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• suppose we have a secure source program ...
– For instance formally verified in F* [POPL'16,'17,'18,'20,'24, ICFP'17,'19, ...]

– e.g. EverCrypt verified crypto library, shipping in Firefox, Linux Kernel, ...

– Or a program written entirely in safe OCaml or Rust
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• Protect source-level abstractions all the way down
even against linked adversarial target code
– various enforcement mechanisms for sandboxing untrusted code:

software-fault isolation (SFI), capability machines, tagged architectures, ...

– shared responsibility: compiler, linker, loader, OS, HW

• This is very challenging:

– the originally proposed formal criterion was fully abstract compilation
[Abadi, Protection in programming-language translations. 1999]
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• Insecure languages like C enable devastating vulnerabilities

– undefined behavior pervasive in C: buffer overflows, use after frees,

double frees, invalid type casts, various concurrency bugs, ...

– undefined behavior also present in unsafe Rust, OCaml, ...

• Yet even the C language does provide some useful abstractions:

– structured control flow, procedures, pointers to shared memory

– but not enforced during compilation for programs with UB: all guarantees are lost!

– we add one more abstraction to C: fine-grained compartments that can naturally interact

• Secure compilation chain that protects these abstractions

– all the way down, at compartment boundaries (hopefully more efficient than removing UB)

– against compartments dynamically compromised by undefined behavior

– using the same kind of enforcement mechanisms for compartmentalization



16



16



16



16



16



17



• Question A:
What does it mean to securely compile a secure source 
program against linked adversarial target-level code?

17



• Question A:
What does it mean to securely compile a secure source 
program against linked adversarial target-level code?
– e.g. simple verified web server, linked with unverified libraries [POPL'24]

17



• Question A:
What does it mean to securely compile a secure source 
program against linked adversarial target-level code?
– e.g. simple verified web server, linked with unverified libraries [POPL'24]

• We want to enable source-level security reasoning

17



• Question A:
What does it mean to securely compile a secure source 
program against linked adversarial target-level code?
– e.g. simple verified web server, linked with unverified libraries [POPL'24]

• We want to enable source-level security reasoning
– linked adversarial target code cannot break the security of compiled program,

any more than some linked source code already could

17



• Question A:
What does it mean to securely compile a secure source 
program against linked adversarial target-level code?
– e.g. simple verified web server, linked with unverified libraries [POPL'24]

• We want to enable source-level security reasoning
– linked adversarial target code cannot break the security of compiled program,

any more than some linked source code already could

– no "low-level" attacks introduced by compilation and linking

17
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We explored many classes of properties one can preserve this way ...
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• Question A:
What does it mean to securely compile a secure source 
program against linked adversarial target-level code?

• Question B:
What does it mean for a compilation chain
for vulnerable C compartments to be secure?
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Compartment 1

Extra challenges in defining secure compilation
for vulnerable C compartments [CSF'16, CCS'18]

• Program split into many mutually distrustful compartments

• We don't know which compartments will be compromised

– every compartment should be protected from all the others

• We don't know when a compartment will be compromised

– every compartment should receive protection until compromised

21
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Why is formalizing security for this hard?

• We want source-level security reasoning principles

– easier to reason about security of the C source language
if an application is compartmentalized

• ... even in the presence of undefined behavior

– can't be expressed at all by source language semantics!

– what does the following program do?

