
1

Joint work with
Carmine Abate, Cezar-Constantin Andrici, Sven Argo, Arthur Azevedo de Amorim,

Roberto Blanco, Ştefan Ciobâcă, Adrien Durier, Akram El-Korashy, Boris Eng,
Ana Nora Evans, Guglielmo Fachini, Deepak Garg, Aïna Linn Georges, Théo Laurent, 
Dongjae Lee, Guido Martínez, Marco Patrignani, Benjamin Pierce, Exequiel Rivas, 

Marco Stronati, Éric Tanter, Jérémy Thibault, Andrew Tolmach, Théo Winterhalter, ...

In part supported by ERC Starting Grant SECOMP

Hiring: PostDoc, interns, PhD students



The C programming language is insecure

–any buffer overflow can be catastrophic

2



The C programming language is insecure

–any buffer overflow can be catastrophic

–~100 different undefined behaviors

in the usual C compiler:
• use after frees and double frees, invalid type casts, 

signed integer overflows, concurrency bugs, ...

2



The C programming language is insecure

–any buffer overflow can be catastrophic

–~100 different undefined behaviors

in the usual C compiler:
• use after frees and double frees, invalid type casts, 

signed integer overflows, concurrency bugs, ...

– root cause, but very challenging to fix:

• efficiency, precision, scalability,

backwards compatibility, deployment

2



Mitigation: compartmentalization

3



Mitigation: compartmentalization

• The C programming language does provide useful abstractions
– structured control flow, procedures, pointers & shared memory

3



Mitigation: compartmentalization

• The C programming language does provide useful abstractions
– structured control flow, procedures, pointers & shared memory

– used in most programs, but not enforced at all during compilation

3



Mitigation: compartmentalization

• The C programming language does provide useful abstractions
– structured control flow, procedures, pointers & shared memory

– used in most programs, but not enforced at all during compilation

– add fine-grained compartments to C which can naturally interact

3



Mitigation: compartmentalization

• The C programming language does provide useful abstractions
– structured control flow, procedures, pointers & shared memory

– used in most programs, but not enforced at all during compilation

– add fine-grained compartments to C which can naturally interact

• Secure compilation chain that protects these abstractions
– all the way down, at compartments boundaries (so hopefully more efficient)

3



Mitigation: compartmentalization

• The C programming language does provide useful abstractions
– structured control flow, procedures, pointers & shared memory

– used in most programs, but not enforced at all during compilation

– add fine-grained compartments to C which can naturally interact

• Secure compilation chain that protects these abstractions
– all the way down, at compartments boundaries (so hopefully more efficient)

– against compartments dynamically compromised by undefined behavior

3



Mitigation: compartmentalization

• The C programming language does provide useful abstractions
– structured control flow, procedures, pointers & shared memory

– used in most programs, but not enforced at all during compilation

– add fine-grained compartments to C which can naturally interact

• Secure compilation chain that protects these abstractions
– all the way down, at compartments boundaries (so hopefully more efficient)

– against compartments dynamically compromised by undefined behavior

• Targeting various enforcement mechanisms
– software-fault isolation (SFI), capability machines, ...

3



4



4



4



4



4



5



• What does it mean for a compilation chain
for vulnerable C compartments to be secure?

5



• What does it mean for a compilation chain
for vulnerable C compartments to be secure?

• As a warmup, I will first show an easier definition
– protecting 1 trusted compartment from 1 untrusted one (arbitrary ASM)

– trusted compartment has no vulnerabilities, e.g. formally verified
• e.g. EverCrypt verified crypto library, shipping in Firefox, Linux Kernel, ...

• e.g. simple verified web server, linked with unverified libraries [POPL'24]

• What does it mean to securely compile such a verified 
compartment against linked adversarial target-level code?

5



Preserving security against adversarial contexts

6



∀security property π

Preserving security against adversarial contexts

6



verified
program

∀security property π

Preserving security against adversarial contexts

6



verified
program satisfies π

∀security property π

Preserving security against adversarial contexts

6



F* code
verified

program satisfies πF*code∀
∀security property π

Preserving security against adversarial contexts

6



F* code
verified

program

compiled
program

compiler

satisfies πF*code∀
∀security property π

Preserving security against adversarial contexts

6



F* code

low-level
code

verified
program

compiled
program

compiler

satisfies π

satisfies π

F*code∀

low-level
code∀

⇒
∀security property π

Preserving security against adversarial contexts

6



F* code

low-level
code

verified
program

compiled
program

compiler

satisfies π

satisfies π
no extra powerprotected

F*code∀

low-level
code∀

⇒
∀security property π

Preserving security against adversarial contexts

6



F* code

low-level
code

verified
program

compiled
program

compiler

satisfies π

satisfies π
no extra powerprotected

Where π can e.g. be "the web server's private key is not leaked"

