
Micro-Policies
Formally Verified,

Tag-Based Security Monitors

Cătălin Hrițcu
Inria Paris-Rocquencourt, Prosecco team

• Formal methods & hardware architecture

• Current team:

– UPenn: Arthur Azevedo de Amorim,
André DeHon, Benjamin Pierce,
Antal Spector-Zabusky, Udit Dhawan

– Inria Prosecco: Cătălin Hrițcu,
Yannis Juglaret (soon DGA-Inria PhD)

– Paris Sud (Digiteo) & Portland State:
Andrew Tolmach

• Past: DARPA CRASH/SAFE project
– France: Delphine Demange (IRISA Celtique), Maxime Dénès (Inria Gallium),

Nick Giannarakis (Inria Prosecco), David Pichardie (IRISA Celtique)

Micro-Policies collaborators

2

Computer systems are insecure

3

Computer systems are insecure

• Today’s computers are mindless bureaucrats

– “write past the end of this buffer” ... yes boss!

– “jump to this untrusted integer” ... right boss!

– “return into the middle of this instruction” ... sure boss!

• Software bears most of the burden for security

– pervasive security enforcement impractical

– bad security-performance tradeoff

– just write secure code ... all of it!

• Consequence: vulnerabilities in every system

– violations of well-studied
safety and security policies

4

Micro-policies

• add large tag to each machine word

• words in memory and registers are all tagged

5

word tag

pc tag

r0 tag

r1 tag

r2 tag

mem[0] tag

mem[1] tag

mem[2] tag

mem[3] tag

tag[0] tag[1] tag[2]

*Conceptual model, the hardware implements this efficiently (more later)

unbounded
metadata

tpc’ tr0’

Tag-based instruction-level monitoring

6

pc tpc

r0 tr0

r1 tr1

r2 tr2

mem[0] tm0

mem[1] tm1

mem[2] tm2

mem[3] tm3

decode(mem[1]) = add r0 r1 r2

tpc tr0 tr1 tr2 tm1

monitor
allow

tpc’ tr0’

pc
tpc

tr0

tr1

tr2

tm1

add

Tag-based instruction-level monitoring

7

pc tpc

r0 tr0

r1 tr1

r2 tr2

mem[0] tm0

mem[1] tm1

mem[2] tm2

mem[3] tm3

decode(mem[1]) = store r0 r1

tpc tr0 tr1 tm3 tm2

monitor
disallow

pc

r0

bad action stopped!

store

Micro-policies are cool!

• low level + fine grained: unbounded per-word

metadata, checked & propagated on each instruction

• expressive: can enforce large number of policies

• flexible: tags and monitor defined by software

• efficient: accelerated using hardware caching

• secure: formally verified to provide security

8

• Micro-policy mechanism can efficiently enforce:

– memory safety

– code-data separation

– control-flow integrity

– compartment isolation

– taint tracking

– information flow control

– monitor self-protection

– dynamic sealing

Expressiveness

9

and a lot more!

History:

• SAFE machine had separate HW
mechanisms for many of these

• micro-policies were only used
for IFC [Oakland’13, POPL’14]

•... we only realized later how
expressive they are
[ASPLOS’15, Oakland’15]

Flexibility by example: memory safety

• Our memory safety micro-policy prevents

– spatial violations: reading/writing out of bounds

– temporal violations: use after free, invalid free

– for heap-allocated data (for simplicity)

• Pointers become unforgeable capabilities

– can only obtain a valid pointer to a memory region

• by allocating that region or

• by copying/offsetting an existing pointer to that region

10

Memory safety micro-policy

11

p←malloc k

fresh c
(e.g. ++c)

1 k-1

p = A8F0

0@M(c,i) 0@M(c,i) 0@M(c,i)

q ← p + 1
A8F1@ptr(c) = q

q ← p + k

...

k

K

!p ← 7 c = c !q ← 42

7@M(c’,i)

c != c’

free p

Tv ::= i | ptr(c) tags on values

Tm ::= M(c,Tv) | F tags on memory

@ptr(c)

out of bounds

1

color of region tag of content

color of region

0 7

0

Memory safety micro-policy

12

1 k-1

p = A8F0 A8F1@ptr(c) = q
q ← p + k

...

k

K

!q ← 42

7@M(c’,i)

free p

7@F 0@F 0@F

x ← !p Tv ::= i | ptr(c) tags on values

Tm ::= M(c,Tv) | F tags on memory

@ptr(c)

out of bounds

use after free

0

7

c != c’

Efficiently executing micro-policies

13

tpc t1 t2 t3 tci op tpc’ tr

hardware cache

tpc t1 t2 t3 tci op tpc’ tr

tpc t1 t2 t3 tci op tpc’ tr

tpc t1 t2 t3 tci op tpc’ tr

tpc t1 t2 t3 tci op

lookup

found

zero overhead hits!

