(22t —PROSECCO

More Secure Software Systems

by Formal Verification, Property-Based Testing,
Secure Compilation, and Dynamic Monitoring

Catalin Hritcu

Inria Paris, Prosecco team

Software [in]security is a big problem

e.g. vulnerabilities in TLS (Prosecco) | ... o

Life Real Estate

o

Tl'iple HandShakeS CO] Ncw Computer Bug Exposes Broad Security Flaws

Fix for LogJam bug could make more than 20,0(

TTS miTLS 3SHAKE SMACK VHC

ysites unrez

Breaking and Fixing Autl

SMACK Introduction Threat Model SKIP-TLS Attack FREAK Atta

March 4, 2014
- Introduction TLS Weaknesses Trip|
SMACK= State Machlne AﬂaCKs Countermeasures Disclosure Ot

ars technica

Implementations of the Transport Layer Slides from the TLS WG session at IETF89 and our proposed

handle a variety of protocol versions af o, research paper with more details on the attacks (see Section: MAINMENU . MY STORIES: FORUMS JOBS ARS CONSORTIUM
modes and key exchange methods, W May, 2014. AT e nra e e B e Chs Ll

Sever We address e i The | ogiam Attack RISK ASSESSMENT SECURITY & HACKTIVISM

machine that can correct]
modes. HTTPS-crippling attack threatens tens of

. =
| r'a C k I n g th e F R EA K Atta c k ‘Warning! Your web browser is vulnerable to Logjam and can be tricked into using weak encryption thousands of Web and mail servers
Diffie-Hellman downgrade weakness allows attackers to intercept encrypted data

update your browser.

by Dan Goodin - May 20, 2015 7:54am CEST 0
Diffie-Hellman key exchange is a popular cryptographic algorithm that allows Internet protocols
shared key and negotiate a secure connection. It is fundamental to many protocols including HTT

Good News! Your browser appears to be safe from the FREAK attack. SMTPS, and protocols that rely on TLS. 4 7

We have uncovered several weaknesses in how Diffie-Hellman key exchange has been deployed:

On Tuesday, March 3, 2015, researchers announced a new SSL/TLS vulnerability called the FREAK attack. It allows . . . :
an attacker to intercept HTTPS ; ; The BEAST Wins Again: Why TLS Keeps Failing to Protect HTTP

weakened encryption, which th *
ars tGChrﬂca Documents

tracking the impact of the attac
« PDF of slides

MAINMENU . MYSTORIES: FORUMS JOBS ARSCONSORTIUA » summary ofbriefin) - posted by Soulskill on Tuesday March 03, 2015 @04:29PM

+ Laper M| o from the another-day-another-vuln dept
Ars Technica has arrived in Europe. Check it out! » Paper: Triple Hand: .

FREAK Attack Threatens SSL Clients

The FREAK attack was discove
disclosure was coordinated by
of Michigan, including Zakir Du

team can be contacted at freak Exploit videos
RISK ASSESSMENT - SECURITY & HACKTIVISM P mSm1267 writes:
For additional details about the S, Disclaimer: The goal of t For the nth time in the last 6 of it t) bout
this Washington Post article, an| ¢ = . . . have a stzong impact. The or the nth time in the last couple of years, security experts are warning about z
F.REAK flaw in Android and Apple devices mﬁiﬁf;{;ﬁ;j‘,ﬁ’:{:}' Internet-scale vulnerability. this time in some popular SSL clients. The flaw allo
cripples HTTPS crypto protection attacker to force clients to downgrade to weakened ciphers and break their
Bug forces millions of sites to use easily breakable key once thought to be dead. crinnnecadly encrvnted commimicatinne throninh 2 man-in-the-middle attark

https://www.smacktls.com/
https://www.smacktls.com/
https://www.smacktls.com/

Formal verification can help

e .. find bugs & prove security
* ProVerif & CryptoVerif

— Prosecco tools for automatically analyzing

the security of crypto protocol models

— successful for finding logical flaws
early in protocol design phase

http://prosecco.gforge.inria.fr/personal/bblanche/proverif/
http://prosecco.gforge.inria.fr/personal/bblanche/cryptoverif/

