k g ¢— funl = (lengthl=kAVx Inxl— gx).

Lemma 1ist0f_equiv:
V {A: Type} (g : Pred A),
listOf g <— funl = (V x,Inx1 — gx).

Lemma elements_equiv:
V {A} (1: list A) (def : A),
(elements def 1) <— (fune=> InelV (1 =nil A e =def)).

Lemma frequency_equiv:
V {A} (1 : list (nat * Pred A)) (def : Pred A),
(frequency def 1) +—
fun e = (d (n: nat) (g : Pred A),
In(n, g 1L ANge An<>0) V
(1 =nil VVzx Inx1l— fstx=0) Adef e).

37

Lemmas for Checkers

Lemma semForAll :

V {A prop: Type} {H1 : Testable prop} {H2 : Show A} (gen : Pred A)
(f : A — prop),
semProperty (forAll gen f) <+ Va: A gen a — semTestable (f a).

Lemma semImplication:

vV {prop : Type} {H : Testable prop} (p : prop) (b : bool),
semProperty (b ==> p) <> b = true — semTestable p.

38

Future Work

More proof automation and infrastructure
— changing to efficient data representations
— SMT-based verif. for set of outcome abstraction?

The first verified QuickCheck implementation
— reduce the number of axioms
— probabilistic verification?

Verify property-based generator language
— in general, manually verify reusable infrastructure
Motto: premature automation is the root of all evil

THANK YOU
Code at https://github.com/QuickChick

v,

40

https://github.com/QuickChick
https://github.com/QuickChick

