
1

My companions on this journey:
Carmine Abate, Cezar-Constantin Andrici, Sven Argo, Arthur Azevedo de Amorim,

Roberto Blanco, Ştefan Ciobâcă, Adrien Durier, Akram El-Korashy, Boris Eng,
Ana Nora Evans, Guglielmo Fachini, Deepak Garg, Aïna Linn Georges, Théo Laurent,
Dongjae Lee, Guido Martínez, Marco Patrignani, Benjamin Pierce, Exequiel Rivas,

Marco Stronati, Éric Tanter, Jérémy Thibault, Andrew Tolmach, Théo Winterhalter, ...

Good programming languages provide
helpful abstractions for writing more secure code

2

Good programming languages provide
helpful abstractions for writing more secure code

• structured control flow, procedures, modules, types,
interfaces, correctness and security specifications, ...

2

Good programming languages provide
helpful abstractions for writing more secure code

• structured control flow, procedures, modules, types,
interfaces, correctness and security specifications, ...

2

• suppose we have a secure source program ...
– For instance formally verified in F* [POPL'16,'17,'18,'20,'24, ICFP'17,'19, ...]

– e.g. EverCrypt verified crypto library, shipping in Firefox, Linux Kernel, ...

Good programming languages provide
helpful abstractions for writing more secure code

• structured control flow, procedures, modules, types,
interfaces, correctness and security specifications, ...

2

• suppose we have a secure source program ...
– For instance formally verified in F* [POPL'16,'17,'18,'20,'24, ICFP'17,'19, ...]

– e.g. EverCrypt verified crypto library, shipping in Firefox, Linux Kernel, ...

– Or a program written entirely in safe OCaml or Rust

• What happens when we compile such a secure source program
and link it with adversarial target code?

3

• What happens when we compile such a secure source program
and link it with adversarial target code?

3

compiled
program

• What happens when we compile such a secure source program
and link it with adversarial target code?

3

adversarial
target code

compiled
program

• What happens when we compile such a secure source program
and link it with adversarial target code?
– not just hypothetical: verified code often linked with unverified code,

safe OCaml and Rust often linked with C/C++/ASM code (e.g. libraries)

3

adversarial
target code

compiled
program

• What happens when we compile such a secure source program
and link it with adversarial target code?
– not just hypothetical: verified code often linked with unverified code,

safe OCaml and Rust often linked with C/C++/ASM code (e.g. libraries)

– target-level code can be buggy, vulnerable, compromised, malicious

3

adversarial
target code

compiled
program

• What happens when we compile such a secure source program
and link it with adversarial target code?
– not just hypothetical: verified code often linked with unverified code,

safe OCaml and Rust often linked with C/C++/ASM code (e.g. libraries)

– target-level code can be buggy, vulnerable, compromised, malicious

– currently: all abstractions and source-level guarantees are lost

3

adversarial
target code

compiled
program

• What happens when we compile such a secure source program
and link it with adversarial target code?
– not just hypothetical: verified code often linked with unverified code,

safe OCaml and Rust often linked with C/C++/ASM code (e.g. libraries)

– target-level code can be buggy, vulnerable, compromised, malicious

– currently: all abstractions and source-level guarantees are lost
• lower-level attacks become possible: break control flow, memory safety, etc.

3

adversarial
target code

compiled
program

• What happens when we compile such a secure source program
and link it with adversarial target code?
– not just hypothetical: verified code often linked with unverified code,

safe OCaml and Rust often linked with C/C++/ASM code (e.g. libraries)

– target-level code can be buggy, vulnerable, compromised, malicious

– currently: all abstractions and source-level guarantees are lost
• lower-level attacks become possible: break control flow, memory safety, etc.

3

adversarial
target code

compiled
program

protected
compartment

sandboxed
compartment

• What happens when we compile such a secure source program
and link it with adversarial target code?
– not just hypothetical: verified code often linked with unverified code,

safe OCaml and Rust often linked with C/C++/ASM code (e.g. libraries)

– target-level code can be buggy, vulnerable, compromised, malicious

– currently: all abstractions and source-level guarantees are lost
• lower-level attacks become possible: break control flow, memory safety, etc.

3

adversarial
target code

compiled
program

protected
compartment

sandboxed
compartment

• Protect source-level abstractions all the way down
even against linked adversarial target code

4

• Protect source-level abstractions all the way down
even against linked adversarial target code
– various enforcement mechanisms for sandboxing untrusted code:

software-fault isolation (SFI), capability machines, tagged architectures, ...

– shared responsibility: compiler, linker, loader, OS, HW

4

• Protect source-level abstractions all the way down
even against linked adversarial target code
– various enforcement mechanisms for sandboxing untrusted code:

software-fault isolation (SFI), capability machines, tagged architectures, ...

– shared responsibility: compiler, linker, loader, OS, HW

• This is very challenging:

– the originally proposed formal criterion was fully abstract compilation
[Abadi, Protection in programming-language translations. 1999]

4

5

5

• Insecure languages like C enable devastating vulnerabilities

5

• Insecure languages like C enable devastating vulnerabilities

– undefined behavior pervasive in C: buffer overflows, use after frees,

double frees, invalid type casts, various concurrency bugs, ...

