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Computer systems are Insecure

 Today’s CPUs are mindless bureaucrats

— “write past the end of this buffer” ... yes boss!
— “jump to this untrusted integer” ... right boss!
— “return into the middle of this instruction” ... sure boss!

* Software bears most of the burden for security
pervasive security enforcement impractical
security-performance tradeoff
just write secure code ... all of it!

Consequence:
tons of vulnerabilities in every large system
— violations of known safety and security policies
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e general efficient dynamic enforcement mechanism for
— critical invariants of low-level code
— high-level abstractions and programming models
e add large metadata tags to all machine words
— “this word is an instruction, and this one is a pointer”
“this word comes from the net, and this one is private”
tag structure defined entirely by software
tags efficiently propagated on each instruction
— rules defined by software (fault handler; verified)
— rule lookup accelerated by hardware rule cache
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We already thoroughly explored:

Currently exploring:
user-kernel distinction

* hardware types
— int vs. pointer vs. instruction

memory safety

stop all spatial and temporal
violations on heap and stack

— pointers become capabilities

control-flow integrity
e call-stack protection

* opaque closures
— first-class functions (A)

* linear pointers
— absence of aliasing

dynamic information flow control (IFC)

Longer term plans:
pointer permissions

— "readable", "writeable”
"jumpable", or "callable"
e process isolation
— replacement for virtual memory
dynamic type tags
— for C, Scheme, or even OCaml
 dynamic sealing & trademarks
cache result of dynamic contracts
* higher-order contracts
e data race detection

e user-defined metadata




IFC Micro-Policy

opcode | allow Erpe Er

sub TRUE LABpc LABy, LI LAB9

output | TRUE LABj. LAB; Ll LAByc

push |TRUE LABy. BOT

load TRUE LABy. LAB; Ll LAB»

store |LABjLJLAB,. C LAB3 LAB,. LAB; Ul LAB2 Ll LAB,.
jump |TRUE LABy LULABp, -

bnz TRUE LAB; ULABy: -

call |TRUE LAB; LILABy. LAB,.

ret TRUE LABq _

* A Verified Information Flow Architecture [POPL 2014]
* Testing Noninterference, Quickly [ICFP 2013]

e All Your IFCException Are Belong To Us [S&P 2013]

A Theory of Information-Flow Labels [CSF 2013]
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Noninterference proof in Coq (rorL 2014]
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Memory safety

* Goal: prevent all memory safety violations
— spatial violations: accessing arrays out of bounds

— temporal violations:
dereferencing pointer after its region was freed

— for simplicity here only for heap-allocated data
and excluding unpacked C structs

* Pointers become unforgeable capabilities

— can only obtain a valid pointer to a memory region
* by allocating that region or

* by copying or offsetting an existing pointer to that region
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Micro-Policy for memory safety

1

0@M(n,i) | ...

k-1

p & alloc k —
fresh n O@}A(n’l)
p = A8FO

0@M(n,i)

Tag := V(Type) | M(n,Type) | F
Type :=i | ptr(n)
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0
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0

1

0@M(n,i)

0@M(n,i) | ...

k-1

k

7

p = ASFO@V(ptr(n))

x<&lp

0@M(n,i)

7@M(n’,i)

Tag := V(Type) | M(n,Type) | F
Type :=i | ptr(n)
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Micro-Policy for memory safety

0

1

O@M(n i)

0@M(n,i) | ...
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k

7

p = ASFO@V/(ptr

x&Ip same n

0@M(n,i)

7@M(n’,i)

Tag := V(Type) | M(n,Type) | F
Type :=i | ptr(n)
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Micro-Policy for memory safety

0 1 k-1 k

O@M(n i) [0@M(n,i) | ... |0@M(n,i) | 7@M(n’,i)

/ %;wk

p = A8FO@V(ptr(n)) A8FK@V(ptr(n)) =9
x&Ip same n
x=0@V(i)
Tag := V(Type) | M(n,Type) | F
Type :=i | ptr(n)
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Micro-Policy for memory safety

0

1

0@M(n,i)

0@M(n,i) | ...

k-1 k

7

p = ASFO@V(ptr(n))
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Tag := V(Type) | M(n,Type) | F
Type :=i | ptr(n)
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Micro-Policy for memory safety

0

1

0@M(n,i)

0@M(n,i)

k-1 k

7

p = ASFO@V(ptr(n))

0@M(n,i) 7@M}§n’,i)

A8FK@V(ptr(n)) =

nl=n’
out of bounds

Tag := V(Type) | M(n,Type) | F
Type :=i | ptr(n)
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Micro-Policy for memory safety

free p

0

1

0@M(n,i)

0@M(n,i) | ...

k-1 k

7

p = ASFO@V(ptr(n))

0@M(n,i) | 7@M(n’,i)

%pi‘k

A8FK@V(ptr(n)) = q

out of bounds

Tag := V(Type) | M(n,Type) | F
Type :=i | ptr(n)
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Micro-Policy for memory safety

0 1 k-1 k

0@F 0@F ..| 0@F 7@M(n’,i)

/ %;wk

p = A8FO@V(ptr(n)) A8FK@V(ptr(n)) =9

free p out of bounds

Tag := V(Type) | M(n,Type) | F
Type :=i | ptr(n)
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Micro-Policy for memory safety

