
1

My companions on this journey:
Carmine Abate, Cezar-Constantin Andrici, Sven Argo, Arthur Azevedo de Amorim,

Jonathan Baumann, Roberto Blanco, Ştefan Ciobâcă, Adrien Durier, Akram El-Korashy, 
Boris Eng, Ana Nora Evans, Guglielmo Fachini, Deepak Garg, Aïna Linn Georges,
Théo Laurent, Dongjae Lee, Guido Martínez, Marco Patrignani, Benjamin Pierce, 

Exequiel Rivas, Basile Schlosser, Marco Stronati, Éric Tanter, Jérémy Thibault,
Andrew Tolmach, Théo Winterhalter, ...



2

Suceava



2

Suceava



2

Suceava Iași



2

Suceava Iași

Braunschweig



MSc and PhD in Saarbrücken (2005-2011)

3



MSc and PhD in Saarbrücken (2005-2011)

3



MSc and PhD in Saarbrücken (2005-2011)
• 1st semester there: learned functional programming,

semantics of programming languages, started doing research
– fell in love with all these things; but wanted something practical

3



MSc and PhD in Saarbrücken (2005-2011)
• 1st semester there: learned functional programming,

semantics of programming languages, started doing research
– fell in love with all these things; but wanted something practical

• PhD on verification tools for cryptographic protocols
– these tools are precursors of the F* verification system

3



MSc and PhD in Saarbrücken (2005-2011)
• 1st semester there: learned functional programming,

semantics of programming languages, started doing research
– fell in love with all these things; but wanted something practical

• PhD on verification tools for cryptographic protocols
– these tools are precursors of the F* verification system

– learned mechanized proofs in Rocq using Software Foundations book

3



MSc and PhD in Saarbrücken (2005-2011)
• 1st semester there: learned functional programming,

semantics of programming languages, started doing research
– fell in love with all these things; but wanted something practical

• PhD on verification tools for cryptographic protocols
– these tools are precursors of the F* verification system

– learned mechanized proofs in Rocq using Software Foundations book

• Made many friends during my studies, and I met my wife

3



MSc and PhD in Saarbrücken (2005-2011)
• 1st semester there: learned functional programming,

semantics of programming languages, started doing research
– fell in love with all these things; but wanted something practical

• PhD on verification tools for cryptographic protocols
– these tools are precursors of the F* verification system

– learned mechanized proofs in Rocq using Software Foundations book

• Made many friends during my studies, and I met my wife

3



PostDoc at UPenn (2011-2013)

4

• with Benjamin Pierce



PostDoc at UPenn (2011-2013)

4

• with Benjamin Pierce

• got to teach with him



PostDoc at UPenn (2011-2013)

4

• with Benjamin Pierce

• got to teach with him

• broadened research:
DARPA CRASH/SAFE project



PostDoc at UPenn (2011-2013)

4

• with Benjamin Pierce

• got to teach with him

• broadened research:
DARPA CRASH/SAFE project

– built more secure computer without legacy constraints



PostDoc at UPenn (2011-2013)

4

• with Benjamin Pierce

• got to teach with him

• broadened research:
DARPA CRASH/SAFE project

– built more secure computer without legacy constraints

– clean-slate HW-SW co-design of a
capability machine / tagged architecture



PostDoc at UPenn (2011-2013)

4

• with Benjamin Pierce

• got to teach with him

• broadened research:
DARPA CRASH/SAFE project

– built more secure computer without legacy constraints

– clean-slate HW-SW co-design of a
capability machine / tagged architecture

• Learned a lot: programming languages,
security, compilers, hardware, testing, ...



Researcher at Inria Paris (2013-2020)

• Loved to have again a lot of freedom / scientific independence
– started advising interns, PhD students, PostDocs (i.e. building a group)

5



Researcher at Inria Paris (2013-2020)

• Loved to have again a lot of freedom / scientific independence
– started advising interns, PhD students, PostDocs (i.e. building a group)

• Complete redesign of F* with Nik Swamy et al (MSR & Inria)
– verification system combining a proof assistant (à la Rocq)

with SMT-based automation (à la Hoare Logic)

5



Researcher at Inria Paris (2013-2020)

• Loved to have again a lot of freedom / scientific independence
– started advising interns, PhD students, PostDocs (i.e. building a group)

• Complete redesign of F* with Nik Swamy et al (MSR & Inria)
– verification system combining a proof assistant (à la Rocq)

with SMT-based automation (à la Hoare Logic)

– interesting PL design [POPL'16,'17,'18,'20,'24, ICFP'17,'19, ...]

5



Researcher at Inria Paris (2013-2020)

• Loved to have again a lot of freedom / scientific independence
– started advising interns, PhD students, PostDocs (i.e. building a group)

• Complete redesign of F* with Nik Swamy et al (MSR & Inria)
– verification system combining a proof assistant (à la Rocq)

with SMT-based automation (à la Hoare Logic)

– interesting PL design [POPL'16,'17,'18,'20,'24, ICFP'17,'19, ...]

