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My companions on this journey:
Carmine Abate, Cezar-Constantin Andrici, Sven Argo, Arthur Azevedo de Amorim,

Jonathan Baumann, Roberto Blanco, Ştefan Ciobâcă, Adrien Durier, Akram El-Korashy, 
Boris Eng, Ana Nora Evans, Guglielmo Fachini, Deepak Garg, Aïna Linn Georges,
Théo Laurent, Dongjae Lee, Guido Martínez, Marco Patrignani, Benjamin Pierce, 

Exequiel Rivas, Basile Schlosser, Marco Stronati, Éric Tanter, Jérémy Thibault,
Andrew Tolmach, Théo Winterhalter, ...
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4

• with Benjamin Pierce

• got to teach with him

• broadened research:
DARPA CRASH/SAFE project

– built more secure computer without legacy constraints

– clean-slate HW-SW co-design of a
capability machine / tagged architecture

• Learned a lot: programming languages,
security, compilers, hardware, testing, ...
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– verification system combining a proof assistant (à la Rocq)

with SMT-based automation (à la Hoare Logic)

– interesting PL design [POPL'16,'17,'18,'20,'24, ICFP'17,'19, ...]

– verified code shipping in Firefox, Linux, Windows, Python, ...

• crypto libraries (HACL*, EverCrypt), parsers and printers (EverParse), ...

• Started QuickChick tool: property-based testing in Rocq
– [ICFP'13, ITP'15, JFP'16, POPL'17, ...]
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– verified micro-policies for information-flow control, memory safety, 

compartmentalization, control-flow integrity [POPL'14, ASPLOS'15, SP'15, ...] 

– but it's very hard to talk about security by looking only at the ASM level

• Developers think about security in terms of the
abstractions provided by their programming languages
– big problem is that normal compilers don't enforce those abstractions

– ~2015 started working on secure compilation to protect these
abstractions all the way down (initially to our tagged architecture)

– in 2017 this lead to ERC Starting Grant SECOMP, project still going strong
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• "Interesting" start in Bochum with 1st pandemic wave
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Opportunity to contribute to growing
MPI-SP into a top international institute

• Christof Paar

• Gilles Barthe

• Peter Schwabe

• Asia Biega

• Clara Schneidewind

• Marcel Böhme

• Yixin Zou

• Abraham Mhaidli

• Mia Cha

• Jana Hofmann

• Carmela Troncoso

• ...
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Went from 2 to 12 research groups (and still growing):
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Things got much better after Corona
• For instance, I got back into running after ~14 years of break

– Running with colleagues at MPI-SP, joined the RUB running group, and 
also running again with my wife

– Hobby that combines sports, socializing, and practicing German

• Ran my 2nd half-marathon a month ago in Duisburg

– 20 minutes faster than 18 years ago, and this time I didn't get injured
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Information flow control:
• static and dynamic enforcement
Preventing timing side channels:
• cryptographic constant time
• speculative constant time
Relational Hoare Logic:
• program equivalence and security
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– Carmine Abate (ex PhD student, Researcher, Barkhausen Institute)

– Guido Martínez (ex PhD student, Research Engineer, Microsoft Research)

– Aïna Linn Georges (ex Intern, PostDoc, MPI-SWS)

– Dongjae Lee (ex Intern, PhD student, MIT)
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• suppose we have a secure source program ...
– For instance formally verified in F* (e.g. EverCrypt verified crypto library)

– Or a program written in safe Rust or OCaml
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• Protect source-level abstractions all the way down
even against linked adversarial target code
– various enforcement mechanisms for sandboxing untrusted code:

capability machines, tagged architectures, software-fault isolation (SFI), ...

– shared responsibility: compiler, linker, loader, OS, HW

• This is very challenging:

– the originally proposed formal criterion was fully abstract compilation
[Martín Abadi, Protection in programming-language translations. 1999]

– very difficult to enforce and very difficult to prove

• (in)famous wrong full abstraction conjecture survived decades
[Eijiro Sumii and Benjamin Pierce POPL'04, Dominique Devriese et al. POPL'18]

• 250 pages of proof on paper even for toy compilers
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• Insecure languages like C enable devastating vulnerabilities

– undefined behavior pervasive in C: buffer overflows, use after frees,

double frees, invalid type casts, various concurrency bugs, ...

– undefined behavior also present in unsafe Rust, OCaml, ...

• Yet even the C language does provide some useful abstractions:

– structured control flow, procedures, pointers to shared memory

– but not enforced during compilation for programs with UB: all guarantees are lost!

– we add one more abstraction to C: fine-grained compartments that can naturally interact

• Secure compilation chain that protects these abstractions

– all the way down, at compartment boundaries (hopefully more efficient than removing UB)

– against compartments dynamically compromised by undefined behavior

– using the same kind of enforcement mechanisms for compartmentalization
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• Question A:
What does it mean to securely compile a secure source 
program against linked adversarial target-level code?
– e.g. simple verified web server, linked with unverified libraries [POPL'24]
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We explored many classes of properties one can preserve this way ...
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More secure

More efficient
to enforce

Easier to prove

trace properties
(safety & liveness)

hyperproperties
(noninterference)

relational
hyperproperties
(trace equivalence)

only integrity

+ data confidentiality

+ code confidentiality

No one-size-fits-all security criterion

Journey Beyond Full Abstraction [CSF'19, ESOP'20, TOPLAS'21]

full
abstraction

we started with an "easier"
and more practical one
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robust safety preservation

reduced this to a variant of robust safety preservation [CCS'18]
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Done for simpler languages,
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Machine-checked
proofs in Rocq

Big verification challenge for the future
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• Verifying secure compilation for low-level backends

– they do the actual security enforcement, so very interesting

– such low-level proofs are conceptually very challenging though

– Basile Schlosser & Jérémy Thibault verifying micro-policies backend
in a simplified setting; recently devised a new proof technique for this

• Beyond preserving safety against adversarial contexts

– towards preserving hyperproperties (data confidentiality)

– even relational hyperproperties (observational equivalence)

• secure compilation criteria strictly stronger than full abstraction

• can do this for CompCert, but won't hold for the backends

– "Nanopass back-translation" [Jérémy Thibault et al, CSF'19, arXiv'25]
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Enforcement beyond safety (challenging)
• Preserving hypersafety against adversarial contexts (e.g. data confidentiality)

– challenging at the lowest level: micro-architectural side-channels attacks

– compartments running in the same process, "universal read gadgets" easy

• Started looking into Spectre defenses compilers can insert

– Speculative Load Hardening (implemented in LLVM + selective variant in Jasmin DSL)

• enforces speculative constant time [Barthe et al, SP'23] (Security Foundations chapter)

– Rocq proofs that Ultimate SLH and our new Flexible SLH enforce relative security [CSF'25]

– Ongoing work: property-based testing for scaling this up to LLVM and x86/ARM

• Combining this with compartmentalization practically interesting

– Especially for languages like Wasm, which are used for same-process isolation

25



26

Verify capability backend

ARM Morello
capability machine

Capability passing

against micro-architectural side-channel attacks,
for compartmentalized programs in F*, C, or Wasm

Preserve data confidentiality


