Micro-Policies
Hardware-Assisted Tag-Based
Security Monitors

Catalin Hritcu

Inria Paris-Rocquencourt, Prosecco team

F 4

lrezia—

Computer systems are Insecure

Computer systems are Insecure

 Today’s computers are mindless bureaucrats

— “write past the end of this buffer” ... yes boss!
— “jump to this untrusted integer” ... right boss!
— “return into the middle of this instruction” ... sure boss!

* Software bears most of the burden for security
— pervasive security enforcement impractical
— bad security-performance tradeoff
— just write secure code ... all of it!

* Consequence: vulnerabilities in every sys

— violations of well-studied Al
safety and security policies ’;\7‘;)\'... F

HP reinventing the computer

e opportunity to fix this:

— devise a computer that’s not just faster,
but that’s also significantly more secure

* it’s possible!

— new security.

Micro-policies

* add large tag to each machine word

word tag —— tag[0] tag[1] tag[2]

* words in memory and registers are all tagged

pc tag mem|[0] tag
r0 tag mem|[1] tag
rl tag mem|[2] tag
r2 tag mem|3. tag

Tag-based instruction-level monitoring

pc tpc mem|[0] tmO
. pcC
r0 tr0 mem[1] tml [€
rl trl mem|2] tm2
r2 tr2 mem|[3] tm3
decode(mem[1]) =add rO rl r2
tpc “ tr0 “ trl “ tr2 “ tml

add

>

allow

e ———

tpc’ “ tro’

Tag-based instruction-level monitoring

pc tpc mem|[0] tmO
r0 tro mem|[1] tml
rl trl mem|2] tm2 &
r2 tr2 mem|3] tm3 r@o
decode(mem[1]) = store rO rl
tpc “ tr0 trl “ tm3 “ tm2

store

>

/

—

— bad action stopped!

disallow

7

Features of micro-policies

low-level and fine-grained: large per-word tags,
checked and propagated on each instruction

expressive: can enforce large number of policies
flexible: tags and monitor defined by software
efficient: hardware caching

secure: formally verified to provide security

Expressiveness

* Micro-policy mechanism can enforce:

— memory safety

and probably a

— code-data separation

lot more!
— control-flow integrity
t t isolati History:
— compartmentisofation «DARPA CRASH/SAFE project
— taint tracking «different mechanisms for
most of these things

— information flow control micro-policies were only

: If . used for IFC ... but they are a
— monitor selt-protection lot more expressive than we
— dynamic Sealing realized at first

Flexibility by example: memory safety

 Our memory safety micro-policy prevents
— spatial violations: reading/writing out of boun
— temporal violations: use after free, invalid free

— for heap-allocated data (for now)

* Pointers become unforgeable capabilities ﬁ

— can only obtain a valid pointer to a memory region
* by allocating that region or

* by copying/offsetting an existing pointer to that region

Memory safety micro-policy

p<&malloc k

fresh c

0

1

k-1 k

d@M(c,i)

0@M(c,i) | ... | 0@M(c,i) 7@M}§c’,i)

7

\ /-,pﬂ

p= A8F0@pt/r(,c)

C=C

Ip &7

free p

V

ASFK@ptr(c) =

outofbounds

=i ptr(d
=M(cT,) | F

tags on values
tags on memory

color of region tag of co@
11

Memory safety micro-policy

1

k-1 k

0
7@F] 0@F

7

p = ASBFO@ptr(c)

free p

I

use after free

out of bounds

T, =1 | ptr(c)
T :=M(cT,) | F

tags on values
tags on memory

12

Efficiently executing micro-policies

op

tpc

t1

t2

t3

tci

lookup ¢ zero overhead hits!

foung

op tpc tl t2 t3 tci tpc’ tr
op tpc t1 t2 t3 tci tpc’ tr
op tpc t1 t2 t3 tci tpc’ tr
op tpc t1 t2 t3 tci tpc’ tr

hardware cache

13

Efficiently executing micro-policies

op tpc t1 t2 t3 tci tpc’ tr
lookup misses trap to software
produced “rule” cached

op tpc tl t2 t3 tci tpc’ tr

op tpc t1 t2 t3 tci tpc’ tr

op tpc t1 t2 t3 tci tpc’ tr

op tpc t1 t2 t3 tci tpc’ tr

hardware cache

14

Experiments for naive implementation

memory safety + code-data separation + taint tracking + control-flow integrity

simple RISC processor: 5-stage in-order Alpha

o

ueaw
dwsnaz
exuiyds
duals
youaqj4ad
ddisuwo
pweu

ow

pw
wnuenbqy)
PERIISI
wiqj
Jawwy
P9
so>ewo.s
ywgos

228

ssawed
[1resp
XI|noJed
IWQVsnioed
zdizq
S9ABM(Q
Jejse

dl4gswen

H

w 0¢s
=7
"l wn
o2
— Q
o~
o~
&
009 m———
m
009
0091
©C O © © O
S & & & &
/o LN < oM o —
o PYAQ A840u3z %
LN 358
ssawes
m lIesp
Q XI|noed
WQysnoed
m gdizq
SOABMJ
(1143 Jejse
082 aldgswen
© ;1 © u;n o
m N~ [Wp] o
PUAQ PwWijuNny %

