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– “jump to this untrusted integer”    ... right boss! 

– “return into the middle of this instruction”  ... sure boss! 

• Software bears most of the burden for security 

 pervasive security enforcement impractical 

 security-performance tradeoff 

 just write secure code ... all of it! 

 Consequence: 

 tons of vulnerabilities in every large system 

– violations of known safety and security policies 
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Micro-Policies 

• general efficient dynamic enforcement mechanism for 

– critical invariants of low-level code 
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Micro-Policies 

• general efficient dynamic enforcement mechanism for 

– critical invariants of low-level code 

– high-level abstractions and programming models 

• add large metadata tags to all machine words 

– “this word is an instruction, and this one is a pointer” 

 “this word comes from the net, and this one is private” 

 tag structure defined entirely by software 

 tags efficiently propagated on each instruction 

– rules defined by software (fault handler; verified) 

– rule lookup accelerated by hardware rule cache 
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We already thoroughly explored:   dynamic information flow control (IFC) 



Micro-Policies for ... 

Currently exploring: 
 user-kernel distinction 
• hardware types 

– int vs. pointer vs. instruction 

 memory safety 
 stop all spatial and temporal 

violations on heap and stack 
– pointers become capabilities 

 control-flow integrity 
• call-stack protection 
• opaque closures 

– first-class functions (λ) 

• linear pointers 
– absence of aliasing 
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Longer term plans: 
 pointer permissions 

– "readable", "writeable“, 
 "jumpable", or "callable" 

• process isolation 
– replacement for virtual memory 

 dynamic type tags 
– for C, Scheme, or even OCaml 

• dynamic sealing & trademarks 
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IFC Micro-Policy 

• A Verified Information Flow Architecture [POPL 2014] 

• Testing Noninterference, Quickly [ICFP 2013] 

• All Your IFCException Are Belong To Us [S&P 2013] 

• A Theory of Information-Flow Labels [CSF 2013] 
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Memory safety 

• Goal: prevent all memory safety violations 

– spatial violations: accessing arrays out of bounds 

– temporal violations: 
dereferencing pointer after its region was freed 

– for simplicity here only for heap-allocated data 
and excluding unpacked C structs 

• Pointers become unforgeable capabilities 

– can only obtain a valid pointer to a memory region 
• by allocating that region or 

• by copying or offsetting an existing pointer to that region 
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Micro-Policy for memory safety 
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Direction of this project 

• Beyond IFC: 

– show generality: study diverse set of micro-policies 

– formally verify enforced properties 

– implement and evaluate practical viability 

• Beyond clean-slate (CRASH/SAFE): 

– targeting a stock RISC architecture 

– extended with tags and a rule cache 

– legacy software with little or no changes 
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Future challenges 

• Micro-policy composition 

– hardware supports compound tags 

– but policies are often not orthogonal 
(e.g. tags can leak information) 

– this is not just reference monitoring / safety properties 

• “micro-calls” into privileged code can inspect tags 

• policy violations are often recoverable 

– sequential (vertical) vs. parallel (cross product) 

– further improve efficiency 

• Meta-language for micro-policies 

– beyond disparate DSLs 
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My other two current projects 

• QuickChick: Speeding up Formal Proofs with 
Property-Based Testing 
– General Framework for Polarized Mutation Testing 

– Language for Custom Test-Data Generators 

– Deep Integration with Coq/SSReflect 

• νF*: Next Generation Security Type Checker 
– Better refinement type inference (Dijkstra monad) 

– Beyond value-dependency 

– Better control of effects (including termination) 

– Smarter (semantic) termination checking 
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Why? 



Computer systems are insecure 
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Source: 2011 CWE/SANS Top 25 Most Dangerous Software Errors 

https://cwe.mitre.org/top25/


Micro-Policy for memory safety 

• Tag := Val(Type) | Mem(n,Type) | Free     Type := Int | Ptr(n) 

• allocation: 

– generate fresh n 

– initialize region with 0@Mem(n,Int) 

– return <pointer-to-region>@Val(Ptr(n)) 

• memory access (read/write): 

– check that pointer tagged @Val(Ptr(n)) 

– check that referenced location tagged @Mem(n,Type) 

– on memory read tag result with @Val(Type) 

– when writing w@Val(NType) retag location with @Mem(n,Type) 

• reclaiming memory (free): 

– check that pointer and referenced location have the same n 

– overwrite region with 0@Free 
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Formal verification side 

 

• Verification of low-level code 

– bisimulation/refinement 

– verified structured code generators 
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