5

• Insecure languages like C enable devastating vulnerabilities

– undefined behavior pervasive in C: buffer overflows, use after frees,

double frees, invalid type casts, various concurrency bugs, ...

– undefined behavior also present in unsafe Rust, OCaml, ...

5

• Insecure languages like C enable devastating vulnerabilities
– undefined behavior pervasive in C: buffer overflows, use after frees,

double frees, invalid type casts, various concurrency bugs, ...

– undefined behavior also present in unsafe Rust, OCaml, ...

• Yet even the C language does provide some useful abstractions:
– structured control flow, procedures, pointers to shared memory

5

• Insecure languages like C enable devastating vulnerabilities

– undefined behavior pervasive in C: buffer overflows, use after frees,

double frees, invalid type casts, various concurrency bugs, ...

– undefined behavior also present in unsafe Rust, OCaml, ...

• Yet even the C language does provide some useful abstractions:

– structured control flow, procedures, pointers to shared memory

– but not enforced during compilation for programs with UB: all guarantees are lost!

5

• Insecure languages like C enable devastating vulnerabilities

– undefined behavior pervasive in C: buffer overflows, use after frees,

double frees, invalid type casts, various concurrency bugs, ...

– undefined behavior also present in unsafe Rust, OCaml, ...

• Yet even the C language does provide some useful abstractions:

– structured control flow, procedures, pointers to shared memory

– but not enforced during compilation for programs with UB: all guarantees are lost!

– we add one more abstraction to C: fine-grained compartments that can naturally interact

5

• Insecure languages like C enable devastating vulnerabilities

– undefined behavior pervasive in C: buffer overflows, use after frees,

double frees, invalid type casts, various concurrency bugs, ...

– undefined behavior also present in unsafe Rust, OCaml, ...

• Yet even the C language does provide some useful abstractions:

– structured control flow, procedures, pointers to shared memory

– but not enforced during compilation for programs with UB: all guarantees are lost!

– we add one more abstraction to C: fine-grained compartments that can naturally interact

• Secure compilation chain that protects these abstractions

– all the way down, at compartment boundaries (hopefully more efficient than removing UB)

– against compartments dynamically compromised by undefined behavior

– using the same kind of enforcement mechanisms for compartmentalization

16

16

16

16

16

17

• Question A:
What does it mean to securely compile a secure source
program against linked adversarial target-level code?

17

• Question A:
What does it mean to securely compile a secure source
program against linked adversarial target-level code?
– e.g. simple verified web server, linked with unverified libraries [POPL'24]

17

• Question A:
What does it mean to securely compile a secure source
program against linked adversarial target-level code?
– e.g. simple verified web server, linked with unverified libraries [POPL'24]

• We want to enable source-level security reasoning

17

• Question A:
What does it mean to securely compile a secure source
program against linked adversarial target-level code?
– e.g. simple verified web server, linked with unverified libraries [POPL'24]

• We want to enable source-level security reasoning
– linked adversarial target code cannot break the security of compiled program,

any more than some linked source code already could

17

• Question A:
What does it mean to securely compile a secure source
program against linked adversarial target-level code?
– e.g. simple verified web server, linked with unverified libraries [POPL'24]

• We want to enable source-level security reasoning
– linked adversarial target code cannot break the security of compiled program,

any more than some linked source code already could

– no "low-level" attacks introduced by compilation and linking

17

Preserving security against adversarial contexts

8

∀security property π

Preserving security against adversarial contexts

8

source
program

∀security property π

Preserving security against adversarial contexts

8

source
program satisfies π

∀security property π

Preserving security against adversarial contexts

8

F* code
source

program satisfies πF*code∀
∀security property π

Preserving security against adversarial contexts

8

F* code
source

program

compiled
program

compiler

satisfies πF*code∀
∀security property π

Preserving security against adversarial contexts

8

F* code

target
code

source
program

compiled
program

compiler

satisfies π

satisfies π

F*code∀

target
code∀

⇒
∀security property π

Preserving security against adversarial contexts

8

F* code

target
code

source
program

compiled
program

compiler

satisfies π

satisfies π
no extra powerprotected

F*code∀

target
code∀

⇒
∀security property π

Preserving security against adversarial contexts

8

F* code

target
code

source
program

compiled
program

compiler

satisfies π

satisfies π
no extra powerprotected

Where π can e.g. be "the web server's private key is not leaked"

F*code∀

target
code∀

⇒
∀security property π

Preserving security against adversarial contexts

8

F* code

target
code

source
program

compiled
program

compiler

satisfies π

satisfies π
no extra powerprotected

Where π can e.g. be "the web server's private key is not leaked"

F*code∀

target
code∀

⇒
∀security property π

Preserving security against adversarial contexts

8

F* code

target
code

source
program

compiled
program

compiler

satisfies π

satisfies π
no extra powerprotected

Where π can e.g. be "the web server's private key is not leaked"

F*code∀

target
code∀

⇒
∀security property π

Preserving security against adversarial contexts

8

We explored many classes of properties one can preserve this way ...

