
Micro-Policies 
Formally Verified Low-Level Tagging Schemes 

for Safety and Security 

Cătălin Hrițcu 
INRIA Paris-Rocquencourt 



Computer systems are insecure 

                                       

                                                    

                                                     

                                                              

                                                

                                            

                               

                                       

              

                                               

                                                  

2 



Computer systems are insecure 

• Today’s CPUs are mindless bureaucrats 

– “write past the end of this buffer”  ... yes boss! 

– “jump to this untrusted integer”    ... right boss! 

– “return into the middle of this instruction”  ... sure boss! 

                                                

                                            

                               

                                       

              

                                               

                                                  

3 



Computer systems are insecure 

• Today’s CPUs are mindless bureaucrats 

– “write past the end of this buffer”  ... yes boss! 

– “jump to this untrusted integer”    ... right boss! 

– “return into the middle of this instruction”  ... sure boss! 

• Software bears most of the burden for security 

 pervasive security enforcement impractical 

 security-performance tradeoff 

 just write secure code ... all of it! 

              

                                               

                                                  

4 



Computer systems are insecure 

• Today’s CPUs are mindless bureaucrats 

– “write past the end of this buffer”  ... yes boss! 

– “jump to this untrusted integer”    ... right boss! 

– “return into the middle of this instruction”  ... sure boss! 

• Software bears most of the burden for security 

 pervasive security enforcement impractical 

 security-performance tradeoff 

 just write secure code ... all of it! 

 Consequence: 

 tons of vulnerabilities in every large system 

– violations of known safety and security policies 

 
5 



Micro-Policies 

• general efficient dynamic enforcement mechanism for 

– critical invariants of low-level code 

– high-level abstractions and programming models 

                                              

                                                          

                                                         

                                            

                                                 

                                                     

                                                

6 



Micro-Policies 

• general efficient dynamic enforcement mechanism for 

– critical invariants of low-level code 

– high-level abstractions and programming models 

• add large metadata tags to all machine words 

– “this word is an instruction, and this one is a pointer” 

 “this word comes from the net, and this one is private” 

 tag structure defined entirely by software 

                                                 

                                                     

                                                

7 



Micro-Policies 

• general efficient dynamic enforcement mechanism for 

– critical invariants of low-level code 

– high-level abstractions and programming models 

• add large metadata tags to all machine words 

– “this word is an instruction, and this one is a pointer” 

 “this word comes from the net, and this one is private” 

 tag structure defined entirely by software 

 tags efficiently propagated on each instruction 

– rules defined by software (fault handler; verified) 

– rule lookup accelerated by hardware rule cache 

 

8 



Micro-Policies for ... 

                      
                         
                

                                 

               
                               

                             
                              

                        
                       
                 

                           

                 
                     

                    
                     

                          
                           

                   
                                

                   
                              

                              
                                   

                        
                     
                       

9 

We already thoroughly explored:   dynamic information flow control (IFC) 



Micro-Policies for ... 

Currently exploring: 
 user-kernel distinction 
• hardware types 

– int vs. pointer vs. instruction 

 memory safety 
 stop all spatial and temporal 

violations on heap and stack 
– pointers become capabilities 

 control-flow integrity 
• call-stack protection 
• opaque closures 

– first-class functions (λ) 

• linear pointers 
– absence of aliasing 

 

                    
                     

                          
                           

                   
                                

                   
                              

                              
                                   

                        
                     
                       

10 

We already thoroughly explored:   dynamic information flow control (IFC) 



Micro-Policies for ... 

Currently exploring: 
 user-kernel distinction 
• hardware types 

– int vs. pointer vs. instruction 

 memory safety 
 stop all spatial and temporal 

violations on heap and stack 
– pointers become capabilities 

 control-flow integrity 
• call-stack protection 
• opaque closures 

– first-class functions (λ) 

• linear pointers 
– absence of aliasing 

 

Longer term plans: 
 pointer permissions 

– "readable", "writeable“, 
 "jumpable", or "callable" 

• process isolation 
– replacement for virtual memory 

 dynamic type tags 
– for C, Scheme, or even OCaml 

• dynamic sealing & trademarks 
 cache result of dynamic contracts 

• higher-order contracts 
• data race detection 
• user-defined metadata 

 

11 

We already thoroughly explored:   dynamic information flow control (IFC) 



Micro-Policies for ... 