Formal verification can help

Client ¢ hello Server

Phase 1

Phase 3

new Y

PMS = kx' mod P

Phase 4

secret_keyy =
FN(PMS)

(version, c¢_rand, sid, ciphsuites,
compression_methods)

»
s_hello
(version,s_rand,sid,ciphsuite,compression_method)
o - - - -____

< s_cert
________ s:k(;ye_xcfw S
(P, Q, kx, sign)
<
< s_hello_done
c_keyexch
(ky)
>
chg_ciph_spec
>

c_finished
({ (c_mac_md5, c_mac_sha), c_sign } secret_key,)

>

new X

kx = meod P

PMS = ky"mod P

secret_keyy = Fy(PMS)

http://prosecco.gforge.inria.fr/personal/bblanche/proverif/
http://prosecco.gforge.inria.fr/personal/bblanche/cryptoverif/

Formal verification can help

... find bugs & prove security
ProVerif & CryptoVerif

— Prosecco tools for automatically analyzing
the security of crypto protocol models

— successful for finding logical flaws
early in protocol design phase

Just that models are very abstract

— previous proofs of TLS models
missed implementation attacks

Verified models are cool

— but verified implementations are much coolear

http://prosecco.gforge.inria.fr/personal/bblanche/proverif/
http://prosecco.gforge.inria.fr/personal/bblanche/cryptoverif/

Verifying implementations with ﬁ

 F*is a new programming language
* ... putting together:
— impure functional programming in ML

— the automation of SMT-based verification systems

— the expressive power of interactive proof
assistants based on dependent types

https://www.fstar-lang.org/

MiTLS*

 Formally verified reference implementation
of TLS 1.2 in F* (working towards TLS 1.3)

* Written from scratch focusing on verification

. miTLS - Home

& C (O https://www.mitls.org:2443/wsgi/home QP =

Home Publications Download Browse TLS Attacks People

M miTLS
T L: < A verified reference TLS implementation

This page is served using the miTLS demo HTTPS server. (Go back to production server)
« ciphersuite: TLS_RSA_WITH_AES_128 CBC_SHA,
« compression: NullCompression,
« version: TLS_1p2

http://www.mitls.org/
http://www.mitls.org/

The limits of formal verification

* scalability

— state of the art for verifying correctness and security
of systems is 10.000-20.000 LOC (and 500.000 LOP)

* legacy code (e.g. OpenSSL)
— vs nice fresh reference implementations (e.g. miTLS*)
» effort of failed proofs (automatic or interactive)

— finding bugs by failed proof attempts very costly

— can find very interesting bugs by testing

SMACKTest: testing TLS state machine

Live state machine attack testing.

Run tests against your browser

SmackTest can connect your browser to a FlexTLS instance and model various SMACKTLS traces
that will try to trick your TLS instance into adopting an insecure state. | Start &

Run tests against your server

SmackTest can create a FlexTLS instance that can evaluate SMACKTLS tests against a server and

return detailed trace results. Start

Downloads

« USENIX paper (WOOT 2015):
« USENIX slides (WOOT 2015):
» FlexTLS source code: TAR

PDF
PDF

http://smacktest.com/

SMACKTest: testing TLS state machine

Live state machine attack testing.

ClientHello

_ If the test does not begin, click here to launch it

ServerHello manually, then return to this tab to inspect results.

ServerCertificate 298: Test incomplete. Click for detailed log.

S S T 297: Test incomplete. Click for detailed log.

Authenticate Client 296: Test failed. Click for detailed log.

ServerCertificateRequest

295: Test succeeded. Click for detailed log.

ServerHelloDone

294: Test incomplete. Click for detailed log.
ClientCertificate
ClientKeyExchange

292: Test incomplete. Click for detailed log.