35

Journey Beyond Full Abstraction [CSF'19, ESOP'20, TOPLAS'21]

35

trace properties
(safety & liveness)

Journey Beyond Full Abstraction [CSF'19, ESOP'20, TOPLAS'21]

35

trace properties
(safety & liveness)

hyperproperties
(noninterference)

Journey Beyond Full Abstraction [CSF'19, ESOP'20, TOPLAS'21]

35

trace properties
(safety & liveness)

hyperproperties
(noninterference)

relational
hyperproperties
(trace equivalence)

Journey Beyond Full Abstraction [CSF'19, ESOP'20, TOPLAS'21]

35

trace properties
(safety & liveness)

hyperproperties
(noninterference)

relational
hyperproperties
(trace equivalence)

Journey Beyond Full Abstraction [CSF'19, ESOP'20, TOPLAS'21]

35

More secure

More efficient
to enforce

Easier to prove

trace properties
(safety & liveness)

hyperproperties
(noninterference)

relational
hyperproperties
(trace equivalence)

No one-size-fits-all security criterion

Journey Beyond Full Abstraction [CSF'19, ESOP'20, TOPLAS'21]

35

More secure

More efficient
to enforce

Easier to prove

trace properties
(safety & liveness)

hyperproperties
(noninterference)

relational
hyperproperties
(trace equivalence)

only integrity

No one-size-fits-all security criterion

Journey Beyond Full Abstraction [CSF'19, ESOP'20, TOPLAS'21]

35

More secure

More efficient
to enforce

Easier to prove

trace properties
(safety & liveness)

hyperproperties
(noninterference)

relational
hyperproperties
(trace equivalence)

only integrity

+ data confidentiality

No one-size-fits-all security criterion

Journey Beyond Full Abstraction [CSF'19, ESOP'20, TOPLAS'21]

35

More secure

More efficient
to enforce

Easier to prove

trace properties
(safety & liveness)

hyperproperties
(noninterference)

relational
hyperproperties
(trace equivalence)

only integrity

+ data confidentiality

+ code confidentiality

No one-size-fits-all security criterion

Journey Beyond Full Abstraction [CSF'19, ESOP'20, TOPLAS'21]

35

More secure

More efficient
to enforce

Easier to prove

trace properties
(safety & liveness)

hyperproperties
(noninterference)

relational
hyperproperties
(trace equivalence)

only integrity

+ data confidentiality

+ code confidentiality

No one-size-fits-all security criterion

Journey Beyond Full Abstraction [CSF'19, ESOP'20, TOPLAS'21]

full
abstraction

we'll start with an "easier" one 35

More secure

More efficient
to enforce

Easier to prove

trace properties
(safety & liveness)

hyperproperties
(noninterference)

relational
hyperproperties
(trace equivalence)

only integrity

+ data confidentiality

+ code confidentiality

No one-size-fits-all security criterion

Journey Beyond Full Abstraction [CSF'19, ESOP'20, TOPLAS'21]

full
abstraction

Robust Safety Preservation [CSF'19]

Robust Safety Preservation [CSF'19]

source
context

source
program

source
context
trace t∀ .

∀source program.
∀π safety property.

⇒

⇝t⇒ t∈π

Robust Safety Preservation [CSF'19]

source
context

target
context

source
program

compiled
program

source
context
trace t∀

target
context
trace t∀

.

.

compiler

∀source program.
∀π safety property.

⇒

⇝t⇒ t∈π

⇝t⇒ t∈π

Robust Safety Preservation [CSF'19]

source
context

target
context

source
program

compiled
program

source
context
trace t∀

target
context
trace t∀

.

.

compiler

∀source program.
∀π safety property.

⇒

⇝t⇒ t∈π

⇝t⇒ t∈π

⇔

proof-oriented characterizationrobust preservation of safety

Robust Safety Preservation [CSF'19]

target
context

source
program

compiled
program

target
context∃ .

compiler

∀source program.
∀finite (attack) trace prefix m.

source
context

target
context

source
program

compiled
program

source
context
trace t∀

target
context
trace t∀

.

.

compiler

∀source program.
∀π safety property.

⇒

⇝t⇒ t∈π

⇝t⇒ t∈π

⇔

⇝m

proof-oriented characterizationrobust preservation of safety

Robust Safety Preservation [CSF'19]

source
context

target
context

source
program

compiled
program

source
context∃

target
context∃

.

.

compiler

∀source program.
∀finite (attack) trace prefix m.

⇒

source
context

target
context

source
program

compiled
program

source
context
trace t∀

target
context
trace t∀

.

.

compiler

∀source program.
∀π safety property.

⇒

⇝t⇒ t∈π

⇝t⇒ t∈π

⇔

⇝m

⇝m

proof-oriented characterizationrobust preservation of safety

Robust Safety Preservation [CSF'19]

source
context

target
context

source
program

compiled
program

source
context∃

target
context∃

.

.

compiler

∀source program.
∀finite (attack) trace prefix m.

⇒

source
context

target
context

source
program

compiled
program

source
context
trace t∀

target
context
trace t∀

.

.

compiler

∀source program.
∀π safety property.

⇒

⇝t⇒ t∈π

⇝t⇒ t∈π

⇔

⇝m

⇝m

back-
translation

proof-oriented characterizationrobust preservation of safety

• Question A:
What does it mean to securely compile a secure source
program against linked adversarial target-level code?

