
Micro-Policies
Hardware-Assisted Tag-Based

Security Monitors

Cătălin Hrițcu
Inria Paris-Rocquencourt, Prosecco team

Computer systems are insecure

2

Computer systems are insecure

• Today’s computers are mindless bureaucrats

– “write past the end of this buffer” ... yes boss!

– “jump to this untrusted integer” ... right boss!

– “return into the middle of this instruction” ... sure boss!

• Software bears most of the burden for security

– pervasive security enforcement impractical

– bad security-performance tradeoff

– just write secure code ... all of it!

• Consequence: vulnerabilities in every system

– violations of well-studied
safety and security policies

3

HP reinventing the computer

• opportunity to fix this:

– devise a computer that’s not just faster,
but that’s also significantly more secure

• it’s possible!

– new security mechanism called micro-policies

4

Micro-policies

• add large tag to each machine word

• words in memory and registers are all tagged

5

word tag

pc tag

r0 tag

r1 tag

r2 tag

mem[0] tag

mem[1] tag

mem[2] tag

mem[3] tag

tag[0] tag[1] tag[2]

tpc’ tr0’

Tag-based instruction-level monitoring

6

pc tpc

r0 tr0

r1 tr1

r2 tr2

mem[0] tm0

mem[1] tm1

mem[2] tm2

mem[3] tm3

decode(mem[1]) = add r0 r1 r2

tpc tr0 tr1 tr2 tm1

monitor
allow

tpc’ tr0’

pc
tpc

tr0

tr1

tr2

tm1

add

Tag-based instruction-level monitoring

7

pc tpc

r0 tr0

r1 tr1

r2 tr2

mem[0] tm0

mem[1] tm1

mem[2] tm2

mem[3] tm3

decode(mem[1]) = store r0 r1

tpc tr0 tr1 tm3 tm2

monitor
disallow

pc

r0

bad action stopped!

store

Features of micro-policies

• low-level and fine-grained: large per-word tags,

checked and propagated on each instruction

• expressive: can enforce large number of policies

• flexible: tags and monitor defined by software

• efficient: hardware caching

• secure: formally verified to provide security

8

• Micro-policy mechanism can enforce:

– memory safety

– code-data separation

– control-flow integrity

– compartment isolation

– taint tracking

– information flow control

– monitor self-protection

– dynamic sealing

Expressiveness

9

and probably a
lot more!

History:
•DARPA CRASH/SAFE project
•different mechanisms for
most of these things
•micro-policies were only
used for IFC ... but they are a
lot more expressive than we
realized at first

Flexibility by example: memory safety

• Our memory safety micro-policy prevents

– spatial violations: reading/writing out of bounds

– temporal violations: use after free, invalid free

– for heap-allocated data (for now)

• Pointers become unforgeable capabilities

– can only obtain a valid pointer to a memory region

• by allocating that region or

• by copying/offsetting an existing pointer to that region

10

Memory safety micro-policy

11

p←malloc k

fresh c

1 k-1

p = A8F0

0@M(c,i) 0@M(c,i) 0@M(c,i)

q ← p + 1
A8F1@ptr(c) = q

q ← p + k

...

k

K

!p ← 7 c = c !q ← 42

7@M(c’,i)

c != c’

free p

Tv ::= i | ptr(c) tags on values

Tm ::= M(c,Tv) | F tags on memory

@ptr(c)

out of bounds

1

color of region tag of content

color of region

0 7

0

Memory safety micro-policy

12

1 k-1

p = A8F0 A8F1@ptr(c) = q
q ← p + k

...

k

K

!q ← 42

7@M(c’,i)

free p

7@F 0@F 0@F

x ← !p Tv ::= i | ptr(c) tags on values

Tm ::= M(c,Tv) | F tags on memory

@ptr(c)

out of bounds

use after free

0

7

c != c’