Targeted architectural optimizations

grouping opcodes and ignoring unused tags
transferring only unique tags to/from DRAM
using much shorter tags on-chip

caching composite policies separately

Experiments for optimized impl.

memory safety + code-data separation + taint tracking + control-flow integrity
simple RISC processor: 5-stage in-order Alpha

no free lunch

100

75

50

25

% Runtime Ovhd

GemsDFTD

astar
bwaves

bzip2

cactusADM

calculix

50% => 7%

dealll

GemsDFTD

astar
bwaves

bzip2

cactusADM

220% => 60%

calculix

dealll
gamess

gcc
gobmk

0 525 |05 |57.5 210

% Area Ovhd

I

0 S L o - U0 Ac bom A c
St 2ECSEELOESZES
EQE 5 Ec87L3E
00 o O O

el o

17

Memory safe abstract machine

Formally
verified

security

(using Coqg proof assistant)

Symbolic machine

: { memory safety ; |

micro-policy

correctly implementsT

correctly

Concrete Rule cache

machine

implements

. fety i
" monitor | ASM

Generic Framework

18

P in {IFC,CFI}

Abstract machine for P < SEeCcure
(e.g. noninterference)
correctly implementsT
Micro-policy
Symbolic machine : o l
correctly implementsT
Monitor

Concrete Rulecache |.

machine 6-----; monitor for P] é- secure

19

Upcoming

Interaction with loader, compiler, and OS
Secure micro-policy composition

Better energy efficiency + adaptive usage
Modern RISC instruction set (e.g. ARM)

More realistic processor
(our-of-order execution, multi-core)

20

Take away

* Micro-policies, novel security mechanism that’s:

— low-level, fine-grained, expressive, flexible,
efficient, formally secure

* Current collaborators (INRIA & UPenn):

— Arthur Azevedo de Amorim, André DeHon,
Maxime Dénes, Udit Dhawan, Nick Giannarakis,
Catalin Hritcu, Yannis Juglaret, Benjamin Pierce,

Antal Spector-Zabusky, Andrew Tolmach, Nikos Vasilakis

21

Other highlights in Prosecco team

=

=0

ars technica

Tra

On Tuesd:z

an attacke
weakened
tracking th

The FREA
disclosure
of Michiga
teamcant

For additic
this Wash

THE WALL STREET JOURNAL.

Home World U.S. Politics Economy Business Tech Markets Opinion Arts Life

@ The Fix for New

Bt e &= Who Is Your 3 @ Toy Story: &
LogJam Bug Could & ‘T‘ Uber Driver (and o ,MZ{. i Another Fad or ,7.' Fal
Break the Internet . % What Does He A4 9B, Future of J Ta:
for Thousands ... A % \ Want?) A "« Videogames? Ali

be
<

TECH

New Computer Bug Exposes Broad Security Fla

Fix for LogJam bug could make more than 20,000 websites unreachable

Other highlights in Prosecco team

programming securely with cryptography
Proverif and Cryptoverif protocol analyzers
miTLS: verified reference implementation

F*: program verification system for OCaml/F#
QuickChick: property-based testing for Coq

Prosecco permanent resea rchers:

— Karthikeyan Bhargavan (leader), Bruno Blanchet,
Catalin Hritcu, Graham Steel (Cryptosense startup)

BACKUP SLIDES

Current collaborators on this project

* Formal verification
* Arthur Azevedo de Amorim (UPenn; INRIA intern 2014)
 Maxime Dénes (INRIA Gallium; previously UPenn)

* Nick Giannarakis (ENS Cachan; INRIA intern 2014)
e Catilin Hritcu (INRIA Prosecco; previously UPenn) | Jcik
* Yannis Juglaret (Paris 7; INRIA intern 2015) J—
* Benjamin Pierce (UPenn)

e Antal Spector-Zabusky (UPenn)

 Andrew Tolmach (Portland State)
 Hardware architecture

 André DeHon, Udit Dhawan, ... (UPenn)

The end

* Today’s computer’s were designed long time ago

 Computer designers from the 50s-90s have a
good excuse for getting security wrong
(e.g. horrors like buffer overflows):
— security wasn't a big issue before the Internet age
— performance was much more important

* Today the situation is reversed |
— and HP has an opportunity to fix security © ‘

— but HP will have no excuse
if it reinvents the insecure computer

26