17

robust safety preservation

• Question A:
What does it mean to securely compile a secure source
program against linked adversarial target-level code?

• Question B:
What does it mean for a compilation chain
for vulnerable C compartments to be secure?

17

robust safety preservation

Extra challenges in defining secure compilation
for vulnerable C compartments [CSF'16, CCS'18]

21

Compartment 1

Extra challenges in defining secure compilation
for vulnerable C compartments [CSF'16, CCS'18]

• Program split into many mutually distrustful compartments

21

Compartment 2 Compartment 3 Compartment 4 Compartment 5

Compartment 1

Extra challenges in defining secure compilation
for vulnerable C compartments [CSF'16, CCS'18]

• Program split into many mutually distrustful compartments

• We don't know which compartments will be compromised

21

Compartment 2 Compartment 3 Compartment 4 Compartment 5

Compartment 1

Extra challenges in defining secure compilation
for vulnerable C compartments [CSF'16, CCS'18]

• Program split into many mutually distrustful compartments

• We don't know which compartments will be compromised

21

Compartment 2 Compartment 3 Compartment 4 Compartment 5Compartment 5

Compartment 1

Extra challenges in defining secure compilation
for vulnerable C compartments [CSF'16, CCS'18]

• Program split into many mutually distrustful compartments

• We don't know which compartments will be compromised

– every compartment should be protected from all the others

21

Compartment 2 Compartment 3 Compartment 4 Compartment 5Compartment 5

Compartment 1

Extra challenges in defining secure compilation
for vulnerable C compartments [CSF'16, CCS'18]

• Program split into many mutually distrustful compartments

• We don't know which compartments will be compromised

– every compartment should be protected from all the others

• We don't know when a compartment will be compromised

21

Compartment 2 Compartment 3 Compartment 4 Compartment 5Compartment 5

Compartment 1

Extra challenges in defining secure compilation
for vulnerable C compartments [CSF'16, CCS'18]

• Program split into many mutually distrustful compartments

• We don't know which compartments will be compromised

– every compartment should be protected from all the others

• We don't know when a compartment will be compromised

21

Compartment 2 Compartment 3 Compartment 4Compartment 4 Compartment 5Compartment 5

Compartment 1

Extra challenges in defining secure compilation
for vulnerable C compartments [CSF'16, CCS'18]

• Program split into many mutually distrustful compartments

• We don't know which compartments will be compromised

– every compartment should be protected from all the others

• We don't know when a compartment will be compromised

21

Compartment 1 Compartment 2 Compartment 3 Compartment 4Compartment 4 Compartment 5Compartment 5

Compartment 1

Extra challenges in defining secure compilation
for vulnerable C compartments [CSF'16, CCS'18]

• Program split into many mutually distrustful compartments

• We don't know which compartments will be compromised

– every compartment should be protected from all the others

• We don't know when a compartment will be compromised

21

Compartment 1 Compartment 2 Compartment 3 Compartment 4Compartment 4 Compartment 5Compartment 5

Compartment 1

Extra challenges in defining secure compilation
for vulnerable C compartments [CSF'16, CCS'18]

• Program split into many mutually distrustful compartments

• We don't know which compartments will be compromised

– every compartment should be protected from all the others

• We don't know when a compartment will be compromised

– every compartment should receive protection until compromised

21

Compartment 1 Compartment 2 Compartment 3 Compartment 4Compartment 4 Compartment 5Compartment 5

Why is formalizing security for this hard?

• We want source-level security reasoning principles

– easier to reason about security of the C source language
if an application is compartmentalized

22

Why is formalizing security for this hard?

• We want source-level security reasoning principles

– easier to reason about security of the C source language
if an application is compartmentalized

• ... even in the presence of undefined behavior

– can't be expressed at all by source language semantics!

22

Why is formalizing security for this hard?

• We want source-level security reasoning principles

– easier to reason about security of the C source language
if an application is compartmentalized

• ... even in the presence of undefined behavior

– can't be expressed at all by source language semantics!

– what does the following program do?

#include <string.h>

int main (int argc, char **argv) {

char c[12];

strcpy(c, argv[1]);

return 0;

} 22

Why is formalizing security for this hard?

• We want source-level security reasoning principles

– easier to reason about security of the C source language
if an application is compartmentalized

• ... even in the presence of undefined behavior

– can't be expressed at all by source language semantics!

– what does the following program do?

#include <string.h>

int main (int argc, char **argv) {

char c[12];

strcpy(c, argv[1]);

return 0;

} 22

Why is formalizing security for this hard?

• We want source-level security reasoning principles

– easier to reason about security of the C source language
if an application is compartmentalized

• ... even in the presence of undefined behavior

– can't be expressed at all by source language semantics!

– what does the following program do?