0 1 k-1 k

0@F 0@F ..| 0@F 7@M(n’,i)

/ %;wk

p = A8FO@V(ptr(n)) A8FK@V(ptr(n)) =9

free p out of bounds

x & Ip Tag := V(Type) | M(n,Type) | F
Type :=i | ptr(n)
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Micro-Policy for memory safety

1 k-1 k

0
0@jF] 0@F ...| 0@F 7@M(n’,i)

/ %;wk

p = A8FO@V(ptr(n)) A8FK@V(ptr(n)) =9

free p out of bounds

x & Ip Tag := V(Type) | M(n,Type) | F
Type :=i | ptr(n)
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Micro-Policy for memory safety

1 k-1 k

0
0@jF] 0@F ...| 0@F 7@M(n’,i)

/ %;wk

p = A8FO@V(ptr(n)) A8FK@V(ptr(n)) =9

free p out of bounds

X=<1p Tag := V(Type) | M(n,Type) | F

use after free |Type :=i | ptr(n)
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Direction of this project

* Beyond IFC:

— show generality: study diverse set of micro-policies
— formally verify enforced properties
— implement and evaluate practical viability

* Beyond clean-slate (CRASH/SAFE):

— targeting a stock RISC architecture
— extended with tags and a rule cache
— legacy software with little or no changes



Future challenges

* Micro-policy composition
— hardware supports compound tags

— but policies are often not orthogonal
(e.g. tags can leak information)

— this is not just reference monitoring / safety properties
* “micro-calls” into privileged code can inspect tags
* policy violations are often recoverable

— sequential (vertical) vs. parallel (cross product)
— further improve efficiency

* Meta-language for micro-policies
— beyond disparate DSLs
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My other two current projects

* QuickChick: Speeding up Formal Proofs with
Property-Based Testing
— General Framework for Polarized Mutation Testing
— Language for Custom Test-Data Generators
— Deep Integration with Coq/SSReflect

* VF*: Next Generation Security Type Checker
— Better refinement type inference (Dijkstra monad)
— Beyond value-dependency
— Better control of effects (including termination)
— Smarter (semantic) termination checking
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Computer systems are Insecure

|[Rank [Score| 1D | Name
[ |38 |CwWE-89 [improper Neutralization of Special Elements used in an SQL Command (‘SQL Injection’)

[21 833 |cwe-78 [improper Neutralization of Special Elements used in an OS Command (OS Command Injection’)
381 [79.0 |CwWE-120 |Buffer Copy without Checking Size of Input (Classic Buffer Overflow’)

41 [77.7 |CWE-79 |Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting)

51 [76.9 |CWE-306 |Missing Authentication for Critical Function

6] [76.8 |CWE-862 |Missing Authorization

71 [75.0 |cwE-798 |Use of Hard-coded Credentials

8] [75.0 |CWE-311 |Missing Encryption of Sensitive Data

91 |[74.0 |CwE-434 |Unrestricted Upload of File with Dangerous Type

[[10] [73.8 |CWE-807 |Reliance on Untrusted Inputs in a Security Decision

[11] [731 |CWE-250 |Execution with Unnecessary Privileges

[12] [Fo1 [CwWE-352 |Cross-Site Request Forgery (CSRF)

[23] [69.3 |CWE-22 |[Improper Limitation of a Pathname to a Restricted Directory (Path Traversal)

[[14] [685 |CWE-494 [Download of Code Without Integrity Check

[15] [67.8 |CWE-863 |Incorrect Authorization

[[16] |[66.0 |CwE-829 [inclusion of Functionality from Untrusted Control Sphere

[[17] [655 |CWE-732 |Incorrect Permission Assignment for Critical Resource

[[18] [646 |CWE-676 |Use of Potentially Dangerous Function

[[29] [641 |CWE-327 |Use of a Broken or Risky Cryptographic Algorithm

[20] [62.4 |CWE-131 [Incorrect Calculation of Buffer Size

[21] [615 |CWE-307 |Improper Restriction of Excessive Authentication Attempts

[22] [611 |CWE-601 |URL Redirection to Untrusted Site (‘Open Redirect) TuP 25
[[23] |[61.0 |[CwE-134 |uncontrolled Format String
[[24] |[60.3 |[cwE-190 [integer Overflow or Wraparound

MOST DANGEROUS
-_— SOFTWARE
[[25] [59.9 |CWE-759 |Use of a One-Way Hash without a Salt ERRORS

Source: 2011 CWE/SANS Top 25 Most Dangerous Software Errors



https://cwe.mitre.org/top25/

Micro-Policy for memory safety

Tag := Val(Type) | Mem(n,Type) | Free Type :=Int | Ptr(n)
allocation:

— generate fresh n

— initialize region with 0@Mem(n,Int)

— return <pointer-to-region>@Val(Ptr(n))
memory access (read/write):

— check that pointer tagged @Val(Ptr(n))

— check that referenced location tagged @Mem(n,Type)

— on memory read tag result with @Val(Type)

— when writing w@Val(NType) retag location with @Mem(n,Type)
reclaiming memory (free):

— check that pointer and referenced location have the same n

— overwrite region with O@Free



Formal verification side

e Verification of low-level code
— bisimulation/refinement
— verified structured code generators