– verified code shipping in Firefox, Linux, Windows, Python, ...

• crypto libraries (HACL*, EverCrypt), parsers and printers (EverParse), ...

5



Researcher at Inria Paris (2013-2020)

• Loved to have again a lot of freedom / scientific independence
– started advising interns, PhD students, PostDocs (i.e. building a group)

• Complete redesign of F* with Nik Swamy et al (MSR & Inria)
– verification system combining a proof assistant (à la Rocq)

with SMT-based automation (à la Hoare Logic)

– interesting PL design [POPL'16,'17,'18,'20,'24, ICFP'17,'19, ...]

– verified code shipping in Firefox, Linux, Windows, Python, ...

• crypto libraries (HACL*, EverCrypt), parsers and printers (EverParse), ...

• Started QuickChick tool: property-based testing in Rocq
– [ICFP'13, ITP'15, JFP'16, POPL'17, ...]

5



Inria Paris: From tagged HW to secure compilation

• I also continued collaborating with Benjamin Pierce et al
on programming our tagged HW architecture

6



Inria Paris: From tagged HW to secure compilation

• I also continued collaborating with Benjamin Pierce et al
on programming our tagged HW architecture
– verified micro-policies for information-flow control, memory safety, 

compartmentalization, control-flow integrity [POPL'14, ASPLOS'15, SP'15, ...] 

6



Inria Paris: From tagged HW to secure compilation

• I also continued collaborating with Benjamin Pierce et al
on programming our tagged HW architecture
– verified micro-policies for information-flow control, memory safety, 

compartmentalization, control-flow integrity [POPL'14, ASPLOS'15, SP'15, ...] 

– but it's very hard to talk about security by looking only at the ASM level

6



Inria Paris: From tagged HW to secure compilation

• I also continued collaborating with Benjamin Pierce et al
on programming our tagged HW architecture
– verified micro-policies for information-flow control, memory safety, 

compartmentalization, control-flow integrity [POPL'14, ASPLOS'15, SP'15, ...] 

– but it's very hard to talk about security by looking only at the ASM level

• Developers think about security in terms of the
abstractions provided by their programming languages

6



Inria Paris: From tagged HW to secure compilation

• I also continued collaborating with Benjamin Pierce et al
on programming our tagged HW architecture
– verified micro-policies for information-flow control, memory safety, 

compartmentalization, control-flow integrity [POPL'14, ASPLOS'15, SP'15, ...] 

– but it's very hard to talk about security by looking only at the ASM level

• Developers think about security in terms of the
abstractions provided by their programming languages
– big problem is that normal compilers don't enforce those abstractions

6



Inria Paris: From tagged HW to secure compilation

• I also continued collaborating with Benjamin Pierce et al
on programming our tagged HW architecture
– verified micro-policies for information-flow control, memory safety, 

compartmentalization, control-flow integrity [POPL'14, ASPLOS'15, SP'15, ...] 

– but it's very hard to talk about security by looking only at the ASM level

• Developers think about security in terms of the
abstractions provided by their programming languages
– big problem is that normal compilers don't enforce those abstractions

– ~2015 started working on secure compilation to protect these
abstractions all the way down (initially to our tagged architecture)

6



Inria Paris: From tagged HW to secure compilation

• I also continued collaborating with Benjamin Pierce et al
on programming our tagged HW architecture
– verified micro-policies for information-flow control, memory safety, 

compartmentalization, control-flow integrity [POPL'14, ASPLOS'15, SP'15, ...] 

– but it's very hard to talk about security by looking only at the ASM level

• Developers think about security in terms of the
abstractions provided by their programming languages
– big problem is that normal compilers don't enforce those abstractions

– ~2015 started working on secure compilation to protect these
abstractions all the way down (initially to our tagged architecture)

– in 2017 this lead to ERC Starting Grant SECOMP, project still going strong
6



Moved to Bochum in April 2020

7



Moved to Bochum in April 2020

7

• "Interesting" start in Bochum with 1st pandemic wave



Opportunity to contribute to growing
MPI-SP into a top international institute

8



Opportunity to contribute to growing
MPI-SP into a top international institute

• Christof Paar

• Gilles Barthe

• Peter Schwabe

• Asia Biega

• Clara Schneidewind

• Marcel Böhme

• Yixin Zou

• Abraham Mhaidli

• Mia Cha

• Jana Hofmann

• Carmela Troncoso

• ...