#include <string.h>

int main (int argc, char **argv) {

char c[12];

strcpy(c, argv[1]);

return 0;

} 22

Key idea: secure compartmentalization restricts the scope of undefined behavior:
(1) spatially, to only the compartment encountering it

(2) temporally, only give up on a compartment once compromised

i0 i1 i2

C0 C1 C2↓ ↓ ↓ ⇝machine mIf then

Security
definition:

24

i0 i1 i2

C0 C1 C2

∃ a sequence of compartment compromises explaining finite IO trace prefix m
in the source language, for instance m=m1·m2·m3 and

↓ ↓ ↓ ⇝machine mIf then

Security
definition:

24

i0 i1 i2

C0 C1 C2

∃ a sequence of compartment compromises explaining finite IO trace prefix m
in the source language, for instance m=m1·m2·m3 and

↓ ↓ ↓ ⇝machine m

i0 i1 i2

C0 C1 C2
⇝source m1·Undef(C1)

↯
(1)

If then

Security
definition:

24

i0 i1 i2

C0 C1 C2

∃ a sequence of compartment compromises explaining finite IO trace prefix m
in the source language, for instance m=m1·m2·m3 and

↓ ↓ ↓ ⇝machine m

i0 i1 i2

C0 C1 C2
⇝source m1·Undef(C1)

↯
(1)

(2)
i0 i1 i2

C0 A1 C2
⇝source m1·m2·Undef(C2)

↯
∃A1.

If then

Security
definition:

24

i0 i1 i2

C0 C1 C2

∃ a sequence of compartment compromises explaining finite IO trace prefix m
in the source language, for instance m=m1·m2·m3 and

↓ ↓ ↓ ⇝machine m

i0 i1 i2

C0 C1 C2
⇝source m1·Undef(C1)

↯
(1)

(2)
i0 i1 i2

C0 A1 C2
⇝source m1·m2·Undef(C2)

↯

(3)
i0 i1 i2

C0 A1 A2
⇝source m1·m2·m3

∃A1.

∃A2.

If then

Security
definition:

24

i0 i1 i2

C0 C1 C2

∃ a sequence of compartment compromises explaining finite IO trace prefix m
in the source language, for instance m=m1·m2·m3 and

↓ ↓ ↓ ⇝machine m

i0 i1 i2

C0 C1 C2
⇝source m1·Undef(C1)

↯
(1)

(2)
i0 i1 i2

C0 A1 C2
⇝source m1·m2·Undef(C2)

↯

(3)
i0 i1 i2

C0 A1 A2
⇝source m1·m2·m3

Finite prefix m records which
compartment encountered
undefined behavior and
allows us to rewind execution

∃A1.

∃A2.

If then

Security
definition:

24

i0 i1 i2

C0 C1 C2

∃ a sequence of compartment compromises explaining finite IO trace prefix m
in the source language, for instance m=m1·m2·m3 and

↓ ↓ ↓ ⇝machine m

i0 i1 i2

C0 C1 C2
⇝source m1·Undef(C1)

↯
(1)

(2)
i0 i1 i2

C0 A1 C2
⇝source m1·m2·Undef(C2)

↯

(3)
i0 i1 i2

C0 A1 A2
⇝source m1·m2·m3

Finite prefix m records which
compartment encountered
undefined behavior and
allows us to rewind execution

∃A1.

∃A2.

If then

Security
definition:

24

We can reduce this to a variant of robust safety preservation [CCS'18]

CompCert C
with compartments

15

CompCert C
with compartments

SECOMP: CompCert extended with secure compartments

15

CompCert C
with compartments

CompCert RISC-V ASM
with compartments

SECOMP: CompCert extended with secure compartments

15

magically secure semantics

CompCert C
with compartments

CompCert RISC-V ASM
with compartments

vanilla ASM

SECOMP: CompCert extended with secure compartments

15

magically secure semantics

Software-Fault Isolation

CompCert C
with compartments

CompCert RISC-V ASM
with compartments

Micro-Policies: ASM
with programmable tags

vanilla ASM

SECOMP: CompCert extended with secure compartments

15

magically secure semantics

Hardware-accelerated enforcement

[POPL'14, S&P'15, ASPLOS'15,
POST'18, CCS'18, CSF'23]

Software-Fault Isolation

CompCert C
with compartments

CompCert RISC-V ASM
with compartments

Micro-Policies: ASM
with programmable tags

vanilla ASM

SECOMP: CompCert extended with secure compartments

15

magically secure semantics

Hardware-accelerated enforcement

[POPL'14, S&P'15, ASPLOS'15,
POST'18, CCS'18, CSF'23]

Software-Fault Isolation

Done for simplified languages,
yet to be ported to RISC-V

CompCert C
with compartments

CompCert RISC-V ASM
with compartments

Micro-Policies: ASM
with programmable tags

vanilla ASM

SECOMP: CompCert extended with secure compartments

CHERI RISC-V
capability machine

15

magically secure semantics

Hardware-accelerated enforcement

[POPL'14, S&P'15, ASPLOS'15,
POST'18, CCS'18, CSF'23]

Software-Fault Isolation

Done for simplified languages,
yet to be ported to RISC-V

(inspiration for ARM Morello)

CompCert
extended with
compartments

16

CompCert
extended with
compartments

16

mutually distrustful,
with clearly specified interfaces,
interacting via procedure calls

CompCert
extended with
compartments

16

all 19 verified compilation passes
from Clight to RISC-V ASM
(magically secure semantics)

mutually distrustful,
with clearly specified interfaces,
interacting via procedure calls