Currently exploring: 
 user-kernel distinction 
• hardware types 

– int vs. pointer vs. instruction 

 memory safety 
 stop all spatial and temporal 

violations on heap and stack 
– pointers become capabilities 

 control-flow integrity 
• call-stack protection 
• opaque closures 

– first-class functions (λ) 

• linear pointers 
– absence of aliasing 

 

Longer term plans: 
 pointer permissions 

– "readable", "writeable“, 
 "jumpable", or "callable" 

• process isolation 
– replacement for virtual memory 

 dynamic type tags 
– for C, Scheme, or even OCaml 

• dynamic sealing & trademarks 
 cache result of dynamic contracts 

• higher-order contracts 
• data race detection 
• user-defined metadata 

 

12 

We already thoroughly explored:   dynamic information flow control (IFC) 



IFC Micro-Policy 

• A Verified Information Flow Architecture [POPL 2014] 

• Testing Noninterference, Quickly [ICFP 2013] 

• All Your IFCException Are Belong To Us [S&P 2013] 

• A Theory of Information-Flow Labels [CSF 2013] 

 13 



Noninterference proof in Coq [POPL 2014]  

14 

interpret 

compile 



satisfies  
noninterference 

Noninterference proof in Coq [POPL 2014]  

15 

interpret 

compile 



satisfies  
noninterference 

bisimulation 

Noninterference proof in Coq [POPL 2014]  

16 

interpret 

compile 



satisfies  
noninterference 

bisimulation 

correct 
compilation 

Noninterference proof in Coq [POPL 2014]  

17 

interpret 

compile 



satisfies  
noninterference 

bisimulation 

bisimulation correct 
compilation 

Noninterference proof in Coq [POPL 2014]  

18 

interpret 

compile 



preserved by 

satisfies  
noninterference 

bisimulation 

bisimulation correct 
compilation 

Noninterference proof in Coq [POPL 2014]  

19 

interpret 

compile 



preserved by preserved by 

satisfies  
noninterference 

bisimulation 

bisimulation 

satisfies 
noninterference 

correct 
compilation 

Noninterference proof in Coq [POPL 2014]  

20 

interpret 

compile 



Memory safety 

• Goal: prevent all memory safety violations 

– spatial violations: accessing arrays out of bounds 

– temporal violations: 
dereferencing pointer after its region was freed 

– for simplicity here only for heap-allocated data 
and excluding unpacked C structs 

• Pointers become unforgeable capabilities 

– can only obtain a valid pointer to a memory region 
• by allocating that region or 

• by copying or offsetting an existing pointer to that region 

21 



Micro-Policy for memory safety 

22 

Tag := V(Type) | M(n,Type) | F 

Type := i | ptr(n) 



Micro-Policy for memory safety 

23 

p ← alloc k 

Tag := V(Type) | M(n,Type) | F 

Type := i | ptr(n) 



Micro-Policy for memory safety 

24 

p ← alloc k 
0 1 k-1 

... 

Tag := V(Type) | M(n,Type) | F 

Type := i | ptr(n) 



Micro-Policy for memory safety 

25 

p ← alloc k 
0 1 k-1 

p = A8F0 

... 

Tag := V(Type) | M(n,Type) | F 

Type := i | ptr(n) 



Micro-Policy for memory safety 

26 

p ← alloc k 

fresh n 

0 1 k-1 

p = A8F0 

... 

Tag := V(Type) | M(n,Type) | F 

Type := i | ptr(n) 



Micro-Policy for memory safety 

27 

p ← alloc k 

fresh n 

0 1 k-1 

p = A8F0 

0@M(n,i) 0@M(n,i) 0@M(n,i) ... 

Tag := V(Type) | M(n,Type) | F 

Type := i | ptr(n) 



Micro-Policy for memory safety 

28 

p ← alloc k 

fresh n 

0 1 k-1 

p = A8F0 

0@M(n,i) 0@M(n,i) 0@M(n,i) ... 

Tag := V(Type) | M(n,Type) | F 

Type := i | ptr(n) 

@V(ptr(n)) 



Micro-Policy for memory safety 

29 

0 1 k-1 

p = A8F0 

0@M(n,i) 0@M(n,i) 0@M(n,i) 

q ← p + 1 

... 

Tag := V(Type) | M(n,Type) | F 

Type := i | ptr(n) 

@V(ptr(n)) 



Micro-Policy for memory safety 

30 

0 1 k-1 

p = A8F0 

0@M(n,i) 0@M(n,i) 0@M(n,i) 

q ← p + 1 
A8F1@V(ptr(n)) = q 

... 

Tag := V(Type) | M(n,Type) | F 

Type := i | ptr(n) 

@V(ptr(n)) 1 



Micro-Policy for memory safety 

31 

0 1 k-1 

p = A8F0 

0@M(n,i) 0@M(n,i) 0@M(n,i) 

A8F1@V(ptr(n)) = q 
q ← p + k 

... 