8

Went from 2 to 12 research groups (and still growing):



Things got much better after Corona

9



Things got much better after Corona
• For instance, I got back into running after ~14 years of break

9



Things got much better after Corona
• For instance, I got back into running after ~14 years of break

– Running with colleagues at MPI-SP, joined the RUB running group, and 
also running again with my wife

9



Things got much better after Corona
• For instance, I got back into running after ~14 years of break

– Running with colleagues at MPI-SP, joined the RUB running group, and 
also running again with my wife

– Hobby that combines sports, socializing, and practicing German

9



Things got much better after Corona
• For instance, I got back into running after ~14 years of break

– Running with colleagues at MPI-SP, joined the RUB running group, and 
also running again with my wife

– Hobby that combines sports, socializing, and practicing German

• Ran my 2nd half-marathon a month ago in Duisburg

– 20 minutes faster than 18 years ago, and this time I didn't get injured

9



After Corona also teaching in CS@RUB

10



After Corona also teaching in CS@RUB

with Roberto Blanco, Clara Schneidewind, Jana Hofmann

10



After Corona also teaching in CS@RUB

with Roberto Blanco, Clara Schneidewind, Jana Hofmann

1. Proofs are Programs - gentle introduction to mechanized proofs in Rocq

10



After Corona also teaching in CS@RUB

with Roberto Blanco, Clara Schneidewind, Jana Hofmann

1. Proofs are Programs - gentle introduction to mechanized proofs in Rocq

2. Foundations of Programming Languages, Verification, and Security

10



After Corona also teaching in CS@RUB

with Roberto Blanco, Clara Schneidewind, Jana Hofmann

1. Proofs are Programs - gentle introduction to mechanized proofs in Rocq

2. Foundations of Programming Languages, Verification, and Security

10



After Corona also teaching in CS@RUB

with Roberto Blanco, Clara Schneidewind, Jana Hofmann

1. Proofs are Programs - gentle introduction to mechanized proofs in Rocq

2. Foundations of Programming Languages, Verification, and Security

10



After Corona also teaching in CS@RUB

with Roberto Blanco, Clara Schneidewind, Jana Hofmann

1. Proofs are Programs - gentle introduction to mechanized proofs in Rocq

2. Foundations of Programming Languages, Verification, and Security

10

Information flow control:
• static and dynamic enforcement
Preventing timing side channels:
• cryptographic constant time
• speculative constant time
Relational Hoare Logic:
• program equivalence and security



Formally Verified Security group at MPI-SP

– PhD students: Cezar Andrici and Jérémy Thibault

11



Formally Verified Security group at MPI-SP

– PhD students: Cezar Andrici and Jérémy Thibault

– PostDocs: Yonghyun Kim (officially starting with us tomorrow),
Rob Blanco (starting as Associate Prof at TU Eindhoven tomorrow)

11



Formally Verified Security group at MPI-SP

– PhD students: Cezar Andrici and Jérémy Thibault

– PostDocs: Yonghyun Kim (officially starting with us tomorrow),
Rob Blanco (starting as Associate Prof at TU Eindhoven tomorrow)

– Interns: Basile Schlosser, Jonathan Baumann (ENS Paris-Saclay),
Julay Leatherman-Brooks (Portland State University, starting soon)

11



Formally Verified Security group at MPI-SP

– PhD students: Cezar Andrici and Jérémy Thibault

– PostDocs: Yonghyun Kim (officially starting with us tomorrow),
Rob Blanco (starting as Associate Prof at TU Eindhoven tomorrow)

– Interns: Basile Schlosser, Jonathan Baumann (ENS Paris-Saclay),
Julay Leatherman-Brooks (Portland State University, starting soon)

• Some recent alumni:
– Adrien Durier (ex PostDoc, Associate Professor, Uni. Paris-Saclay)

– Théo Winterhalter (ex PostDoc, Tenured Researcher, Inria Saclay)

11



Formally Verified Security group at MPI-SP

– PhD students: Cezar Andrici and Jérémy Thibault

– PostDocs: Yonghyun Kim (officially starting with us tomorrow),
Rob Blanco (starting as Associate Prof at TU Eindhoven tomorrow)

– Interns: Basile Schlosser, Jonathan Baumann (ENS Paris-Saclay),
Julay Leatherman-Brooks (Portland State University, starting soon)

• Some recent alumni:
– Adrien Durier (ex PostDoc, Associate Professor, Uni. Paris-Saclay)

– Théo Winterhalter (ex PostDoc, Tenured Researcher, Inria Saclay)

– Carmine Abate (ex PhD student, Researcher, Barkhausen Institute)

– Guido Martínez (ex PhD student, Research Engineer, Microsoft Research)

11



Formally Verified Security group at MPI-SP

– PhD students: Cezar Andrici and Jérémy Thibault

– PostDocs: Yonghyun Kim (officially starting with us tomorrow),
Rob Blanco (starting as Associate Prof at TU Eindhoven tomorrow)

– Interns: Basile Schlosser, Jonathan Baumann (ENS Paris-Saclay),
Julay Leatherman-Brooks (Portland State University, starting soon)

• Some recent alumni:
– Adrien Durier (ex PostDoc, Associate Professor, Uni. Paris-Saclay)

– Théo Winterhalter (ex PostDoc, Tenured Researcher, Inria Saclay)

– Carmine Abate (ex PhD student, Researcher, Barkhausen Institute)

– Guido Martínez (ex PhD student, Research Engineer, Microsoft Research)

– Aïna Linn Georges (ex Intern, PostDoc, MPI-SWS)

– Dongjae Lee (ex Intern, PhD student, MIT)
11



12



Good programming languages provide
helpful abstractions for writing more secure code

13



Good programming languages provide
helpful abstractions for writing more secure code

• structured control flow, procedures, modules, types, 
interfaces, correctness and security specifications, ...