CompCert
extended with
compartments

16

all 19 verified compilation passes
from Clight to RISC-V ASM
(magically secure semantics)

mutually distrustful,
with clearly specified interfaces,
interacting via procedure calls

CompCert
extended with
compartments

16

all 19 verified compilation passes
from Clight to RISC-V ASM
(magically secure semantics)

mutually distrustful,
with clearly specified interfaces,
interacting via procedure calls

CompCert
extended with
compartments

16

all 19 verified compilation passes
from Clight to RISC-V ASM
(magically secure semantics)

extended compiler correctness
18K LoC, only 13.6% change,
reused for security

mutually distrustful,
with clearly specified interfaces,
interacting via procedure calls

Capabilities Backend

• Targeting variant of CHERI RISC-V capability machine
– capabilities = unforgeable pointers with base and bounds

17

Capabilities Backend

• Targeting variant of CHERI RISC-V capability machine
– capabilities = unforgeable pointers with base and bounds

– we only enforce compartment isolation, not memory safety

17

Capabilities Backend

• Targeting variant of CHERI RISC-V capability machine
– capabilities = unforgeable pointers with base and bounds

– we only enforce compartment isolation, not memory safety

• Secure and efficient calling convention enforcing stack safety
[Aïna Linn Georges et al, Le temps de cerises, OOPSLA 2022]

17

Capabilities Backend

• Targeting variant of CHERI RISC-V capability machine
– capabilities = unforgeable pointers with base and bounds

– we only enforce compartment isolation, not memory safety

• Secure and efficient calling convention enforcing stack safety
[Aïna Linn Georges et al, Le temps de cerises, OOPSLA 2022]

– Uninitialized capabilities: cannot read memory before initializing

– Directed capabilities: cannot access old stack frames

17

Capabilities Backend

• Targeting variant of CHERI RISC-V capability machine
– capabilities = unforgeable pointers with base and bounds

– we only enforce compartment isolation, not memory safety

• Secure and efficient calling convention enforcing stack safety
[Aïna Linn Georges et al, Le temps de cerises, OOPSLA 2022]

– Uninitialized capabilities: cannot read memory before initializing

– Directed capabilities: cannot access old stack frames

• Mutual distrustful compartments: capability-protected wrappers
– on calls and returns clear registers and

prevent passing capabilities between compartments

17

18

Proving that our compilation chain
for C compartments achieves secure compilation

18

Proving that our compilation chain
for C compartments achieves secure compilation

• such proofs generally very difficult and tedious
– wrong full abstraction conjecture survived decades [Devriese et al. POPL'18]

– 250 pages of proof on paper even for toy compilers

18

Proving that our compilation chain
for C compartments achieves secure compilation

• such proofs generally very difficult and tedious
– wrong full abstraction conjecture survived decades [Devriese et al. POPL'18]

– 250 pages of proof on paper even for toy compilers

• we work on more scalable proof techniques

18

Proving that our compilation chain
for C compartments achieves secure compilation

• such proofs generally very difficult and tedious
– wrong full abstraction conjecture survived decades [Devriese et al. POPL'18]

– 250 pages of proof on paper even for toy compilers

• we work on more scalable proof techniques

• we do machine-checked proofs in the Coq proof assistant

18

Proving that our compilation chain
for C compartments achieves secure compilation

• such proofs generally very difficult and tedious
– wrong full abstraction conjecture survived decades [Devriese et al. POPL'18]

– 250 pages of proof on paper even for toy compilers

• we work on more scalable proof techniques

• we do machine-checked proofs in the Coq proof assistant

• as stopgap we use property-based testing [POPL'17, ICFP'13, ITP'15, JFP'16]

• to find wrong conjectures early

• to deal with the parts we couldn't (yet) verify

18

Large subset of C
with compartments

RISC-V ASM
with compartments

Micro-Policies: ASM
with programmable tags

vanilla ASM

SECOMP

CHERI RISC-V
capability machine

19

Software-Fault Isolation

Done for simpler languages,
yet to be ported to RISC-V

Large subset of C
with compartments

RISC-V ASM
with compartments

Micro-Policies: ASM
with programmable tags

vanilla ASM

SECOMP

CHERI RISC-V
capability machine

19

Software-Fault Isolation

Done for simpler languages,
yet to be ported to RISC-V

Machine-checked
proofs in Coq

Large subset of C
with compartments

RISC-V ASM
with compartments

Micro-Policies: ASM
with programmable tags

vanilla ASM

SECOMP

CHERI RISC-V
capability machine

Scalable proof technique for secure compilation
• first applied to simpler languages [CCS'18, CSF'22]

19

Software-Fault Isolation

Done for simpler languages,
yet to be ported to RISC-V

Machine-checked
proofs in Coq

Large subset of C
with compartments

RISC-V ASM
with compartments

Micro-Policies: ASM
with programmable tags

vanilla ASM

SECOMP

CHERI RISC-V
capability machine

Scalable proof technique for secure compilation
• first applied to simpler languages [CCS'18, CSF'22]
• then scaled up to C compartments [CCS'24]

–reuses extended CompCert correctness proof (~130K LoC)
–verified strong secure compilation property (+ ~43K LoC)

19

Software-Fault Isolation

Done for simpler languages,
yet to be ported to RISC-V

Machine-checked
proofs in Coq

Large subset of C
with compartments

RISC-V ASM
with compartments

Micro-Policies: ASM
with programmable tags

vanilla ASM

SECOMP

CHERI RISC-V
capability machine

Scalable proof technique for secure compilation
• first applied to simpler languages [CCS'18, CSF'22]
• then scaled up to C compartments [CCS'24]

–reuses extended CompCert correctness proof (~130K LoC)
–verified strong secure compilation property (+ ~43K LoC)

•milestone in terms of realism!

