
More Secure Software Systems
by Formal Verification, Property-Based Testing,
Secure Compilation, and Dynamic Monitoring

Cătălin Hrițcu
Inria Paris, Prosecco team

Software [in]security is a big problem

2

e.g. vulnerabilities in TLS (Prosecco)

https://www.smacktls.com/
https://www.smacktls.com/
https://www.smacktls.com/

Formal verification can help

• … find bugs & prove security

• ProVerif & CryptoVerif

– Prosecco tools for automatically analyzing

the security of crypto protocol models

– successful for finding logical flaws

early in protocol design phase

3

http://prosecco.gforge.inria.fr/personal/bblanche/proverif/
http://prosecco.gforge.inria.fr/personal/bblanche/cryptoverif/

Formal verification can help

• … find bugs & prove security

• ProVerif & CryptoVerif

– Prosecco tools for automatically analyzing

the security of crypto protocol models

– successful for finding logical flaws

early in protocol design phase

3

http://prosecco.gforge.inria.fr/personal/bblanche/proverif/
http://prosecco.gforge.inria.fr/personal/bblanche/cryptoverif/

Formal verification can help

• … find bugs & prove security

• ProVerif & CryptoVerif

– Prosecco tools for automatically analyzing

the security of crypto protocol models

– successful for finding logical flaws

early in protocol design phase

• Just that models are very abstract

– previous proofs of TLS models

missed implementation attacks

• Verified models are cool

– but verified implementations are much coolear

3

http://prosecco.gforge.inria.fr/personal/bblanche/proverif/
http://prosecco.gforge.inria.fr/personal/bblanche/cryptoverif/

Verifying implementations with

• F* is a new programming language

• … putting together:

– impure functional programming in ML

• extracts to OCaml and F#, interoperates

– the automation of SMT-based verification systems

• like in Why3, Frama-C, Boogie, VCC, Dafny

– the expressive power of interactive proof
assistants based on dependent types

• like in Coq, Agda, or Lean

4

https://www.fstar-lang.org/

miTLS*

• Formally verified reference implementation
of TLS 1.2 in F* (working towards TLS 1.3)

• Written from scratch focusing on verification

5

http://www.mitls.org/
http://www.mitls.org/

The limits of formal verification

• scalability

– state of the art for verifying correctness and security

of systems is 10.000-20.000 LOC (and 500.000 LOP)

• legacy code (e.g. OpenSSL)

– vs nice fresh reference implementations (e.g. miTLS*)

• effort of failed proofs (automatic or interactive)

– finding bugs by failed proof attempts very costly

– can find very interesting bugs by testing

6

SMACKTest: testing TLS state machine

7

http://smacktest.com/

SMACKTest: testing TLS state machine

7

http://smacktest.com/

8

Dependable property-based testing

• Beyond just finding bugs, confidence by testing

• Integrating testing and formal verification
– QuickChick: property-based testing for Coq (soon F* too)

• i.e. putting the “property” back in property-based testing

• Systematically measuring testing quality
– Polarized mutation testing

• i.e. property-based mutation

• Making testing more thorough and cost-effective
– Luck: a domain-specific language for data generators

• i.e. property-based generation

9

https://github.com/QuickChick/QuickChick
http://prosecco.gforge.inria.fr/personal/hritcu/students/topics/2016/quick-chick.pdf
https://www.cis.upenn.edu/~llamp/pdf/Luck.pdf

Back to miTLS*

10

F* OCaml C

compiled F* compiled OCaml compiled C

ASM

compiled ASM

Problem 1: insecure languages

Problem 2: insecure interaction

15.000 LOC 50.000 LOC 400.000 LOC

OK we can verify this

OK we can thoroughly test this

Ooops

Secure compilation

• 1. Secure language semantics (e.g. memory safe C)
• 2. Secure language interaction (dynamic isolation, call

discipline, type checking, immutability, uniqueness, …)

• But, at what cost? In software, 10x? 100x? 1000x?

• Micro-policies
– new tagged hardware architecture

– associates large metadata tag to each word

– efficiently propagates and checks tags; hw caching

– dynamic monitoring: software defined, very flexible,
fine-grained (words, instructions), fast …

– … average 10% runtime overhead for complex policies!

11

http://prosecco.gforge.inria.fr/personal/hritcu/students/topics/2016/secomp.pdf
http://prosecco.gforge.inria.fr/personal/hritcu/talks/Micro-Policies-MSR-Redmond.pdf
http://prosecco.gforge.inria.fr/personal/hritcu/talks/Micro-Policies-MSR-Redmond.pdf
http://prosecco.gforge.inria.fr/personal/hritcu/talks/Micro-Policies-MSR-Redmond.pdf

More Secure Software Systems

• Formal Verification

• Property-Based Testing

• Secure Compilation

• Dynamic Monitoring

• … they can all play a role!

12

Thank you!

