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Software [in]security is a big problem

e.g. vulnerabilities in TLS (Prosecco) | ... o
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https://www.smacktls.com/
https://www.smacktls.com/
https://www.smacktls.com/

Formal verification can help

e .. find bugs & prove security
* ProVerif & CryptoVerif

— Prosecco tools for automatically analyzing

the security of crypto protocol models

— successful for finding logical flaws
early in protocol design phase


http://prosecco.gforge.inria.fr/personal/bblanche/proverif/
http://prosecco.gforge.inria.fr/personal/bblanche/cryptoverif/

Formal verification can help

Client ¢ hello Server

Phase 1

Phase 3

new Y

PMS = kx' mod P

Phase 4
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http://prosecco.gforge.inria.fr/personal/bblanche/proverif/
http://prosecco.gforge.inria.fr/personal/bblanche/cryptoverif/

Formal verification can help

... find bugs & prove security
ProVerif & CryptoVerif

— Prosecco tools for automatically analyzing
the security of crypto protocol models

— successful for finding logical flaws
early in protocol design phase

Just that models are very abstract

— previous proofs of TLS models
missed implementation attacks

Verified models are cool

— but verified implementations are much coolear


http://prosecco.gforge.inria.fr/personal/bblanche/proverif/
http://prosecco.gforge.inria.fr/personal/bblanche/cryptoverif/

Verifying implementations with ﬁ

 F*is a new programming language
* ... putting together:
— impure functional programming in ML

— the automation of SMT-based verification systems

— the expressive power of interactive proof
assistants based on dependent types


https://www.fstar-lang.org/

MiTLS*

 Formally verified reference implementation
of TLS 1.2 in F* (working towards TLS 1.3)

* Written from scratch focusing on verification

. miTLS - Home

& C (O https://www.mitls.org:2443/wsgi/home QP =

Home Publications Download Browse TLS Attacks People

M miTLS
T L: < A verified reference TLS implementation

This page is served using the miTLS demo HTTPS server. (Go back to production server)
« ciphersuite: TLS_RSA_WITH_AES_128 CBC_SHA,
« compression: NullCompression,
« version: TLS_1p2



http://www.mitls.org/
http://www.mitls.org/

The limits of formal verification

* scalability

— state of the art for verifying correctness and security
of systems is 10.000-20.000 LOC (and 500.000 LOP)

* legacy code (e.g. OpenSSL)
— vs nice fresh reference implementations (e.g. miTLS*)
» effort of failed proofs (automatic or interactive)

— finding bugs by failed proof attempts very costly

— can find very interesting bugs by testing



SMACKTest: testing TLS state machine

Live state machine attack testing.

Run tests against your browser

SmackTest can connect your browser to a FlexTLS instance and model various SMACKTLS traces
that will try to trick your TLS instance into adopting an insecure state. | Start &

Run tests against your server

SmackTest can create a FlexTLS instance that can evaluate SMACKTLS tests against a server and

return detailed trace results. Start

Downloads

« USENIX paper (WOOT 2015):
« USENIX slides (WOOT 2015):
» FlexTLS source code: TAR

PDF
PDF


http://smacktest.com/

SMACKTest: testing TLS state machine

Live state machine attack testing.

ClientHello

_ If the test does not begin, click here to launch it

ServerHello manually, then return to this tab to inspect results.

ServerCertificate 298: Test incomplete. Click for detailed log.

S S T 297: Test incomplete. Click for detailed log.

Authenticate Client 296: Test failed. Click for detailed log.

ServerCertificateRequest

295: Test succeeded. Click for detailed log.

ServerHelloDone

294: Test incomplete. Click for detailed log.
ClientCertificate
ClientKeyExchange

292: Test incomplete. Click for detailed log.

ClientCertificateVerify

i 291: Test incomplete. Click for detailed log.
ClientCCS

) . . 290: Test incomplete. Click for detailed log.
ClientFinished

289: Test succeeded. Click for detailed log.

ServerNewSessionTicket


http://smacktest.com/
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Dependable property-based testing

Beyond just finding bugs, confidence by testing

Integrating testing and formal verification
— QuickChick: property-based testing for Coqg (soon F* too)
* i.e. putting the “property” back in property-based testing
Systematically measuring testing quality
— Polarized mutation testing
* i.e. property-based mutation
Making testing more thorough and cost-effective

— Luck: a domain-specific language for data generators
* i.e. property-based generation



https://github.com/QuickChick/QuickChick
http://prosecco.gforge.inria.fr/personal/hritcu/students/topics/2016/quick-chick.pdf
https://www.cis.upenn.edu/~llamp/pdf/Luck.pdf
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Secure compilation

1. Secure language semantics (e.g. memory safe C)

2. Secure language interaction (dynamic isolation, call
discipline, type checking, immutability, uniqueness, ...)

But, at what cost? In software, 10x? 100x? 1000x?
Micro-policies

— new tagged hardware architecture
— associates large metadata tag to each word
— efficiently propagates and checks tags; hw caching

— dynamic monitoring: software defined, very flexible,
fine-grained (words, instructions), fast ...

— ... average 10% runtime overhead for complex policies!
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http://prosecco.gforge.inria.fr/personal/hritcu/students/topics/2016/secomp.pdf
http://prosecco.gforge.inria.fr/personal/hritcu/talks/Micro-Policies-MSR-Redmond.pdf
http://prosecco.gforge.inria.fr/personal/hritcu/talks/Micro-Policies-MSR-Redmond.pdf
http://prosecco.gforge.inria.fr/personal/hritcu/talks/Micro-Policies-MSR-Redmond.pdf

More Secure Software Systems

Formal Verification
Property-Based Testing
Secure Compilation
Dynamic Monitoring

... they can all play a role!

Thank you!