Efficiently executing micro-policies

13

tpc t1 t2 t3 tci op tpc’ tr

hardware cache

tpc t1 t2 t3 tci op tpc’ tr

tpc t1 t2 t3 tci op tpc’ tr

tpc t1 t2 t3 tci op tpc’ tr

tpc t1 t2 t3 tci op

lookup

found

zero overhead hits!

tpc’ tr

Efficiently executing micro-policies

14

tpc t1 t2 t3 tci op tpc’ tr

hardware cache

tpc t1 t2 t3 tci op tpc’ tr

tpc t1 t2 t3 tci op tpc’ tr

tpc t1 t2 t3 tci op tpc’ tr

tpc t1 t2 t3 tci op

lookup
misses trap to software

tpc’ tr tpc t1 t2 t3 tci op tpc’ tr

produced “rule” cached

Experiments for naive implementation

15

memory safety + code-data separation + taint tracking + control-flow integrity
simple RISC processor: 5-stage in-order Alpha

Targeted architectural optimizations

• grouping opcodes and ignoring unused tags

• transferring only unique tags to/from DRAM

• using much shorter tags on-chip

• caching composite policies separately

16

Experiments for optimized impl.
memory safety + code-data separation + taint tracking + control-flow integrity
simple RISC processor: 5-stage in-order Alpha

17

no free lunch

Formally
verified
security

18

Memory safe abstract machine

Symbolic machine
Micro-policy

memory safety
micro-policy

correctly implements

correctly implements

memory safety
monitor

correctly
implements

Generic Framework

ASM
Concrete
machine

Monitor
Rule cache

(using Coq proof assistant)

Concrete
machine

Monitor
Rule cache

19

Abstract machine for P

Symbolic machine
Micro-policy

P

secure

secure monitor for P

(e.g. noninterference)

P in {IFC,CFI}

correctly implements

correctly implements

Upcoming

• Interaction with loader, compiler, and OS

• Secure micro-policy composition

• Better energy efficiency + adaptive usage

• Modern RISC instruction set (e.g. ARM)

• More realistic processor

(our-of-order execution, multi-core)

20

Take away

• Micro-policies, novel security mechanism that’s:

– low-level, fine-grained, expressive, flexible,

efficient, formally secure

• Current collaborators (INRIA & UPenn):

– Arthur Azevedo de Amorim, André DeHon,

Maxime Dénès, Udit Dhawan, Nick Giannarakis,

Cătălin Hrițcu, Yannis Juglaret, Benjamin Pierce,

Antal Spector-Zabusky, Andrew Tolmach, Nikos Vasilakis

21

Other highlights in Prosecco team

Other highlights in Prosecco team

• programming securely with cryptography

• Proverif and Cryptoverif protocol analyzers

• miTLS: verified reference implementation

• F*: program verification system for OCaml/F#

• QuickChick: property-based testing for Coq

• Prosecco permanent researchers:

– Karthikeyan Bhargavan (leader), Bruno Blanchet,
Cătălin Hrițcu, Graham Steel (Cryptosense startup)

23

BACKUP SLIDES

24

Current collaborators on this project

25

• Formal verification

• Arthur Azevedo de Amorim (UPenn; INRIA intern 2014)

• Maxime Dénès (INRIA Gallium; previously UPenn)

• Nick Giannarakis (ENS Cachan; INRIA intern 2014)

• Cătălin Hrițcu (INRIA Prosecco; previously UPenn)

• Yannis Juglaret (Paris 7; INRIA intern 2015)

• Benjamin Pierce (UPenn)

• Antal Spector-Zabusky (UPenn)

• Andrew Tolmach (Portland State)

• Hardware architecture

• André DeHon, Udit Dhawan, ... (UPenn)

The end

• Today’s computer’s were designed long time ago

• Computer designers from the 50s-90s have a
good excuse for getting security wrong
(e.g. horrors like buffer overflows):

– security wasn't a big issue before the Internet age

– performance was much more important

• Today the situation is reversed

– and HP has an opportunity to fix security

– but HP will have no excuse
if it reinvents the insecure computer

26