19

Software-Fault Isolation

Done for simpler languages,
yet to be ported to RISC-V

Machine-checked
proofs in Coq

Large subset of C
with compartments

RISC-V ASM
with compartments

Micro-Policies: ASM
with programmable tags

vanilla ASM

SECOMP

CHERI RISC-V
capability machine

Scalable proof technique for secure compilation
• first applied to simpler languages [CCS'18, CSF'22]
• then scaled up to C compartments [CCS'24]

–reuses extended CompCert correctness proof (~130K LoC)
–verified strong secure compilation property (+ ~43K LoC)

•milestone in terms of realism!
–optimizing C compiler with 19 passes

19

Software-Fault Isolation

Done for simpler languages,
yet to be ported to RISC-V

Machine-checked
proofs in Coq

Large subset of C
with compartments

RISC-V ASM
with compartments

Micro-Policies: ASM
with programmable tags

vanilla ASM

SECOMP

CHERI RISC-V
capability machine

Scalable proof technique for secure compilation
• first applied to simpler languages [CCS'18, CSF'22]
• then scaled up to C compartments [CCS'24]

–reuses extended CompCert correctness proof (~130K LoC)
–verified strong secure compilation property (+ ~43K LoC)

•milestone in terms of realism!
–optimizing C compiler with 19 passes

19

Software-Fault Isolation

Done for simpler languages,
yet to be ported to RISC-V

Machine-checked
proofs in Coq

Systematic testing

Large subset of C
with compartments

RISC-V ASM
with compartments

Micro-Policies: ASM
with programmable tags

vanilla ASM

SECOMP

CHERI RISC-V
capability machine

Scalable proof technique for secure compilation
• first applied to simpler languages [CCS'18, CSF'22]
• then scaled up to C compartments [CCS'24]

–reuses extended CompCert correctness proof (~130K LoC)
–verified strong secure compilation property (+ ~43K LoC)

•milestone in terms of realism!
–optimizing C compiler with 19 passes

19

Software-Fault Isolation

Done for simpler languages,
yet to be ported to RISC-V

Machine-checked
proofs in Coq

Big verification challenge for the future

Open problem: verified backends

20

Open problem: verified backends

• Currently we only implemented a SECOMP backend
based on CHERI RISC-V plus fancy capabilities
– would be nice to also have backends targeting vanilla CHERI RISC-V or Arm Morello

– would be nice to also implement a Wasm backend (software fault isolation)

20

Open problem: verified backends

• Currently we only implemented a SECOMP backend
based on CHERI RISC-V plus fancy capabilities
– would be nice to also have backends targeting vanilla CHERI RISC-V or Arm Morello

– would be nice to also implement a Wasm backend (software fault isolation)

• These backends do the actual security enforcement
– so they would be great targets for formal verification

20

Open problem: verified backends

• Currently we only implemented a SECOMP backend
based on CHERI RISC-V plus fancy capabilities
– would be nice to also have backends targeting vanilla CHERI RISC-V or Arm Morello

– would be nice to also implement a Wasm backend (software fault isolation)

• These backends do the actual security enforcement
– so they would be great targets for formal verification

• Verifying backends is challenging though

– e.g. more concrete view of memory as array of bytes (vs CompCert one)

– once code stored in memory, can no longer hide all the information about
compartment's code (code layout leaks)

• proof step inspired by full abstraction doesn't work all the way down (recomposition)

20

Extending proof technique in other ways

21

Extending proof technique in other ways

• Fine-grained dynamic memory sharing by capability passing (on CHERI or Morello)

– already proved in Coq in simpler setting [Akram El-Korashy et al, CSF'22]

– A Semantic Approach to Robust Property Preservation [Niklas Mück et al, PriSC'25]

• solves this (and previous) problem using DimSum multi-language semantics framework based on Iris

21

Extending proof technique in other ways

• Fine-grained dynamic memory sharing by capability passing (on CHERI or Morello)

– already proved in Coq in simpler setting [Akram El-Korashy et al, CSF'22]

– A Semantic Approach to Robust Property Preservation [Niklas Mück et al, PriSC'25]

• solves this (and previous) problem using DimSum multi-language semantics framework based on Iris

• Beyond preserving safety against adversarial contexts

21

Extending proof technique in other ways

• Fine-grained dynamic memory sharing by capability passing (on CHERI or Morello)

– already proved in Coq in simpler setting [Akram El-Korashy et al, CSF'22]

– A Semantic Approach to Robust Property Preservation [Niklas Mück et al, PriSC'25]

• solves this (and previous) problem using DimSum multi-language semantics framework based on Iris