F*code∀

low-level
code∀

⇒
∀security property π

Preserving security against adversarial contexts

6



F* code

low-level
code

verified
program

compiled
program

compiler

satisfies π

satisfies π
no extra powerprotected

Where π can e.g. be "the web server's private key is not leaked"

F*code∀

low-level
code∀

⇒
∀security property π

Preserving security against adversarial contexts

6



F* code

low-level
code

verified
program

compiled
program

compiler

satisfies π

satisfies π
no extra powerprotected

Where π can e.g. be "the web server's private key is not leaked"

F*code∀

low-level
code∀

⇒
∀security property π

Preserving security against adversarial contexts

6

We explored many classes of properties one can preserve this way ...



Journey Beyond Full Abstraction [CSF'19, ESOP'20, TOPLAS'21]

7



Journey Beyond Full Abstraction [CSF'19, ESOP'20, TOPLAS'21]

trace properties
(safety & liveness)

7



Journey Beyond Full Abstraction [CSF'19, ESOP'20, TOPLAS'21]

trace properties
(safety & liveness)

hyperproperties
(noninterference)

7



Journey Beyond Full Abstraction [CSF'19, ESOP'20, TOPLAS'21]

trace properties
(safety & liveness)

hyperproperties
(noninterference)

relational
hyperproperties
(trace equivalence)

7



Journey Beyond Full Abstraction [CSF'19, ESOP'20, TOPLAS'21]

trace properties
(safety & liveness)

hyperproperties
(noninterference)

relational
hyperproperties
(trace equivalence)

7



More secure

More efficient
to enforce

Easier to prove

Journey Beyond Full Abstraction [CSF'19, ESOP'20, TOPLAS'21]

trace properties
(safety & liveness)

hyperproperties
(noninterference)

relational
hyperproperties
(trace equivalence)

No one-size-fits-all security criterion

7



More secure

More efficient
to enforce

Easier to prove

Journey Beyond Full Abstraction [CSF'19, ESOP'20, TOPLAS'21]

trace properties
(safety & liveness)

hyperproperties
(noninterference)

relational
hyperproperties
(trace equivalence)

only integrity

No one-size-fits-all security criterion

7



More secure

More efficient
to enforce

Easier to prove

Journey Beyond Full Abstraction [CSF'19, ESOP'20, TOPLAS'21]

trace properties
(safety & liveness)

hyperproperties
(noninterference)

relational
hyperproperties
(trace equivalence)

only integrity

+ data confidentiality

No one-size-fits-all security criterion

7



More secure

More efficient
to enforce

Easier to prove

Journey Beyond Full Abstraction [CSF'19, ESOP'20, TOPLAS'21]

trace properties
(safety & liveness)

hyperproperties
(noninterference)

relational
hyperproperties
(trace equivalence)

only integrity

+ data confidentiality

+ code confidentiality

No one-size-fits-all security criterion

7



More secure

More efficient
to enforce

Easier to prove

Journey Beyond Full Abstraction [CSF'19, ESOP'20, TOPLAS'21]

trace properties
(safety & liveness)

hyperproperties
(noninterference)

relational
hyperproperties
(trace equivalence)

only integrity

+ data confidentiality

+ code confidentiality

No one-size-fits-all security criterion

let's start with an "easier" one

7



More secure

More efficient
to enforce

Easier to prove

Journey Beyond Full Abstraction [CSF'19, ESOP'20, TOPLAS'21]

trace properties
(safety & liveness)

hyperproperties
(noninterference)

relational
hyperproperties
(trace equivalence)

only integrity

+ data confidentiality

+ code confidentiality

No one-size-fits-all security criterion

fine for code without vulnerabilities (e.g. verified) , but ...

let's start with an "easier" one

7



Extra challenges in defining secure compilation
for vulnerable C compartments [CSF'16, CCS'18]

8



Compartment 1

Extra challenges in defining secure compilation
for vulnerable C compartments [CSF'16, CCS'18]

• Program split into many mutually distrustful compartments

Compartment 2 Compartment 3 Compartment 4 Compartment 5

8



Compartment 1

Extra challenges in defining secure compilation
for vulnerable C compartments [CSF'16, CCS'18]