tpc’ tr

Efficiently executing micro-policies

14

tpc t1 t2 t3 tci op tpc’ tr

hardware cache

tpc t1 t2 t3 tci op tpc’ tr

tpc t1 t2 t3 tci op tpc’ tr

tpc t1 t2 t3 tci op tpc’ tr

tpc t1 t2 t3 tci op

lookup
misses trap to software

tpc’ tr tpc t1 t2 t3 tci op tpc’ tr

produced “rule” cached

Simulations for naive implementation

15

memory safety + code-data separation + taint tracking + control-flow integrity
simple RISC processor: single-core 5-stage in-order Alpha

Targeted [micro-]architectural optimizations

• grouping opcodes and ignoring unused tags

– increases effective rule cache capacity

• transferring only unique tags to/from DRAM

– reduces runtime and energy overhead

• using much shorter tags for on-chip data caches

– reduces runtime, energy, and area overhead

• caching composite policies separately

– makes rule cache misses much cheaper

16

[ASPLOS’15]

Simulations for optimized implementation
memory safety + code-data separation + taint tracking + control-flow integrity
simple RISC processor: single-core 5-stage in-order Alpha

17

no free lunch

FORMAL VERIFICATION IN COQ
Is it secure?

18

[POPL’14, Oakland’15]

19

Memory safe abstract machine

Symbolic machine
Micro-policy

memory safety
micro-policy

correctly implements

correctly implements

memory safety
monitor

correctly
implements*

Generic Framework

ASM
Concrete
machine

Monitor
Rule cache

*only proved for IFC [POPL 2014]

Concrete
machine

Monitor
Rule cache

20

Abstract machine for P

Symbolic machine
Micro-policy

P

secure

secure monitor for P

(e.g. noninterference)

P in {IFC,CFI}

correctly implements

correctly implements

Memory safety micro-policy

21

1. Sets of tags

Tv ::= i | ptr(c)

Tm ::= M(c,Tv) | F

Tpc ::= Tv

2. Transfer function

Record IVec := { op:opcode ; tpc:Tpc ; ti:Tm ; ts: ... }

Record OVec (op:opcode) := { trpc : Tpc ; tr : ... }

transfer : (iv:IVec) -> option (OVec (op iv))

Definition transfer iv :=

match iv with

| {op=Load; tpc=ptr(cpc); ti=M(cpc,i); ts=[ptr(c); M(c,Tv)]}

 => {trpc=ptr(cpc); tr=Tv}

| {op=Store; tpc=ptr(cpc); ti=M(cpc,i); ts=[ptr(c); Tv; M(c,Tv’)]}

 => {trpc=ptr(cpc); tr=M(c,Tv)}

...

Memory safety micro-policy

22

3. Monitor services

Record service := { addr : word; sem : state -> option state; ... }

Definition mem_safety_services : list service :=

 [malloc; free; base; size; eq].

1. Sets of tags

Tv ::= i | ptr(c)

Tm ::= M(c,Tv) | F

Tpc ::= Tv

2. Transfer function

Record IVec := { op:opcode ; tpc:Tpc ; ti:Tm ; ts: ... }

Record OVec (op:opcode) := { trpc : Tpc ; tr : ... }

transfer : (iv:IVec) -> option (OVec (op iv))

Open problems

• Interaction with compiler, loader, linker, OS

• Secure micro-policy composition

• Reduce energy + more adaptive usage

• Modern RISC instruction set (e.g. ARM)

• More realistic processor

(our-of-order execution, even multi-core)

23

Fully abstract compilation

• Golden standard for secure compilation

– P ≈ Q ↔ compile(P) ≈ compile(Q)

– P ≈ Q = ∀C. C[P] has the same behavior as C[Q]

– intuition: low-level machine code contexts
can’t do more harm than high-level contexts

– can securely link compiled and untrusted machine code

• Very strong, but rarely achieved in practice

– much stronger than compiler correctness

– need a compiler & runtime that actually enforce
high-level abstractions at the low level

– ... and that’s currently too expensive!
24

Targeting micro-policy machine

• Micro-policies can efficiently protect abstractions

• Fully abstract compiler to micro-policy machine

– Recently started with Yannis Juglaret

– Toy source language: Featherweight Java subset

– FJ classes protected from native classes they link with

– Micro-policy combining: protects:

• compartment isolation classes

• linear return capabilities stack discipline

• dynamic typing type safety

• Long term goal: functional programming language
25

Take away

• Micro-policies, novel security mechanism

– low level, fine grained, expressive,

flexible, efficient, formally secure

• cool research direction with many interesting

open problems for us and others to solve

26

BACKUP SLIDES

27

Other highlights in Prosecco team

• Programming securely with cryptography

• Proverif and Cryptoverif protocol analyzers

• miTLS: verified reference implementation

• F*: program verification system for OCaml/F#

• QuickChick: property-based testing for Coq

• Permanent researchers:

– Karthikeyan Bhargavan, Bruno Blanchet,
Cătălin Hrițcu, Graham Steel

28