• Beyond preserving safety against adversarial contexts

– towards preserving hyperproperties (data confidentiality)

21

Extending proof technique in other ways

• Fine-grained dynamic memory sharing by capability passing (on CHERI or Morello)

– already proved in Coq in simpler setting [Akram El-Korashy et al, CSF'22]

– A Semantic Approach to Robust Property Preservation [Niklas Mück et al, PriSC'25]

• solves this (and previous) problem using DimSum multi-language semantics framework based on Iris

• Beyond preserving safety against adversarial contexts

– towards preserving hyperproperties (data confidentiality)

– even relational hyperproperties (observational equivalence)

21

Extending proof technique in other ways

• Fine-grained dynamic memory sharing by capability passing (on CHERI or Morello)

– already proved in Coq in simpler setting [Akram El-Korashy et al, CSF'22]

– A Semantic Approach to Robust Property Preservation [Niklas Mück et al, PriSC'25]

• solves this (and previous) problem using DimSum multi-language semantics framework based on Iris

• Beyond preserving safety against adversarial contexts

– towards preserving hyperproperties (data confidentiality)

– even relational hyperproperties (observational equivalence)

• secure compilation criteria strictly stronger than full abstraction

• can do this for CompCert, but won't hold for backends

[Jérémy Thibault et al, CSF'19 + ongoing work first presented at PriSC'21]

21

Enforcement tricky beyond safety
• Preserving hypersafety against adversarial contexts (e.g. data confidentiality)

22

Enforcement tricky beyond safety
• Preserving hypersafety against adversarial contexts (e.g. data confidentiality)

– challenging at the lowest level: micro-architectural side-channels attacks

22

Enforcement tricky beyond safety
• Preserving hypersafety against adversarial contexts (e.g. data confidentiality)

– challenging at the lowest level: micro-architectural side-channels attacks

– compartments running in the same process, "universal read gadgets" easy

22

Enforcement tricky beyond safety
• Preserving hypersafety against adversarial contexts (e.g. data confidentiality)

– challenging at the lowest level: micro-architectural side-channels attacks

– compartments running in the same process, "universal read gadgets" easy

• Started looking into Spectre defenses compilers can insert

22

Enforcement tricky beyond safety
• Preserving hypersafety against adversarial contexts (e.g. data confidentiality)

– challenging at the lowest level: micro-architectural side-channels attacks

– compartments running in the same process, "universal read gadgets" easy

• Started looking into Spectre defenses compilers can insert

– Speculative Load Hardening (implemented in LLVM + selective variant in Jasmin DSL)

• speculative constant time (chapter in new Security Foundations draft volume)

22

Enforcement tricky beyond safety
• Preserving hypersafety against adversarial contexts (e.g. data confidentiality)

– challenging at the lowest level: micro-architectural side-channels attacks

– compartments running in the same process, "universal read gadgets" easy

• Started looking into Spectre defenses compilers can insert

– Speculative Load Hardening (implemented in LLVM + selective variant in Jasmin DSL)

• speculative constant time (chapter in new Security Foundations draft volume)

– Strong/Ultimate SLH and New Flexible SLH variant enforce relative security (paper soon)

22

Enforcement tricky beyond safety
• Preserving hypersafety against adversarial contexts (e.g. data confidentiality)

– challenging at the lowest level: micro-architectural side-channels attacks

– compartments running in the same process, "universal read gadgets" easy

• Started looking into Spectre defenses compilers can insert

– Speculative Load Hardening (implemented in LLVM + selective variant in Jasmin DSL)

• speculative constant time (chapter in new Security Foundations draft volume)

– Strong/Ultimate SLH and New Flexible SLH variant enforce relative security (paper soon)

– Future work: property-based testing for scaling this up to LLVM and x86/ARM

22

Enforcement tricky beyond safety
• Preserving hypersafety against adversarial contexts (e.g. data confidentiality)

– challenging at the lowest level: micro-architectural side-channels attacks

– compartments running in the same process, "universal read gadgets" easy

• Started looking into Spectre defenses compilers can insert

– Speculative Load Hardening (implemented in LLVM + selective variant in Jasmin DSL)

• speculative constant time (chapter in new Security Foundations draft volume)

– Strong/Ultimate SLH and New Flexible SLH variant enforce relative security (paper soon)

– Future work: property-based testing for scaling this up to LLVM and x86/ARM

• Combining this with compartmentalization practically interesting

– Especially for languages like Wasm, which are used for same-process isolation

22

Protecting higher-level abstractions
(than those of the C programming language)

23

Protecting higher-level abstractions
(than those of the C programming language)

• Securely Compiling Verified F* Programs With IO [Cezar Andrici et al, POPL'24]

– using reference monitoring and higher-order contracts

– first step towards formally secure F*-OCaml interoperability? (lots of steps left though :)

23

Protecting higher-level abstractions
(than those of the C programming language)

• Securely Compiling Verified F* Programs With IO [Cezar Andrici et al, POPL'24]

– using reference monitoring and higher-order contracts

– first step towards formally secure F*-OCaml interoperability? (lots of steps left though :)

– preserving all relational hyperproperties against adversarial contexts

23

