DDDDDDDDDDDDDDDDDDDDDDDDDDD

Micro-Policies
Formally Verified Low-Level Tagging Schemes
for Safety and Security

Catalin Hritcu

INRIA Paris-Rocquencourt

Computer systems are Insecure

Computer systems are Insecure

 Today’s CPUs are mindless bureaucrats
— “write past the end of this buffer” ... yes boss!
— “jump to this untrusted integer” ... right boss!
— “return into the middle of this instruction” ... sure boss!

Computer systems are Insecure

 Today’s CPUs are mindless bureaucrats

— “write past the end of this buffer” ... yes boss!
— “jump to this untrusted integer” ... right boss!
— “return into the middle of this instruction” ... sure boss!

* Software bears most of the burden for security
pervasive security enforcement impractical
security-performance tradeoff
just write secure code ... all of it!

Computer systems are Insecure

 Today’s CPUs are mindless bureaucrats

— “write past the end of this buffer” ... yes boss!
— “jump to this untrusted integer” ... right boss!
— “return into the middle of this instruction” ... sure boss!

* Software bears most of the burden for security
pervasive security enforcement impractical
security-performance tradeoff
just write secure code ... all of it!

Consequence:
tons of vulnerabilities in every large system
— violations of known safety and security policies

N '
Yy i /)-’(_—-—

Micro-Policies

e general efficient dynamic enforcement mechanism for
— critical invariants of low-level code
— high-level abstractions and programming models

Micro-Policies

e general efficient dynamic enforcement mechanism for
— critical invariants of low-level code
— high-level abstractions and programming models

e add large metadata tags to all machine words
— “this word is an instruction, and this one is a pointer”

“this word comes from the net, and this one is private”
tag structure defined entirely by software

Micro-Policies

e general efficient dynamic enforcement mechanism for
— critical invariants of low-level code
— high-level abstractions and programming models
e add large metadata tags to all machine words
— “this word is an instruction, and this one is a pointer”
“this word comes from the net, and this one is private”
tag structure defined entirely by software
tags efficiently propagated on each instruction
— rules defined by software (fault handler; verified)
— rule lookup accelerated by hardware rule cache

Micro-Policies for ...

We already thoroughly explored: dynamic information flow control (IFC)

Micro-Policies for ...

We already thoroughly explored: dynamic information flow control (IFC)

Currently exploring:
user-kernel distinction
* hardware types
— intvs. pointer vs. instruction

memory safety

stop all spatial and temporal
violations on heap and stack

— pointers become capabilities
control-flow integrity
e call-stack protection

* opaque closures
— first-class functions (A)

* linear pointers
— absence of aliasing

Micro-Policies for ...

We already thoroughly explored: dynamic information flow control (IFC)

Currently exploring:
user-kernel distinction
* hardware types
— intvs. pointer vs. instruction

memory safety

stop all spatial and temporal
violations on heap and stack

— pointers become capabilities
control-flow integrity
e call-stack protection

* opaque closures
— first-class functions (A)

* linear pointers
— absence of aliasing

Longer term plans:

pointer permissions

— "readable", "writeable”
"jumpable", or "callable"
process isolation
— replacement for virtual memory
dynamic type tags
— for C, Scheme, or even OCaml
dynamic sealing & trademarks
cache result of dynamic contracts
higher-order contracts
data race detection

user-defined metadata

Micro-Policies for ...

We already thoroughly explored:

Currently exploring:
user-kernel distinction

* hardware types
— int vs. pointer vs. instruction

memory safety

stop all spatial and temporal
violations on heap and stack

— pointers become capabilities

control-flow integrity
e call-stack protection

* opaque closures
— first-class functions (A)

* linear pointers
— absence of aliasing

dynamic information flow control (IFC)

Longer term plans:
pointer permissions

— "readable", "writeable”
"jumpable", or "callable"
e process isolation
— replacement for virtual memory
dynamic type tags
— for C, Scheme, or even OCaml
 dynamic sealing & trademarks
cache result of dynamic contracts
* higher-order contracts
e data race detection

e user-defined metadata

IFC Micro-Policy

opcode | allow Erpe Er

sub TRUE LABpc LABy, LI LAB9

output | TRUE LABj. LAB; Ll LAByc

push |TRUE LABy. BOT

load TRUE LABy. LAB; Ll LAB»

store |LABjLJLAB,. C LAB3 LAB,. LAB; Ul LAB2 Ll LAB,.
jump |TRUE LABy LULABp, -

bnz TRUE LAB; ULABy: -

call |TRUE LAB; LILABy. LAB,.

ret TRUE LABq _

* A Verified Information Flow Architecture [POPL 2014]
* Testing Noninterference, Quickly [ICFP 2013]

e All Your IFCException Are Belong To Us [S&P 2013]