Tag := V(Type) | M(n,Type) | F 

Type := i | ptr(n) 

@V(ptr(n)) 1 



Micro-Policy for memory safety 

32 

0 1 k-1 

p = A8F0 

0@M(n,i) 0@M(n,i) 0@M(n,i) 

A8F1@V(ptr(n)) = q 
q ← p + k 

... 

k 

K 

7@M(n’,i) 

Tag := V(Type) | M(n,Type) | F 

Type := i | ptr(n) 

@V(ptr(n)) 



Micro-Policy for memory safety 

33 

0 1 k-1 

p = A8F0 

0@M(n,i) 0@M(n,i) 0@M(n,i) 

A8F1@V(ptr(n)) = q 
q ← p + k 

... 

k 

K 

x ← !p 

7@M(n’,i) 

Tag := V(Type) | M(n,Type) | F 

Type := i | ptr(n) 

@V(ptr(n)) 



Micro-Policy for memory safety 

34 

0 1 k-1 

p = A8F0 

0@M(n,i) 0@M(n,i) 0@M(n,i) 

A8F1@V(ptr(n)) = q 
q ← p + k 

... 

k 

K 

x ← !p same n 

7@M(n’,i) 

Tag := V(Type) | M(n,Type) | F 

Type := i | ptr(n) 

@V(ptr(n)) 



Micro-Policy for memory safety 

35 

0 1 k-1 

p = A8F0 

0@M(n,i) 0@M(n,i) 0@M(n,i) 

A8F1@V(ptr(n)) = q 
q ← p + k 

... 

k 

K 

x ← !p same n 

x = 0@V(i) 

7@M(n’,i) 

Tag := V(Type) | M(n,Type) | F 

Type := i | ptr(n) 

@V(ptr(n)) 



Micro-Policy for memory safety 

36 

0 1 k-1 

p = A8F0 

0@M(n,i) 0@M(n,i) 0@M(n,i) 

A8F1@V(ptr(n)) = q 
q ← p + k 

... 

k 

K 

!q ← 42 

7@M(n’,i) 

Tag := V(Type) | M(n,Type) | F 

Type := i | ptr(n) 

@V(ptr(n)) 



Micro-Policy for memory safety 

37 

0 1 k-1 

p = A8F0 

0@M(n,i) 0@M(n,i) 0@M(n,i) 

A8F1@V(ptr(n)) = q 
q ← p + k 

... 

k 

K 

!q ← 42 

7@M(n’,i) 

n != n’ 

Tag := V(Type) | M(n,Type) | F 

Type := i | ptr(n) 

@V(ptr(n)) 



Micro-Policy for memory safety 

38 

0 1 k-1 

p = A8F0 

0@M(n,i) 0@M(n,i) 0@M(n,i) 

A8F1@V(ptr(n)) = q 
q ← p + k 

... 

k 

K 

!q ← 42 

7@M(n’,i) 

n != n’ 

Tag := V(Type) | M(n,Type) | F 

Type := i | ptr(n) 

@V(ptr(n)) 

out of bounds 



Micro-Policy for memory safety 

39 

0 1 k-1 

p = A8F0 

0@M(n,i) 0@M(n,i) 0@M(n,i) 

A8F1@V(ptr(n)) = q 
q ← p + k 

... 

k 

K 

!q ← 42 

7@M(n’,i) 

free p 

Tag := V(Type) | M(n,Type) | F 

Type := i | ptr(n) 

@V(ptr(n)) 

out of bounds 



Micro-Policy for memory safety 

40 

0 1 k-1 

p = A8F0 A8F1@V(ptr(n)) = q 
q ← p + k 

... 

k 

K 

!q ← 42 

7@M(n’,i) 

free p 

0@F 0@F 0@F 

Tag := V(Type) | M(n,Type) | F 

Type := i | ptr(n) 

@V(ptr(n)) 

out of bounds 



Micro-Policy for memory safety 

41 

0 1 k-1 

p = A8F0 A8F1@V(ptr(n)) = q 
q ← p + k 

... 

k 

K 

!q ← 42 

7@M(n’,i) 

free p 

0@F 0@F 0@F 

x ← !p Tag := V(Type) | M(n,Type) | F 

Type := i | ptr(n) 

@V(ptr(n)) 

out of bounds 



Micro-Policy for memory safety 

42 

0 1 k-1 

p = A8F0 A8F1@V(ptr(n)) = q 
q ← p + k 

... 

k 

K 

!q ← 42 

7@M(n’,i) 

free p 

0@F 0@F 0@F 

x ← !p Tag := V(Type) | M(n,Type) | F 

Type := i | ptr(n) 