13



Good programming languages provide
helpful abstractions for writing more secure code

• structured control flow, procedures, modules, types, 
interfaces, correctness and security specifications, ...

13

• suppose we have a secure source program ...
– For instance formally verified in F* (e.g. EverCrypt verified crypto library)

– Or a program written in safe Rust or OCaml



• What happens when we compile such a secure source program
and link it with adversarial target code?

14



• What happens when we compile such a secure source program
and link it with adversarial target code?

14

compiled
program



• What happens when we compile such a secure source program
and link it with adversarial target code?

14

adversarial
target code

compiled
program



• What happens when we compile such a secure source program
and link it with adversarial target code?
– not just hypothetical: verified code often linked with unverified code,

safe OCaml and Rust often linked with C/C++/ASM code (e.g. libraries)

14

adversarial
target code

compiled
program



• What happens when we compile such a secure source program
and link it with adversarial target code?
– not just hypothetical: verified code often linked with unverified code,

safe OCaml and Rust often linked with C/C++/ASM code (e.g. libraries)

– target-level code can be buggy, vulnerable, compromised, malicious

14

adversarial
target code

compiled
program



• What happens when we compile such a secure source program
and link it with adversarial target code?
– not just hypothetical: verified code often linked with unverified code,

safe OCaml and Rust often linked with C/C++/ASM code (e.g. libraries)

– target-level code can be buggy, vulnerable, compromised, malicious

– currently: all abstractions and source-level guarantees are lost

14

adversarial
target code

compiled
program



• What happens when we compile such a secure source program
and link it with adversarial target code?
– not just hypothetical: verified code often linked with unverified code,

safe OCaml and Rust often linked with C/C++/ASM code (e.g. libraries)

– target-level code can be buggy, vulnerable, compromised, malicious

– currently: all abstractions and source-level guarantees are lost
• lower-level attacks become possible: break control flow, memory safety, etc.

14

adversarial
target code

compiled
program



• What happens when we compile such a secure source program
and link it with adversarial target code?
– not just hypothetical: verified code often linked with unverified code,

safe OCaml and Rust often linked with C/C++/ASM code (e.g. libraries)

– target-level code can be buggy, vulnerable, compromised, malicious

– currently: all abstractions and source-level guarantees are lost
• lower-level attacks become possible: break control flow, memory safety, etc.

14

adversarial
target code

compiled
program

protected
compartment

sandboxed
compartment



• What happens when we compile such a secure source program
and link it with adversarial target code?
– not just hypothetical: verified code often linked with unverified code,

safe OCaml and Rust often linked with C/C++/ASM code (e.g. libraries)

– target-level code can be buggy, vulnerable, compromised, malicious

– currently: all abstractions and source-level guarantees are lost
• lower-level attacks become possible: break control flow, memory safety, etc.

14

adversarial
target code

compiled
program

protected
compartment

sandboxed
compartment



• Protect source-level abstractions all the way down
even against linked adversarial target code

15



• Protect source-level abstractions all the way down
even against linked adversarial target code
– various enforcement mechanisms for sandboxing untrusted code:

capability machines, tagged architectures, software-fault isolation (SFI), ...

– shared responsibility: compiler, linker, loader, OS, HW

15



• Protect source-level abstractions all the way down
even against linked adversarial target code
– various enforcement mechanisms for sandboxing untrusted code:

capability machines, tagged architectures, software-fault isolation (SFI), ...

– shared responsibility: compiler, linker, loader, OS, HW

• This is very challenging:

– the originally proposed formal criterion was fully abstract compilation
[Martín Abadi, Protection in programming-language translations. 1999]

– very difficult to enforce and very difficult to prove

• (in)famous wrong full abstraction conjecture survived decades
[Eijiro Sumii and Benjamin Pierce POPL'04, Dominique Devriese et al. POPL'18]

• 250 pages of proof on paper even for toy compilers

15



16



16

• Insecure languages like C enable devastating vulnerabilities



16

• Insecure languages like C enable devastating vulnerabilities

– undefined behavior pervasive in C: buffer overflows, use after frees,

double frees, invalid type casts, various concurrency bugs, ...



16

• Insecure languages like C enable devastating vulnerabilities

– undefined behavior pervasive in C: buffer overflows, use after frees,

double frees, invalid type casts, various concurrency bugs, ...