A Theory of Information-Flow Labels [CSF 2013]

13

Noninterference proof in Coq porL 2014

Abstract

IFC Machine

T

IFC rule table

T compile

Concrete

Machine

IFC fault

handler

14

Noninterference proof in Coq porL 2014

Abstract

IFC Machine

Concrete
Machine

IFC rule table

compile

IFC fault

handler

satisfies
noninterference

15

Noninterference proof in Coq (rorL 2014]

satisfies
noninterference
Abstract
IFC Machine
bisimulation

Fault handler

Concrete
_ . 5 IFC fault
Machine AN i handler

16

Noninterference proof in Coq (rorL 2014]

Abstract

IFC Machine

Concrete

Machine

Fault handler

IFC fault
handler

satisfies
noninterference

bisimulation

correct
compilation

17

Noninterference proof in Coq (rorL 2014]

Abstract
IFC Machine

Concrete
Machine

IFC fault
handler

correct
compilation

satisfies
noninterference

bisimulation

bisimulation

18

Noninterference proof in Coq (rorL 2014]

Abstract
IFC Machine

Concrete
Machine

IFC fault
handler

satisfies
noninterference

preserved by

bisimulation

correct
compilation

bisimulation

19

Noninterference proof in Coq (rorL 2014]

Abstract
IFC Machine

Concrete
Machine

IFC fault
handler

satisfies
noninterference

preserved by

bisimulation

correct
compilation

bisimulation

satisfies
noninterference

20

Memory safety

* Goal: prevent all memory safety violations
— spatial violations: accessing arrays out of bounds

— temporal violations:
dereferencing pointer after its region was freed

— for simplicity here only for heap-allocated data
and excluding unpacked C structs

* Pointers become unforgeable capabilities

— can only obtain a valid pointer to a memory region
* by allocating that region or

* by copying or offsetting an existing pointer to that region

Micro-Policy for memory safety

Tag := V(Type) | M(n,Type) | F
Type :=i | ptr(n)

Micro-Policy for memory safety

p & alloc k

Tag := V(Type) | M(n,Type) | F
Type :=i | ptr(n)

Micro-Policy for memory safety

1 k-1

p < alloc k °

Tag := V(Type) | M(n,Type) | F
Type :=i | ptr(n)

Micro-Policy for memory safety

1 k-1

p < alloc k °

7

p = A8FO

Tag := V(Type) | M(n,Type) | F
Type :=i | ptr(n)

Micro-Policy for memory safety

1 k-1

p < alloc k °

fresh n /

p = A8FO

Tag := V(Type) | M(n,Type) | F
Type :=i | ptr(n)

Micro-Policy for memory safety

1

0@M(n,i) | ...

k-1

p & alloc k —
fresh n O@}A(n’l)
p = A8FO

0@M(n,i)

Tag := V(Type) | M(n,Type) | F
Type :=i | ptr(n)

27

Micro-Policy for memory safety

1

p < alloc k °
0@M(n,i)

fresh n

0@M(n,i) | ...

k-1

7

p = ASFO@V(ptr(n))

0@M(n,i)

Tag := V(Type) | M(n,Type) | F
Type :=i | ptr(n)

28

Micro-Policy for memory safety

0

1

0@M(n,i)

0@M(n,i) | ...

k-1

7

p = ASFO@V(ptr(n))

0@M(n,i)

Tag := V(Type) | M(n,Type) | F
Type :=i | ptr(n)

qé&ptl

29

Micro-Policy for memory safety

0

1

0@M(n,i) | 0@M(n,i) | ...

k-1

7

p = ASFO@V(ptr(n))

N

A8F1@V(ptr(n)) = q

0@M(n,i)

Tag := V(Type) | M(n,Type) | F
Type :=i | ptr(n)

qé&ptl

30

Micro-Policy for memory safety

0

1

0@M(n,i) | 0@M(n,i) | ...

k-1

7

p = ASFO@V(ptr(n))

N

A8F1@V(ptr(n)) = q

0@M(n,i)

Tag := V(Type) | M(n,Type) | F
Type :=i | ptr(n)

q&p+k

Micro-Policy for memory safety

0 1 k-1 k

0@M(n,i) [0@M(n,i) | ... |0@M(n,i) | 7@M(n’,i)

/ %;wk

p = A8FO@V(ptr(n)) A8FK@V(ptr(n)) =9

Tag := V(Type) | M(n,Type) | F
Type :=i | ptr(n)

Micro-Policy for memory safety

0

1

0@M(n,i)

0@M(n,i) | ...

k-1

k

7

p = ASFO@V(ptr(n))

x<&lp

0@M(n,i)

7@M(n’,i)