@V(ptr(n)) 

out of bounds 



Micro-Policy for memory safety 

43 

0 1 k-1 

p = A8F0 A8F1@V(ptr(n)) = q 
q ← p + k 

... 

k 

K 

!q ← 42 

7@M(n’,i) 

free p 

0@F 0@F 0@F 

x ← !p Tag := V(Type) | M(n,Type) | F 

Type := i | ptr(n) 

@V(ptr(n)) 

out of bounds 

use after free 



Direction of this project 

• Beyond IFC: 

– show generality: study diverse set of micro-policies 

– formally verify enforced properties 

– implement and evaluate practical viability 

• Beyond clean-slate (CRASH/SAFE): 

– targeting a stock RISC architecture 

– extended with tags and a rule cache 

– legacy software with little or no changes 

 
44 



Future challenges 

• Micro-policy composition 

– hardware supports compound tags 

– but policies are often not orthogonal 
(e.g. tags can leak information) 

– this is not just reference monitoring / safety properties 

• “micro-calls” into privileged code can inspect tags 

• policy violations are often recoverable 

– sequential (vertical) vs. parallel (cross product) 

– further improve efficiency 

• Meta-language for micro-policies 

– beyond disparate DSLs 

45 



Collaborators on this project* 
             

UPenn 

‖ Arthur Azevedo de Amorim** 

‖ Maxime Denes 

‖ Leonidas Lampropoulos 

‖ Benoit Montagu 

‖ Benjamin Pierce 

‖ Antal Spector-Zabusky 

INRIA Paris 

‖ Nick Giannarakis** 

‖ Cătălin Hrițcu 

Portland State 

‖ Nathan Collins 

‖ Andrew Tolmach 

IRISA Rennes 

‖ Delphine Demange 

‖ David Pichardie 

Harvard 

‖ Greg Morrisett 

‖ Randy Pollack 

                   

       

             

             

           

                 

                   

     

            

               

             

               

     

 

 

 

 

 

* Started part of DARPA CRASH/SAFE 

** Soon interns at INRIA Paris 

 46 



Collaborators on this project* 
Formal side 

UPenn 

‖ Arthur Azevedo de Amorim** 

‖ Maxime Denes 

‖ Leonidas Lampropoulos 

‖ Benoit Montagu 

‖ Benjamin Pierce 

‖ Antal Spector-Zabusky 

INRIA Paris 

‖ Nick Giannarakis** 

‖ Cătălin Hrițcu 

Portland State 

‖ Nathan Collins 

‖ Andrew Tolmach 

IRISA Rennes 

‖ Delphine Demange 

‖ David Pichardie 

Harvard 

‖ Greg Morrisett 

‖ Randy Pollack 

Architecture side 

UPenn 

‖ Andre DeHon 

‖ Udit Dhawan 

‖ Ben Karel 

‖ Nikos Vasilakis 

‖ Jonathan M. Smith 

MIT 

‖ Tom Knight 

‖ Howard Shrobe 

BAE Systems 

 Greg Sullivan 

... 

 

 

 

 

 

* Started part of DARPA CRASH/SAFE 

** Soon interns at INRIA Paris 

 47 



My other two current projects 

• QuickChick: Speeding up Formal Proofs with 
Property-Based Testing 
– General Framework for Polarized Mutation Testing 

– Language for Custom Test-Data Generators 

– Deep Integration with Coq/SSReflect 

• νF*: Next Generation Security Type Checker 
– Better refinement type inference (Dijkstra monad) 

– Beyond value-dependency 

– Better control of effects (including termination) 

– Smarter (semantic) termination checking 

48 



THANK YOU 

49 



BACKUP SLIDES 

50 



Computer systems are insecure 

51 



Computer systems are insecure 

52 

Why? 



Computer systems are insecure 

53 
Source: 2011 CWE/SANS Top 25 Most Dangerous Software Errors 

https://cwe.mitre.org/top25/


Micro-Policy for memory safety 

• Tag := Val(Type) | Mem(n,Type) | Free     Type := Int | Ptr(n) 

• allocation: 

– generate fresh n 

– initialize region with 0@Mem(n,Int) 

– return <pointer-to-region>@Val(Ptr(n)) 

• memory access (read/write): 

– check that pointer tagged @Val(Ptr(n)) 

– check that referenced location tagged @Mem(n,Type) 

– on memory read tag result with @Val(Type) 

– when writing w@Val(NType) retag location with @Mem(n,Type) 

• reclaiming memory (free): 

– check that pointer and referenced location have the same n 

– overwrite region with 0@Free 

54 



Formal verification side 

 

• Verification of low-level code 

– bisimulation/refinement 

– verified structured code generators 

 

55 