• Program split into many mutually distrustful compartments

• We don't know which compartments will be compromised

Compartment 2 Compartment 3 Compartment 4 Compartment 5

8



Compartment 1

Extra challenges in defining secure compilation
for vulnerable C compartments [CSF'16, CCS'18]

• Program split into many mutually distrustful compartments

• We don't know which compartments will be compromised

Compartment 2 Compartment 3 Compartment 4 Compartment 5Compartment 5

8



Compartment 1

Extra challenges in defining secure compilation
for vulnerable C compartments [CSF'16, CCS'18]

• Program split into many mutually distrustful compartments

• We don't know which compartments will be compromised

– every compartment should be protected from all the others

Compartment 2 Compartment 3 Compartment 4 Compartment 5Compartment 5

8



Compartment 1

Extra challenges in defining secure compilation
for vulnerable C compartments [CSF'16, CCS'18]

• Program split into many mutually distrustful compartments

• We don't know which compartments will be compromised

– every compartment should be protected from all the others

• We don't know when a compartment will be compromised

Compartment 2 Compartment 3 Compartment 4 Compartment 5Compartment 5

8



Compartment 1

Extra challenges in defining secure compilation
for vulnerable C compartments [CSF'16, CCS'18]

• Program split into many mutually distrustful compartments

• We don't know which compartments will be compromised

– every compartment should be protected from all the others

• We don't know when a compartment will be compromised

Compartment 2 Compartment 3 Compartment 4Compartment 4 Compartment 5Compartment 5

8



Compartment 1

Extra challenges in defining secure compilation
for vulnerable C compartments [CSF'16, CCS'18]

• Program split into many mutually distrustful compartments

• We don't know which compartments will be compromised

– every compartment should be protected from all the others

• We don't know when a compartment will be compromised

Compartment 1 Compartment 2 Compartment 3 Compartment 4Compartment 4 Compartment 5Compartment 5

8



Compartment 1

Extra challenges in defining secure compilation
for vulnerable C compartments [CSF'16, CCS'18]

• Program split into many mutually distrustful compartments

• We don't know which compartments will be compromised

– every compartment should be protected from all the others

• We don't know when a compartment will be compromised

– every compartment should receive protection until compromised

Compartment 1 Compartment 2 Compartment 3 Compartment 4Compartment 4 Compartment 5Compartment 5

8



i0 i1 i2

C0 C1 C2↓ ↓ ↓ ⇝machine mIf then

Security
definition:

24



i0 i1 i2

C0 C1 C2

∃ a sequence of compartment compromises explaining the finite trace m
in the source language, for instance m=m1·m2·m3 and

↓ ↓ ↓ ⇝machine mIf then

Security
definition:

24



i0 i1 i2

C0 C1 C2

∃ a sequence of compartment compromises explaining the finite trace m
in the source language, for instance m=m1·m2·m3 and

↓ ↓ ↓ ⇝machine m

i0 i1 i2

C0 C1 C2
⇝source m1·Undef(C1)

↯
(1)

If then

Security
definition:

24



i0 i1 i2

C0 C1 C2

∃ a sequence of compartment compromises explaining the finite trace m
in the source language, for instance m=m1·m2·m3 and

↓ ↓ ↓ ⇝machine m

i0 i1 i2

C0 C1 C2
⇝source m1·Undef(C1)

↯
(1)

(2)
i0 i1 i2

C0 A1 C2
⇝source m1·m2·Undef(C2)

↯
∃A1.

If then

Security
definition:

24



i0 i1 i2

C0 C1 C2

∃ a sequence of compartment compromises explaining the finite trace m
in the source language, for instance m=m1·m2·m3 and

↓ ↓ ↓ ⇝machine m

i0 i1 i2

C0 C1 C2
⇝source m1·Undef(C1)

↯
(1)

(2)
i0 i1 i2

C0 A1 C2
⇝source m1·m2·Undef(C2)

↯

(3)
i0 i1 i2

C0 A1 A2
⇝source m1·m2·m3

∃A1.

∃A2.

If then

Security
definition:

24



i0 i1 i2

C0 C1 C2

∃ a sequence of compartment compromises explaining the finite trace m
in the source language, for instance m=m1·m2·m3 and

↓ ↓ ↓ ⇝machine m

i0 i1 i2

C0 C1 C2
⇝source m1·Undef(C1)

↯
(1)

(2)
i0 i1 i2

C0 A1 C2
⇝source m1·m2·Undef(C2)

↯

(3)
i0 i1 i2

C0 A1 A2
⇝source m1·m2·m3

Finite trace m records which 
compartment encountered
undefined behavior and 
allows us to rewind execution

∃A1.