Tag := V(Type) | M(n,Type) | F
Type :=i | ptr(n)

%pi‘k

A8FK@V(ptr(n)) = q

33

Micro-Policy for memory safety

0

1

O@M(n i)

0@M(n,i) | ...

k-1

k

7

p = ASFO@V/(ptr

x&Ip same n

0@M(n,i)

7@M(n’,i)

Tag := V(Type) | M(n,Type) | F
Type :=i | ptr(n)

%pi‘k

)) A8FK@V(ptr(n)) =q

34

Micro-Policy for memory safety

0 1 k-1 k

O@M(n i) [0@M(n,i) | ... |0@M(n,i) | 7@M(n’,i)

/ %;wk

p = A8FO@V(ptr(n)) A8FK@V(ptr(n)) =9
x&Ip same n
x=0@V(i)
Tag := V(Type) | M(n,Type) | F
Type :=i | ptr(n)

35

Micro-Policy for memory safety

0

1

0@M(n,i)

0@M(n,i) | ...

k-1

k

7

p = ASFO@V(ptr(n))

0@M(n,i)

7@M(n’,i)

Tag := V(Type) | M(n,Type) | F
Type :=i | ptr(n)

%pi‘k

A8FK@V(ptr(n)) = q

g €& 42

36

Micro-Policy for memory safety

0

1

0@M(n,i)

0@M(n,i) | ...

k-1 k

7

p = ASFO@V(ptr(n))

0@M(n,i) 7@M}§n’,i)

/P+k

A8FK@V(ptr(n)) =

, lg€ 42

Tag := V(Type) | M(n,Type) | F
Type :=i | ptr(n)

37

Micro-Policy for memory safety

0

1

0@M(n,i)

0@M(n,i)

k-1 k

7

p = ASFO@V(ptr(n))

0@M(n,i) 7@M}§n’,i)

A8FK@V(ptr(n)) =

nl=n’
out of bounds

Tag := V(Type) | M(n,Type) | F
Type :=i | ptr(n)

38

Micro-Policy for memory safety

free p

0

1

0@M(n,i)

0@M(n,i) | ...

k-1 k

7

p = ASFO@V(ptr(n))

0@M(n,i) | 7@M(n’,i)

%pi‘k

A8FK@V(ptr(n)) = q

out of bounds

Tag := V(Type) | M(n,Type) | F
Type :=i | ptr(n)

39

Micro-Policy for memory safety

0 1 k-1 k

0@F 0@F ..| 0@F 7@M(n’,i)

/ %;wk

p = A8FO@V(ptr(n)) A8FK@V(ptr(n)) =9

free p out of bounds

Tag := V(Type) | M(n,Type) | F
Type :=i | ptr(n)

40

Micro-Policy for memory safety

0 1 k-1 k

0@F 0@F ..| 0@F 7@M(n’,i)

/ %;wk

p = A8FO@V(ptr(n)) A8FK@V(ptr(n)) =9

free p out of bounds

x & Ip Tag := V(Type) | M(n,Type) | F
Type :=i | ptr(n)

41

Micro-Policy for memory safety

1 k-1 k

0
0@jF] 0@F ...| 0@F 7@M(n’,i)

/ %;wk

p = A8FO@V(ptr(n)) A8FK@V(ptr(n)) =9

free p out of bounds

x & Ip Tag := V(Type) | M(n,Type) | F
Type :=i | ptr(n)

42

Micro-Policy for memory safety

1 k-1 k

0
0@jF] 0@F ...| 0@F 7@M(n’,i)

/ %;wk

p = A8FO@V(ptr(n)) A8FK@V(ptr(n)) =9

free p out of bounds

X=<1p Tag := V(Type) | M(n,Type) | F

use after free |Type :=i | ptr(n)

43

Direction of this project

* Beyond IFC:

— show generality: study diverse set of micro-policies
— formally verify enforced properties
— implement and evaluate practical viability

* Beyond clean-slate (CRASH/SAFE):

— targeting a stock RISC architecture
— extended with tags and a rule cache
— legacy software with little or no changes

Future challenges

* Micro-policy composition
— hardware supports compound tags

— but policies are often not orthogonal
(e.g. tags can leak information)

— this is not just reference monitoring / safety properties
* “micro-calls” into privileged code can inspect tags
* policy violations are often recoverable

— sequential (vertical) vs. parallel (cross product)
— further improve efficiency

* Meta-language for micro-policies
— beyond disparate DSLs

Collaborators on this project*®

UPenn
Arthur Azevedo de Amorim**
Maxime Denes
Leonidas Lampropoulos
Benoit Montagu
Benjamin Pierce
Antal Spector-Zabusky
INRIA Paris
Nick Giannarakis**
Catalin Hritcu
Portland State
Nathan Collins
Andrew Tolmach
IRISA Rennes
Delphine Demange
David Pichardie
Harvard
Greg Morrisett * Started part of DARPA CRASH/SAFE
Randy Pollack ** Soon interns at INRIA Paris