#include <string.h>

int main (int argc, char **argv) {

char c[12];

strcpy(c, argv[1]);

return 0;

} 22

Key idea: secure compartmentalization restricts the scope of undefined behavior:
(1) spatially, to only the compartment encountering it

(2) temporally, only give up on a compartment once compromised



i0 i1 i2

C0 C1 C2↓ ↓ ↓ ⇝machine mIf then

Security
definition:

24



i0 i1 i2

C0 C1 C2

∃ a sequence of compartment compromises explaining finite IO trace prefix m
in the source language, for instance m=m1·m2·m3 and

↓ ↓ ↓ ⇝machine mIf then

Security
definition:

24



i0 i1 i2

C0 C1 C2

∃ a sequence of compartment compromises explaining finite IO trace prefix m
in the source language, for instance m=m1·m2·m3 and

↓ ↓ ↓ ⇝machine m

i0 i1 i2

C0 C1 C2
⇝source m1·Undef(C1)

↯
(1)

If then

Security
definition:

24



i0 i1 i2

C0 C1 C2

∃ a sequence of compartment compromises explaining finite IO trace prefix m
in the source language, for instance m=m1·m2·m3 and

↓ ↓ ↓ ⇝machine m

i0 i1 i2

C0 C1 C2
⇝source m1·Undef(C1)

↯
(1)

(2)
i0 i1 i2

C0 A1 C2
⇝source m1·m2·Undef(C2)

↯
∃A1.

If then

Security
definition:

24



i0 i1 i2

C0 C1 C2

∃ a sequence of compartment compromises explaining finite IO trace prefix m
in the source language, for instance m=m1·m2·m3 and

↓ ↓ ↓ ⇝machine m

i0 i1 i2

C0 C1 C2
⇝source m1·Undef(C1)

↯
(1)

(2)
i0 i1 i2

C0 A1 C2
⇝source m1·m2·Undef(C2)

↯

(3)
i0 i1 i2

C0 A1 A2
⇝source m1·m2·m3

∃A1.

∃A2.

If then

Security
definition:

24



i0 i1 i2

C0 C1 C2

∃ a sequence of compartment compromises explaining finite IO trace prefix m
in the source language, for instance m=m1·m2·m3 and

↓ ↓ ↓ ⇝machine m

i0 i1 i2

C0 C1 C2
⇝source m1·Undef(C1)

↯
(1)

(2)
i0 i1 i2

C0 A1 C2
⇝source m1·m2·Undef(C2)

↯

(3)
i0 i1 i2

C0 A1 A2
⇝source m1·m2·m3

Finite prefix m records which 
compartment encountered
undefined behavior and 
allows us to rewind execution

∃A1.

∃A2.

If then

Security
definition:

24



i0 i1 i2

C0 C1 C2

∃ a sequence of compartment compromises explaining finite IO trace prefix m
in the source language, for instance m=m1·m2·m3 and

↓ ↓ ↓ ⇝machine m

i0 i1 i2

C0 C1 C2
⇝source m1·Undef(C1)

↯
(1)

(2)
i0 i1 i2

C0 A1 C2
⇝source m1·m2·Undef(C2)

↯

(3)
i0 i1 i2

C0 A1 A2
⇝source m1·m2·m3

Finite prefix m records which 
compartment encountered
undefined behavior and 
allows us to rewind execution

∃A1.

∃A2.

If then

Security
definition:

24

We can reduce this to a variant of robust safety preservation [CCS'18]
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CompCert RISC-V ASM
with compartments

Micro-Policies: ASM
with programmable tags

vanilla ASM

SECOMP: CompCert extended with secure compartments

CHERI RISC-V
capability machine

15

magically secure semantics

Hardware-accelerated enforcement

[POPL'14, S&P'15, ASPLOS'15,
POST'18, CCS'18, CSF'23]

Software-Fault Isolation

Done for simplified languages,
yet to be ported to RISC-V

(inspiration for ARM Morello)
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CompCert
extended with 
compartments

16

all 19 verified compilation passes
from Clight to RISC-V ASM
(magically secure semantics)

extended compiler correctness
18K LoC, only 13.6% change,
reused for security

mutually distrustful,
with clearly specified interfaces,
interacting via procedure calls
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• Targeting variant of CHERI RISC-V capability machine
– capabilities = unforgeable pointers with base and bounds

– we only enforce compartment isolation, not memory safety

• Secure and efficient calling convention enforcing stack safety
[Aïna Linn Georges et al, Le temps de cerises, OOPSLA 2022]