∃A2.

If then

Security
definition:

24



i0 i1 i2

C0 C1 C2

∃ a sequence of compartment compromises explaining the finite trace m
in the source language, for instance m=m1·m2·m3 and

↓ ↓ ↓ ⇝machine m

i0 i1 i2

C0 C1 C2
⇝source m1·Undef(C1)

↯
(1)

(2)
i0 i1 i2

C0 A1 C2
⇝source m1·m2·Undef(C2)

↯

(3)
i0 i1 i2

C0 A1 A2
⇝source m1·m2·m3

Finite trace m records which 
compartment encountered
undefined behavior and 
allows us to rewind execution

∃A1.

∃A2.

If then

Security
definition:

24

We can reduce this to a variant of robust safety preservation [CCS'18]



We reduce our security goal to a variant of:

Robust Safety Preservation

10



We reduce our security goal to a variant of:

Robust Safety Preservation

source
context

source 
compartments 

source
context
trace t∀ .

∀source compartments.
∀π safety property.

⇒

⇝t⇒ t∈π

10



We reduce our security goal to a variant of:

Robust Safety Preservation

source
context

target
context

source 
compartments 

compiled
compartments

source
context
trace t∀

target 
context
trace t

.

.

compiler

∀source compartments.
∀π safety property.

⇒

⇝t⇒ t∈π

⇝t⇒ t∈π

10



We reduce our security goal to a variant of:

Robust Safety Preservation

source
context

target
context

source 
compartments 

compiled
compartments

source
context
trace t∀

target 
context
trace t

∀

.

.

compiler

∀source compartments.
∀π safety property.

⇒

⇝t⇒ t∈π

⇝t⇒ t∈π

⇔

proof-oriented characterizationrobust preservation of safety 10



We reduce our security goal to a variant of:

Robust Safety Preservation

target
context

source 
compartments 

compiled
compartments

target 
context∃ .

compiler

∀source compartments.
∀(bad/attack) finite trace m.

source
context

target
context

source 
compartments 

compiled
compartments

source
context
trace t∀

target 
context
trace t

∀

.

.

compiler

∀source compartments.
∀π safety property.

⇒

⇝t⇒ t∈π

⇝t⇒ t∈π

⇔

⇝m

proof-oriented characterizationrobust preservation of safety 10



We reduce our security goal to a variant of:

Robust Safety Preservation

source
context

target
context

source 
compartments 

compiled
compartments

source
context∃

target 
context∃

.

.

compiler

∀source compartments.
∀(bad/attack) finite trace m.

⇒

source
context

target
context

source 
compartments 

compiled
compartments

source
context
trace t∀

target 
context
trace t

∀

.

.

compiler

∀source compartments.
∀π safety property.

⇒

⇝t⇒ t∈π

⇝t⇒ t∈π

⇔

⇝m

⇝m

proof-oriented characterizationrobust preservation of safety 10



We reduce our security goal to a variant of:

Robust Safety Preservation

source
context

target
context

source 
compartments 

compiled
compartments

source
context∃

target 
context∃

.

.

compiler

∀source compartments.
∀(bad/attack) finite trace m.

⇒

source
context

target
context

source 
compartments 

compiled
compartments

source
context
trace t∀

target 
context
trace t

∀

.

.

compiler

∀source compartments.
∀π safety property.

⇒

⇝t⇒ t∈π

⇝t⇒ t∈π

⇔

⇝m

⇝m

back-
translation

proof-oriented characterizationrobust preservation of safety 10



CompCert C
with compartments

11



CompCert C
with compartments

SECOMP: CompCert extended with secure compartments

11



CompCert C
with compartments

CompCert RISC-V ASM
with compartments

SECOMP: CompCert extended with secure compartments

11

magically secure semantics



CompCert C
with compartments

CompCert RISC-V ASM
with compartments

vanilla ASM

SECOMP: CompCert extended with secure compartments

11

magically secure semantics

Software-Fault Isolation



CompCert C
with compartments

CompCert RISC-V ASM
with compartments

Micro-Policies: ASM
with programmable tags

vanilla ASM

SECOMP: CompCert extended with secure compartments

11

magically secure semantics

Hardware-accelerated enforcement

[POPL'14, S&P'15, ASPLOS'15,
POST'18, CCS'18, CSF'23]