– undefined behavior also present in unsafe Rust, OCaml, ...



16

• Insecure languages like C enable devastating vulnerabilities
– undefined behavior pervasive in C: buffer overflows, use after frees,

double frees, invalid type casts, various concurrency bugs, ...

– undefined behavior also present in unsafe Rust, OCaml, ...

• Yet even the C language does provide some useful abstractions:
– structured control flow, procedures, pointers to shared memory



16

• Insecure languages like C enable devastating vulnerabilities

– undefined behavior pervasive in C: buffer overflows, use after frees,

double frees, invalid type casts, various concurrency bugs, ...

– undefined behavior also present in unsafe Rust, OCaml, ...

• Yet even the C language does provide some useful abstractions:

– structured control flow, procedures, pointers to shared memory

– but not enforced during compilation for programs with UB: all guarantees are lost!



16

• Insecure languages like C enable devastating vulnerabilities

– undefined behavior pervasive in C: buffer overflows, use after frees,

double frees, invalid type casts, various concurrency bugs, ...

– undefined behavior also present in unsafe Rust, OCaml, ...

• Yet even the C language does provide some useful abstractions:

– structured control flow, procedures, pointers to shared memory

– but not enforced during compilation for programs with UB: all guarantees are lost!

– we add one more abstraction to C: fine-grained compartments that can naturally interact



16

• Insecure languages like C enable devastating vulnerabilities

– undefined behavior pervasive in C: buffer overflows, use after frees,

double frees, invalid type casts, various concurrency bugs, ...

– undefined behavior also present in unsafe Rust, OCaml, ...

• Yet even the C language does provide some useful abstractions:

– structured control flow, procedures, pointers to shared memory

– but not enforced during compilation for programs with UB: all guarantees are lost!

– we add one more abstraction to C: fine-grained compartments that can naturally interact

• Secure compilation chain that protects these abstractions

– all the way down, at compartment boundaries (hopefully more efficient than removing UB)

– against compartments dynamically compromised by undefined behavior

– using the same kind of enforcement mechanisms for compartmentalization



16



16



16



16



16



17



• Question A:
What does it mean to securely compile a secure source 
program against linked adversarial target-level code?

17



• Question A:
What does it mean to securely compile a secure source 
program against linked adversarial target-level code?
– e.g. simple verified web server, linked with unverified libraries [POPL'24]

17



Preserving security against adversarial contexts

19



∀security property π

Preserving security against adversarial contexts

19



source
program

∀security property π

Preserving security against adversarial contexts

19



source
program satisfies π

∀security property π

Preserving security against adversarial contexts

19



F* code
source

program satisfies πF*code∀
∀security property π

Preserving security against adversarial contexts

19



F* code
source

program

compiled
program

compiler

satisfies πF*code∀
∀security property π

Preserving security against adversarial contexts

19



F* code

target
code

source
program

compiled
program

compiler

satisfies π

satisfies π

F*code∀

target
code∀

⇒
∀security property π

Preserving security against adversarial contexts

19



F* code

target
code

source
program

compiled
program

compiler

satisfies π

satisfies π
no extra powerprotected

F*code∀

target
code∀

⇒
∀security property π

Preserving security against adversarial contexts

19



F* code

target
code

source
program

compiled
program

compiler

satisfies π

satisfies π
no extra powerprotected

Where π can e.g. be "the web server's private key is not leaked"

F*code∀

target
code∀

⇒
∀security property π

Preserving security against adversarial contexts

19



F* code

target
code

source
program

compiled
program

compiler

satisfies π

satisfies π
no extra powerprotected

Where π can e.g. be "the web server's private key is not leaked"

F*code∀

target
code∀

⇒
∀security property π

Preserving security against adversarial contexts

19



F* code

target
code

source
program

compiled
program

compiler

satisfies π

satisfies π
no extra powerprotected

Where π can e.g. be "the web server's private key is not leaked"

F*code∀

target
code∀

⇒
∀security property π

Preserving security against adversarial contexts

19

We explored many classes of properties one can preserve this way ...



35

Journey Beyond Full Abstraction [CSF'19, ESOP'20, TOPLAS'21]



35

trace properties
(safety & liveness)

Journey Beyond Full Abstraction [CSF'19, ESOP'20, TOPLAS'21]



35

trace properties
(safety & liveness)

hyperproperties
(noninterference)

Journey Beyond Full Abstraction [CSF'19, ESOP'20, TOPLAS'21]



35

trace properties
(safety & liveness)

hyperproperties
(noninterference)

relational
hyperproperties
(trace equivalence)

Journey Beyond Full Abstraction [CSF'19, ESOP'20, TOPLAS'21]



35

trace properties
(safety & liveness)

hyperproperties
(noninterference)

relational
hyperproperties
(trace equivalence)