– Uninitialized capabilities: cannot read memory before initializing

– Directed capabilities: cannot access old stack frames

• Mutual distrustful compartments: capability-protected wrappers
– on calls and returns clear registers and

prevent passing capabilities between compartments

17
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Proving that our compilation chain
for C compartments achieves secure compilation

• such proofs generally very difficult and tedious
– wrong full abstraction conjecture survived decades [Devriese et al. POPL'18]

– 250 pages of proof on paper even for toy compilers

• we work on more scalable proof techniques

• we do machine-checked proofs in the Coq proof assistant

• as stopgap we use property-based testing [POPL'17, ICFP'13, ITP'15, JFP'16]

• to find wrong conjectures early

• to deal with the parts we couldn't (yet) verify

18
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RISC-V ASM
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Micro-Policies: ASM
with programmable tags

vanilla ASM

SECOMP

CHERI RISC-V
capability machine

Scalable proof technique for secure compilation
• first applied to simpler languages [CCS'18, CSF'22]
• then scaled up to C compartments [CCS'24]

–reuses extended CompCert correctness proof (~130K LoC)
–verified strong secure compilation property (+ ~43K LoC)

•milestone in terms of realism!
–optimizing C compiler with 19 passes
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Software-Fault Isolation

Done for simpler languages,
yet to be ported to RISC-V

Machine-checked
proofs in Coq

Big verification challenge for the future
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• Currently we only implemented a SECOMP backend
based on CHERI RISC-V plus fancy capabilities
– would be nice to also have backends targeting vanilla CHERI RISC-V or Arm Morello

– would be nice to also implement a Wasm backend (software fault isolation)

• These backends do the actual security enforcement
– so they would be great targets for formal verification

• Verifying backends is challenging though

– e.g. more concrete view of memory as array of bytes (vs CompCert one)

– once code stored in memory, can no longer hide all the information about 
compartment's code (code layout leaks)

• proof step inspired by full abstraction doesn't work all the way down (recomposition)

20
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Extending proof technique in other ways

• Fine-grained dynamic memory sharing by capability passing (on CHERI or Morello)

– already proved in Coq in simpler setting [Akram El-Korashy et al, CSF'22]

– A Semantic Approach to Robust Property Preservation [Niklas Mück et al, PriSC'25]

• solves this (and previous) problem using DimSum multi-language semantics framework based on Iris 

• Beyond preserving safety against adversarial contexts

– towards preserving hyperproperties (data confidentiality)

– even relational hyperproperties (observational equivalence)

• secure compilation criteria strictly stronger than full abstraction

• can do this for CompCert, but won't hold for backends

[Jérémy Thibault et al, CSF'19 + ongoing work first presented at PriSC'21]
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Enforcement tricky beyond safety
• Preserving hypersafety against adversarial contexts (e.g. data confidentiality)

– challenging at the lowest level: micro-architectural side-channels attacks

– compartments running in the same process, "universal read gadgets" easy

• Started looking into Spectre defenses compilers can insert

– Speculative Load Hardening (implemented in LLVM + selective variant in Jasmin DSL)

• speculative constant time (chapter in new Security Foundations draft volume)

– Strong/Ultimate SLH and New Flexible SLH variant enforce relative security (paper soon)

– Future work: property-based testing for scaling this up to LLVM and x86/ARM

• Combining this with compartmentalization practically interesting

– Especially for languages like Wasm, which are used for same-process isolation
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• Securely Compiling Verified F* Programs With IO [Cezar Andrici et al, POPL'24]
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Protecting higher-level abstractions
(than those of the C programming language)

• Securely Compiling Verified F* Programs With IO [Cezar Andrici et al, POPL'24]

– using reference monitoring and higher-order contracts

– first step towards formally secure F*-OCaml interoperability? (lots of steps left though :)

– preserving all relational hyperproperties against adversarial contexts
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