Software-Fault Isolation



CompCert C
with compartments

CompCert RISC-V ASM
with compartments

Micro-Policies: ASM
with programmable tags

vanilla ASM

SECOMP: CompCert extended with secure compartments

11

magically secure semantics

Hardware-accelerated enforcement

[POPL'14, S&P'15, ASPLOS'15,
POST'18, CCS'18, CSF'23]

Software-Fault Isolation

Done for simplified languages,
yet to be ported to RISC-V



CompCert C
with compartments

CompCert RISC-V ASM
with compartments

Micro-Policies: ASM
with programmable tags

vanilla ASM

SECOMP: CompCert extended with secure compartments

CHERI RISC-V
capability machine

11

magically secure semantics

Hardware-accelerated enforcement

[POPL'14, S&P'15, ASPLOS'15,
POST'18, CCS'18, CSF'23]

Software-Fault Isolation

Done for simplified languages,
yet to be ported to RISC-V

(inspiration for ARM Morello)



CompCert C with Compartments

12



CompCert C with Compartments

• Various abstractions already there (e.g. procedures)

12



CompCert C with Compartments

• Various abstractions already there (e.g. procedures)

• Added mutually distrustful compartments

– interacting via clearly specified interfaces (simple ones for now)

– procedure calls and returns, no shared memory (for now)

12



CompCert C with Compartments

• Various abstractions already there (e.g. procedures)

• Added mutually distrustful compartments

– interacting via clearly specified interfaces (simple ones for now)

– procedure calls and returns, no shared memory (for now)

12

comp_fib exports fib

comp_fib int fib(int n) {

if (n < 2)
return 1;

else
return fib(n-1) + fib(n-2);

}



CompCert C with Compartments

• Various abstractions already there (e.g. procedures)

• Added mutually distrustful compartments

– interacting via clearly specified interfaces (simple ones for now)

– procedure calls and returns, no shared memory (for now)

12

comp_fib exports fib

comp_fib int fib(int n) {

if (n < 2)
return 1;

else
return fib(n-1) + fib(n-2);

}

Export



CompCert C with Compartments

• Various abstractions already there (e.g. procedures)

• Added mutually distrustful compartments

– interacting via clearly specified interfaces (simple ones for now)

– procedure calls and returns, no shared memory (for now)

12

comp_main imports comp_fib[fib]
comp_main imports_syscall printf scanf

comp_main int input;

comp_main int main() {
scanf(“%d”, &input);
int r = fib(input);
printf("fib(%d) = %d\n", n, r);
return 0;

}

comp_fib exports fib

comp_fib int fib(int n) {

if (n < 2)
return 1;

else
return fib(n-1) + fib(n-2);

}

Export



CompCert C with Compartments

• Various abstractions already there (e.g. procedures)

• Added mutually distrustful compartments

– interacting via clearly specified interfaces (simple ones for now)

– procedure calls and returns, no shared memory (for now)

12

comp_main imports comp_fib[fib]
comp_main imports_syscall printf scanf

comp_main int input;

comp_main int main() {
scanf(“%d”, &input);
int r = fib(input);
printf("fib(%d) = %d\n", n, r);
return 0;

}

comp_fib exports fib

comp_fib int fib(int n) {

if (n < 2)
return 1;

else
return fib(n-1) + fib(n-2);

}

Export Imports



CompCert C with Compartments

• Various abstractions already there (e.g. procedures)

• Added mutually distrustful compartments

– interacting via clearly specified interfaces (simple ones for now)

– procedure calls and returns, no shared memory (for now)

12

comp_main imports comp_fib[fib]
comp_main imports_syscall printf scanf

comp_main int input;

comp_main int main() {
scanf(“%d”, &input);
int r = fib(input);
printf("fib(%d) = %d\n", n, r);
return 0;

}

comp_fib exports fib

comp_fib int fib(int n) {

if (n < 2)
return 1;

else
return fib(n-1) + fib(n-2);

}

Export Imports

Calls allowed: respect the 

interface



CompCert C with Compartments

• Various abstractions already there (e.g. procedures)

• Added mutually distrustful compartments

– interacting via clearly specified interfaces (simple ones for now)

– procedure calls and returns, no shared memory (for now)

12

comp_main imports comp_fib[fib]
comp_main imports_syscall printf scanf

comp_main int input;

comp_main int main() {
scanf(“%d”, &input);
int r = fib(input);
printf("fib(%d) = %d\n", n, r);
return 0;