Journey Beyond Full Abstraction [CSF'19, ESOP'20, TOPLAS'21]



35

More secure

More efficient
to enforce

Easier to prove

trace properties
(safety & liveness)

hyperproperties
(noninterference)

relational
hyperproperties
(trace equivalence)

No one-size-fits-all security criterion

Journey Beyond Full Abstraction [CSF'19, ESOP'20, TOPLAS'21]



35

More secure

More efficient
to enforce

Easier to prove

trace properties
(safety & liveness)

hyperproperties
(noninterference)

relational
hyperproperties
(trace equivalence)

only integrity

No one-size-fits-all security criterion

Journey Beyond Full Abstraction [CSF'19, ESOP'20, TOPLAS'21]



35

More secure

More efficient
to enforce

Easier to prove

trace properties
(safety & liveness)

hyperproperties
(noninterference)

relational
hyperproperties
(trace equivalence)

only integrity

+ data confidentiality

No one-size-fits-all security criterion

Journey Beyond Full Abstraction [CSF'19, ESOP'20, TOPLAS'21]



35

More secure

More efficient
to enforce

Easier to prove

trace properties
(safety & liveness)

hyperproperties
(noninterference)

relational
hyperproperties
(trace equivalence)

only integrity

+ data confidentiality

+ code confidentiality

No one-size-fits-all security criterion

Journey Beyond Full Abstraction [CSF'19, ESOP'20, TOPLAS'21]



35

More secure

More efficient
to enforce

Easier to prove

trace properties
(safety & liveness)

hyperproperties
(noninterference)

relational
hyperproperties
(trace equivalence)

only integrity

+ data confidentiality

+ code confidentiality

No one-size-fits-all security criterion

Journey Beyond Full Abstraction [CSF'19, ESOP'20, TOPLAS'21]

full
abstraction



35

More secure

More efficient
to enforce

Easier to prove

trace properties
(safety & liveness)

hyperproperties
(noninterference)

relational
hyperproperties
(trace equivalence)

only integrity

+ data confidentiality

+ code confidentiality

No one-size-fits-all security criterion

Journey Beyond Full Abstraction [CSF'19, ESOP'20, TOPLAS'21]

full
abstraction

we started with an "easier"
and more practical one



• Question A:
What does it mean to securely compile a secure source 
program against linked adversarial target-level code?

17

robust safety preservation



• Question A:
What does it mean to securely compile a secure source 
program against linked adversarial target-level code?

• Question B:
What does it mean for a compilation chain
for vulnerable C compartments to be secure?

17

robust safety preservation



• Question A:
What does it mean to securely compile a secure source 
program against linked adversarial target-level code?

• Question B:
What does it mean for a compilation chain
for vulnerable C compartments to be secure?

17

robust safety preservation

reduced this to a variant of robust safety preservation [CCS'18]



CompCert C
with compartments

22



CompCert C
with compartments

SECOMP: CompCert extended with secure compartments

22



CompCert C
with compartments

CompCert RISC-V ASM
with compartments

SECOMP: CompCert extended with secure compartments

22

magically secure semantics



CompCert C
with compartments

CompCert RISC-V ASM
with compartments

vanilla ASM

SECOMP: CompCert extended with secure compartments

22

magically secure semantics

Software-Fault Isolation



CompCert C
with compartments

CompCert RISC-V ASM
with compartments

Micro-Policies: ASM
with programmable tags

vanilla ASM

SECOMP: CompCert extended with secure compartments

22

magically secure semantics

Hardware-accelerated enforcement

[POPL'14, S&P'15, ASPLOS'15,
POST'18, CCS'18, CSF'23]

Software-Fault Isolation



CompCert C
with compartments

CompCert RISC-V ASM
with compartments

Micro-Policies: ASM
with programmable tags

vanilla ASM

SECOMP: CompCert extended with secure compartments

22

magically secure semantics

Hardware-accelerated enforcement

[POPL'14, S&P'15, ASPLOS'15,
POST'18, CCS'18, CSF'23]

Software-Fault Isolation

Done for simplified languages,
yet to be ported to RISC-V



CompCert C
with compartments

CompCert RISC-V ASM
with compartments

Micro-Policies: ASM
with programmable tags

vanilla ASM

SECOMP: CompCert extended with secure compartments

CHERI RISC-V
capability machine

22

magically secure semantics

Hardware-accelerated enforcement

[POPL'14, S&P'15, ASPLOS'15,
POST'18, CCS'18, CSF'23]

Software-Fault Isolation

Done for simplified languages,
yet to be ported to RISC-V

(inspiration for ARM Morello)