Collaborators on this project*®

Formal side
UPenn
Arthur Azevedo de Amorim**
Maxime Denes
Leonidas Lampropoulos
Benoit Montagu
Benjamin Pierce
Antal Spector-Zabusky
INRIA Paris
Nick Giannarakis**
Catalin Hritcu
Portland State
Nathan Collins
Andrew Tolmach
IRISA Rennes
Delphine Demange
David Pichardie
Harvard
Greg Morrisett
Randy Pollack

Architecture side

UPenn
Andre DeHon
Udit Dhawan
Ben Karel
Nikos Vasilakis
Jonathan M. Smith
MIT
Tom Knight
Howard Shrobe
BAE Systems
Greg Sullivan

* Started part of DARPA CRASH/SAFE
** Soon interns at INRIA Paris

My other two current projects

* QuickChick: Speeding up Formal Proofs with
Property-Based Testing
— General Framework for Polarized Mutation Testing
— Language for Custom Test-Data Generators
— Deep Integration with Coq/SSReflect

* VF*: Next Generation Security Type Checker
— Better refinement type inference (Dijkstra monad)
— Beyond value-dependency
— Better control of effects (including termination)
— Smarter (semantic) termination checking

THANK YOU

BACKUP SLIDES

Computer systems are Insecure

Computer systems are Insecure

Why?

Computer systems are Insecure

|[Rank [Score| 1D | Name
[|38 |CwWE-89 [improper Neutralization of Special Elements used in an SQL Command (‘SQL Injection’)

[21 833 |cwe-78 [improper Neutralization of Special Elements used in an OS Command (OS Command Injection’)
381 [79.0 |CwWE-120 |Buffer Copy without Checking Size of Input (Classic Buffer Overflow’)

41 [77.7 |CWE-79 |Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting)

51 [76.9 |CWE-306 |Missing Authentication for Critical Function

6] [76.8 |CWE-862 |Missing Authorization

71 [75.0 |cwE-798 |Use of Hard-coded Credentials

8] [75.0 |CWE-311 |Missing Encryption of Sensitive Data

91 |[74.0 |CwE-434 |Unrestricted Upload of File with Dangerous Type

[[10] [73.8 |CWE-807 |Reliance on Untrusted Inputs in a Security Decision

[11] [731 |CWE-250 |Execution with Unnecessary Privileges

[12] [Fo1 [CwWE-352 |Cross-Site Request Forgery (CSRF)

[23] [69.3 |CWE-22 |[Improper Limitation of a Pathname to a Restricted Directory (Path Traversal)

[[14] [685 |CWE-494 [Download of Code Without Integrity Check

[15] [67.8 |CWE-863 |Incorrect Authorization

[[16] |[66.0 |CwE-829 [inclusion of Functionality from Untrusted Control Sphere

[[17] [655 |CWE-732 |Incorrect Permission Assignment for Critical Resource

[[18] [646 |CWE-676 |Use of Potentially Dangerous Function

[[29] [641 |CWE-327 |Use of a Broken or Risky Cryptographic Algorithm

[20] [62.4 |CWE-131 [Incorrect Calculation of Buffer Size

[21] [615 |CWE-307 |Improper Restriction of Excessive Authentication Attempts

[22] [611 |CWE-601 |URL Redirection to Untrusted Site (‘Open Redirect) TuP 25
[[23] |[61.0 |[CwE-134 |uncontrolled Format String
[[24] |[60.3 |[cwE-190 [integer Overflow or Wraparound

MOST DANGEROUS
-_— SOFTWARE
[[25] [59.9 |CWE-759 |Use of a One-Way Hash without a Salt ERRORS

Source: 2011 CWE/SANS Top 25 Most Dangerous Software Errors

https://cwe.mitre.org/top25/

Micro-Policy for memory safety

Tag := Val(Type) | Mem(n,Type) | Free Type :=Int | Ptr(n)
allocation:

— generate fresh n

— initialize region with 0@Mem(n,Int)

— return <pointer-to-region>@Val(Ptr(n))
memory access (read/write):

— check that pointer tagged @Val(Ptr(n))

— check that referenced location tagged @Mem(n,Type)

— on memory read tag result with @Val(Type)

— when writing w@Val(NType) retag location with @Mem(n,Type)
reclaiming memory (free):

— check that pointer and referenced location have the same n

— overwrite region with O@Free

Formal verification side

e Verification of low-level code
— bisimulation/refinement
— verified structured code generators