ClientCertificateVerify

i 291: Test incomplete. Click for detailed log.
ClientCCS

) . . 290: Test incomplete. Click for detailed log.
ClientFinished

289: Test succeeded. Click for detailed log.

ServerNewSessionTicket

http://smacktest.com/

ClientHello ClientHello

|

ServerHello(v, kx,7i4)

(full handshake) (abbreviated handshake)

Server-Gated Crypto

ServerHello(v, kx, rig)

rig =0 & Py = 0 o T— Tu = 1raa=1
—

— T
(full handshake) (abbreviated handshake)

Nick = 1

ServerCertificates ﬁverNewSessionTicke Ttick

erverCertificates ServerCCs

kx = DHE|ECDHE kx =R3SA

ServerKeyExchange] RS54 ServerCCs

Static DH
kr = DHE|ECDHE

(authenticate client?) ServerFinished
Coske = 1
CertificateRequest ~Cask|= 0 ClientCCS
ServerHelloDone * ClientFinished
Cask = 1
0

ClientCertificate(coger)| Cale 1 ApplicationData®

) ‘ Export ﬁg
(

ServerKeyExchange ServerFinished

(authenticate client?) ClientCCs
Cask =1

CertificateRequest ClientFinished

ServerHelloDone ApplicationData”

c“k:1

ClientCertificate(cyfer)

Early CCS ClientKeyExchange f <
Casi = 1 &
Coffer = 1 ClientKeyExchange
ClientCertificateVerif U] coger =0 Cosk =1 &
Coffer =1

DH Certificate ClientCertificateVerify

ClientCCs

ClientCCS
ClientFinished
Ngjer = 1 /
. . / ClientFinished
ServerNewSessionTicke =0

ServerCCS ServerCCs

OpenSSL

ServerFinished ServerFinished

State Machine State MackHine

ApplicationData™ ApplicationData”

Dependable property-based testing

Beyond just finding bugs, confidence by testing

Integrating testing and formal verification
— QuickChick: property-based testing for Coqg (soon F* too)
* i.e. putting the “property” back in property-based testing
Systematically measuring testing quality
— Polarized mutation testing
* i.e. property-based mutation
Making testing more thorough and cost-effective

— Luck: a domain-specific language for data generators
* i.e. property-based generation

https://github.com/QuickChick/QuickChick
http://prosecco.gforge.inria.fr/personal/hritcu/students/topics/2016/quick-chick.pdf
https://www.cis.upenn.edu/~llamp/pdf/Luck.pdf

Back to miTLS*

suum
ot
.
.
R
o

. .
. .

** .,

A¢ *
G

Problem 1: insecure languages

400.000

]

]

a

A 4

LOC

|
|

ASM]

A 4

[compiled F* €+ compiled OCam| <€~

-

compiledC <=

= compiled ASM]

Problem 2: insecure interaction

‘e
‘e
]
a, [34
--

.®

Secure compilation

1. Secure language semantics (e.g. memory safe C)

2. Secure language interaction (dynamic isolation, call
discipline, type checking, immutability, uniqueness, ...)

But, at what cost? In software, 10x? 100x? 1000x?
Micro-policies

— new tagged hardware architecture
— associates large metadata tag to each word
— efficiently propagates and checks tags; hw caching

— dynamic monitoring: software defined, very flexible,
fine-grained (words, instructions), fast ...

— ... average 10% runtime overhead for complex policies!

11

http://prosecco.gforge.inria.fr/personal/hritcu/students/topics/2016/secomp.pdf
http://prosecco.gforge.inria.fr/personal/hritcu/talks/Micro-Policies-MSR-Redmond.pdf
http://prosecco.gforge.inria.fr/personal/hritcu/talks/Micro-Policies-MSR-Redmond.pdf
http://prosecco.gforge.inria.fr/personal/hritcu/talks/Micro-Policies-MSR-Redmond.pdf

More Secure Software Systems

Formal Verification
Property-Based Testing
Secure Compilation
Dynamic Monitoring

... they can all play a role!

Thank you!