Large subset of C
with compartments

RISC-V ASM
with compartments

Micro-Policies: ASM
with programmable tags

vanilla ASM

SECOMP

CHERI RISC-V
capability machine

23

Software-Fault Isolation

Done for simpler languages,
yet to be ported to RISC-V



Large subset of C
with compartments

RISC-V ASM
with compartments

Micro-Policies: ASM
with programmable tags

vanilla ASM

SECOMP

CHERI RISC-V
capability machine

23

Software-Fault Isolation

Done for simpler languages,
yet to be ported to RISC-V

Machine-checked
proofs in Rocq



Large subset of C
with compartments

RISC-V ASM
with compartments

Micro-Policies: ASM
with programmable tags

vanilla ASM

SECOMP

CHERI RISC-V
capability machine

Scalable proof technique for secure compilation
• first applied to simpler languages [CCS'18, CSF'22]

23

Software-Fault Isolation

Done for simpler languages,
yet to be ported to RISC-V

Machine-checked
proofs in Rocq



Large subset of C
with compartments

RISC-V ASM
with compartments

Micro-Policies: ASM
with programmable tags

vanilla ASM

SECOMP

CHERI RISC-V
capability machine

Scalable proof technique for secure compilation
• first applied to simpler languages [CCS'18, CSF'22]
• then scaled up to C compartments [CCS'24]

–reuses CompCert correctness proof (~130K LoC)
–verified strong secure compilation property (+ ~43K LoC)

23

Software-Fault Isolation

Done for simpler languages,
yet to be ported to RISC-V

Machine-checked
proofs in Rocq



Large subset of C
with compartments

RISC-V ASM
with compartments

Micro-Policies: ASM
with programmable tags

vanilla ASM

SECOMP

CHERI RISC-V
capability machine

Scalable proof technique for secure compilation
• first applied to simpler languages [CCS'18, CSF'22]
• then scaled up to C compartments [CCS'24]

–reuses CompCert correctness proof (~130K LoC)
–verified strong secure compilation property (+ ~43K LoC)

•milestone in terms of realism!

23

Software-Fault Isolation

Done for simpler languages,
yet to be ported to RISC-V

Machine-checked
proofs in Rocq



Large subset of C
with compartments

RISC-V ASM
with compartments

Micro-Policies: ASM
with programmable tags

vanilla ASM

SECOMP

CHERI RISC-V
capability machine

Scalable proof technique for secure compilation
• first applied to simpler languages [CCS'18, CSF'22]
• then scaled up to C compartments [CCS'24]

–reuses CompCert correctness proof (~130K LoC)
–verified strong secure compilation property (+ ~43K LoC)

•milestone in terms of realism!
–optimizing C compiler with 19 passes

23

Software-Fault Isolation

Done for simpler languages,
yet to be ported to RISC-V

Machine-checked
proofs in Rocq



Large subset of C
with compartments

RISC-V ASM
with compartments

Micro-Policies: ASM
with programmable tags

vanilla ASM

SECOMP

CHERI RISC-V
capability machine

Scalable proof technique for secure compilation
• first applied to simpler languages [CCS'18, CSF'22]
• then scaled up to C compartments [CCS'24]

–reuses CompCert correctness proof (~130K LoC)
–verified strong secure compilation property (+ ~43K LoC)

•milestone in terms of realism!
–optimizing C compiler with 19 passes

23

Software-Fault Isolation

Done for simpler languages,
yet to be ported to RISC-V

Machine-checked
proofs in Rocq

Systematic testing



Large subset of C
with compartments

RISC-V ASM
with compartments

Micro-Policies: ASM
with programmable tags

vanilla ASM

SECOMP

CHERI RISC-V
capability machine

Scalable proof technique for secure compilation
• first applied to simpler languages [CCS'18, CSF'22]
• then scaled up to C compartments [CCS'24]

–reuses CompCert correctness proof (~130K LoC)
–verified strong secure compilation property (+ ~43K LoC)

•milestone in terms of realism!
–optimizing C compiler with 19 passes

23

Software-Fault Isolation

Done for simpler languages,
yet to be ported to RISC-V

Machine-checked
proofs in Rocq

Big verification challenge for the future



Ongoing work: better proof techniques

24



Ongoing work: better proof techniques

• Verifying secure compilation for low-level backends

– they do the actual security enforcement, so very interesting

– such low-level proofs are conceptually very challenging though

24



Ongoing work: better proof techniques

• Verifying secure compilation for low-level backends

– they do the actual security enforcement, so very interesting

– such low-level proofs are conceptually very challenging though

– Basile Schlosser & Jérémy Thibault verifying micro-policies backend
in a simplified setting; recently devised a new proof technique for this

24



Ongoing work: better proof techniques

• Verifying secure compilation for low-level backends

– they do the actual security enforcement, so very interesting

– such low-level proofs are conceptually very challenging though

– Basile Schlosser & Jérémy Thibault verifying micro-policies backend
in a simplified setting; recently devised a new proof technique for this

• Beyond preserving safety against adversarial contexts

24



Ongoing work: better proof techniques

• Verifying secure compilation for low-level backends

– they do the actual security enforcement, so very interesting

– such low-level proofs are conceptually very challenging though

– Basile Schlosser & Jérémy Thibault verifying micro-policies backend
in a simplified setting; recently devised a new proof technique for this

