Formally Verified Security @ MPI-SP

- 1. Security Goal
- 2. Enforcement
- 3. Formal Validation

- **Cătălin Hriţcu** (Tenured Faculty)
- Cezar Andrici (PhD student)
- Jonathan Baumann (PhD student)
- Yonghyun Kim (PostDoc)
- Julay Leatherman-Brooks (Intern)
- Abigail Pribisova (CS@max planck)
- Jérémy Thibault (visitor, graduated PhD)

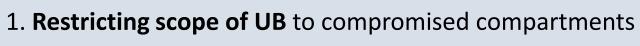
Former group members now faculty or permanent researchers:

Roberto Blanco (Assoc. Prof., TU/e), Lef Ioannidis (Senior RSE, MSR), Guido Martínez (RSE, MSR), Théo Winterhalter (Tenured Researcher, Inria), Carmine Abate (Senior Researcher, Barkhausen), Adrien Durier (Assoc. Prof, Univ. Paris-Saclay), Kenji Maillard (Tenured Faculty, Inria), Danel Ahman (Assoc. Prof, Univ. of Tartu), Arthur Azevedo de Amorim (Assist. Prof, RIT), Marco Stronati (Research Scientist, Matter Labs), Clément Pit-Claudel (Assist. Prof, EPFL), William Bowmann (Assist. Prof, UBC), Diane Gallois-Wong (RSE, Nomadic Labs), Zoe Paraskevopoulou (Assist. Prof, NTU Athens), Nick Giannarakis (Senior Applied Scientist, AWS), Thorsten Tarrach (Senior Applied Scientist, AWS)

Secure compilation of verified F* code

- 1. Very strong guarantee, stronger than full abstraction
- 2. Reference monitoring and higher-order contracts
- 3. Machine-checked proofs in F*

[Cezar et al, TYPES'22, HOPE'22, POPL'24, ICFP'25]


Other interesting topics on F*

- Dijkstra monads and incorrectness logic
- Dijkstra Monad for Bounding Failure Probability (crypto proofs)
- Separation logic in F* (Pulse)
- F* foundations: demystifying ghost and divergence effects

Secure compilation of compartmentalized C code

[Jérémy et al, CCS'18, CSF'19, ESOP'20, CSF'22, CCS'24, ITP'25]

Stronger Security Goals

Preserve data confidentiality

for compartmentalized programs in F*, C, Rust, or Wasm

Realistic Enforcement

ARM Morello capability machine

Better Proof Techniques

Capability passing Verify capability backend

FS-CASA: Formally Secure Compilation Against Spectre Attacks

1. Relative security

 compiled program doesn't leak <u>speculatively</u> more than what (arbitrary!) source program leaks <u>sequentially</u>

2. Building on FSLH: Flexible Speculative Load Hardening [Jonathan et al, CSF'25]

- Extending this to all main Spectre variants
- Want to implement this defense in LLVM

3. Testing and proving relative security

- Building new Property-Based Testing framework for LLVM and x86 (HW/SW contracts)
- Constructing machine-checked proofs in Rocq for simplified models

Courses we teach in Bochum and Remote

- 1. Functional Programming (Winter 2025/26)
- 2. Proofs are Programs (Summer 2026)
- 3. Foundations of Programming Languages, Verification, and Security (Winter 2026/27?)

Clara Schneidewind, Cătălin Hrițcu, Jana Hofmann

Max Planck Institute for Security and Privacy (MPI-SP)

Introduction to Functional Programming and the Structure of Programming Languages using OCaml

Gert Smolka

