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COQ CAN BE MEAN!



Theorem Feit_Thompson (gT : finGroupType) (G : {group gT}) :

odd #|G| -> solvable G.

Proof. exact: (minSimpleOdd_ind no_minSimple_odd_group). Qed.

“Feit_Thompson is defined.”







Lemma Fermat : forall a b c n : nat, 2 < n -> a^n + b^n = c^n

-> a = b = c = 0.

Proof.

[... 1000 lines ...]

exact: my_lemma.

[... 100000 lines ...]

Qed.

Lemma my_lemma : prime 4.

Proof. admit. Qed.
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Why would you be proving a false statement?
• Some definitions could be wrong
• Conjectures are part of the proving process

Murphy’s law for Coq: if there is an incorrect admit, it will be the last
remaining one.

Standard idea: try to catch errors early by random testing
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Random testing is already popular for functional languages
(QuickCheck [Claessen et al. 2000] in Haskell)

and in proof assistants (Isabelle [Bulwahn 2012], Agda [Dybjer et al.
2003])

The idea is:
• Define an executable property forall x : T, P(x)

• Generate random elements in T

• Check that the property holds for these elements
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We introduce QuickChick, a random testing plug-in for Coq



Status: very experimental

but already provides most of the features of Haskell’s QuickCheck
(except notably generation of functions).

We are still studying full extension to polymorphism and dependent
types.
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What can random testing reveal?
• Errors in programs (definitions)
• Errors in specifications (properties)

• Errors in generators

We provide some ways of detecting this last kind of errors:
• Mutation framework
• Formal verification of generators
• Language-based approach
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Interlude: randomly testing a proof assistant

Recent work [Palka et al. 2011] showed that compilers can be tested by
generating random lambda-terms.

We are investigating the applicability of similar approaches to test Coq’s
kernel.

Idea: many bugs could be find by testing partial properties on terms
with little logical content.

The challenge is the generation of such terms.
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Conclusion:

QuickChick is still very unstable, but you can play with it:
https://github.com/lemonidas/QuickChick

Not user-friendly yet, but we already applied it to non-trivial examples
like testing non-interference.

https://github.com/lemonidas/QuickChick


THANK YOU!