• Beyond preserving safety against adversarial contexts

– towards preserving hyperproperties (data confidentiality)

24



Ongoing work: better proof techniques

• Verifying secure compilation for low-level backends

– they do the actual security enforcement, so very interesting

– such low-level proofs are conceptually very challenging though

– Basile Schlosser & Jérémy Thibault verifying micro-policies backend
in a simplified setting; recently devised a new proof technique for this

• Beyond preserving safety against adversarial contexts

– towards preserving hyperproperties (data confidentiality)

– even relational hyperproperties (observational equivalence)

24



Ongoing work: better proof techniques

• Verifying secure compilation for low-level backends

– they do the actual security enforcement, so very interesting

– such low-level proofs are conceptually very challenging though

– Basile Schlosser & Jérémy Thibault verifying micro-policies backend
in a simplified setting; recently devised a new proof technique for this

• Beyond preserving safety against adversarial contexts

– towards preserving hyperproperties (data confidentiality)

– even relational hyperproperties (observational equivalence)

• secure compilation criteria strictly stronger than full abstraction

• can do this for CompCert, but won't hold for the backends

– "Nanopass back-translation" [Jérémy Thibault et al, CSF'19, arXiv'25]

24



Enforcement beyond safety (challenging)
• Preserving hypersafety against adversarial contexts (e.g. data confidentiality)

25



Enforcement beyond safety (challenging)
• Preserving hypersafety against adversarial contexts (e.g. data confidentiality)

– challenging at the lowest level: micro-architectural side-channels attacks

25



Enforcement beyond safety (challenging)
• Preserving hypersafety against adversarial contexts (e.g. data confidentiality)

– challenging at the lowest level: micro-architectural side-channels attacks

– compartments running in the same process, "universal read gadgets" easy

25



Enforcement beyond safety (challenging)
• Preserving hypersafety against adversarial contexts (e.g. data confidentiality)

– challenging at the lowest level: micro-architectural side-channels attacks

– compartments running in the same process, "universal read gadgets" easy

• Started looking into Spectre defenses compilers can insert

25



Enforcement beyond safety (challenging)
• Preserving hypersafety against adversarial contexts (e.g. data confidentiality)

– challenging at the lowest level: micro-architectural side-channels attacks

– compartments running in the same process, "universal read gadgets" easy

• Started looking into Spectre defenses compilers can insert

– Speculative Load Hardening (implemented in LLVM + selective variant in Jasmin DSL)

• enforces speculative constant time [Barthe et al, SP'23] (Security Foundations chapter)

25



Enforcement beyond safety (challenging)
• Preserving hypersafety against adversarial contexts (e.g. data confidentiality)

– challenging at the lowest level: micro-architectural side-channels attacks

– compartments running in the same process, "universal read gadgets" easy

• Started looking into Spectre defenses compilers can insert

– Speculative Load Hardening (implemented in LLVM + selective variant in Jasmin DSL)

• enforces speculative constant time [Barthe et al, SP'23] (Security Foundations chapter)

– Rocq proofs that Ultimate SLH and our new Flexible SLH enforce relative security [CSF'25]

25



Enforcement beyond safety (challenging)
• Preserving hypersafety against adversarial contexts (e.g. data confidentiality)

– challenging at the lowest level: micro-architectural side-channels attacks

– compartments running in the same process, "universal read gadgets" easy

• Started looking into Spectre defenses compilers can insert

– Speculative Load Hardening (implemented in LLVM + selective variant in Jasmin DSL)

• enforces speculative constant time [Barthe et al, SP'23] (Security Foundations chapter)

– Rocq proofs that Ultimate SLH and our new Flexible SLH enforce relative security [CSF'25]

– Ongoing work: property-based testing for scaling this up to LLVM and x86/ARM

25



Enforcement beyond safety (challenging)
• Preserving hypersafety against adversarial contexts (e.g. data confidentiality)

– challenging at the lowest level: micro-architectural side-channels attacks

– compartments running in the same process, "universal read gadgets" easy

• Started looking into Spectre defenses compilers can insert

– Speculative Load Hardening (implemented in LLVM + selective variant in Jasmin DSL)

• enforces speculative constant time [Barthe et al, SP'23] (Security Foundations chapter)

– Rocq proofs that Ultimate SLH and our new Flexible SLH enforce relative security [CSF'25]

– Ongoing work: property-based testing for scaling this up to LLVM and x86/ARM

• Combining this with compartmentalization practically interesting

– Especially for languages like Wasm, which are used for same-process isolation

25



26

Verify capability backend

ARM Morello
capability machine

Capability passing

against micro-architectural side-channel attacks,
for compartmentalized programs in F*, C, or Wasm

Preserve data confidentiality