}

comp_fib exports fib

comp_fib int fib(int n) {

if (n < 2)
return 1;

else
return fib(n-1) + fib(n-2);

}

Export Imports

Calls allowed: respect the 

interface

input++;Prevented:

memory is private



CompCert C with Compartments

• Various abstractions already there (e.g. procedures)

• Added mutually distrustful compartments

– interacting via clearly specified interfaces (simple ones for now)

– procedure calls and returns, no shared memory (for now)

12

comp_main imports comp_fib[fib]
comp_main imports_syscall printf scanf

comp_main int input;

comp_main int main() {
scanf(“%d”, &input);
int r = fib(input);
printf("fib(%d) = %d\n", n, r);
return 0;

}

comp_fib exports fib

comp_fib int fib(int n) {

if (n < 2)
return 1;

else
return fib(n-1) + fib(n-2);

}

Export Imports

main();Prevented: does not 

respect the interface

Calls allowed: respect the 

interface



CompCert
extended with 
compartments

13



CompCert
extended with 
compartments

13

all 19 verified compilation passes
from Clight to RISC-V ASM
(magically secure semantics)



CompCert
extended with 
compartments

13

all 19 verified compilation passes
from Clight to RISC-V ASM
(magically secure semantics)



CompCert
extended with 
compartments

13

all 19 verified compilation passes
from Clight to RISC-V ASM
(magically secure semantics)

extended compiler correctness
12+ KLoC, only 9.4% change
reused for security



CompCert RISC-V with Compartments

• Added compartments with interfaces (like for all languages)

14



CompCert RISC-V with Compartments

• Added compartments with interfaces (like for all languages)

• New shadow stack

– ensures well-bracketedness of cross-compartment control flow

14



CompCert RISC-V with Compartments

• Added compartments with interfaces (like for all languages)

• New shadow stack

– ensures well-bracketedness of cross-compartment control flow

• Need to protect stack-spilled call arguments

– so that malicious caller cannot exploit callbacks

to covertly change arguments of a previous call

– discovered during one of security proof steps (recomposition)

14



CompCert RISC-V with Compartments

• Added compartments with interfaces (like for all languages)

• New shadow stack

– ensures well-bracketedness of cross-compartment control flow

• Need to protect stack-spilled call arguments

– so that malicious caller cannot exploit callbacks

to covertly change arguments of a previous call

– discovered during one of security proof steps (recomposition)

• Abstract machine with magically secure semantics

– independent of actual enforcement (lower-level backends)
14



Capabilities Backend

• Targeting the CHERI RISC-V capability machine

15



Capabilities Backend

• Targeting the CHERI RISC-V capability machine

• Secure and efficient calling convention enforcing stack safety
[Aïna Linn Georges et al, Le temps de cerises, OOPSLA 2022]

15



Capabilities Backend

• Targeting the CHERI RISC-V capability machine

• Secure and efficient calling convention enforcing stack safety
[Aïna Linn Georges et al, Le temps de cerises, OOPSLA 2022]

– Uninitialized capabilities: cannot read memory before initializing

– Directed capabilities: cannot access old stack frames

15



Capabilities Backend

• Targeting the CHERI RISC-V capability machine

• Secure and efficient calling convention enforcing stack safety
[Aïna Linn Georges et al, Le temps de cerises, OOPSLA 2022]

– Uninitialized capabilities: cannot read memory before initializing

– Directed capabilities: cannot access old stack frames

• Mutual distrustful compartments: capability-protected wrappers
– on calls and returns clear registers and

prevent passing capabilities between compartments

15



Capabilities Backend

• Targeting the CHERI RISC-V capability machine

• Secure and efficient calling convention enforcing stack safety
[Aïna Linn Georges et al, Le temps de cerises, OOPSLA 2022]

– Uninitialized capabilities: cannot read memory before initializing

– Directed capabilities: cannot access old stack frames

• Mutual distrustful compartments: capability-protected wrappers
– on calls and returns clear registers and

prevent passing capabilities between compartments

• Also investigating calling convention based solely on wrappers

– no new kind of capability over what CHERI already provides

– but more interesting stack layout (not a single contiguous block)

15



16



16



Proving that our compilation chain
for C compartments achieves secure compilation

16



Proving that our compilation chain
for C compartments achieves secure compilation

• such proofs generally very difficult and tedious

– wrong full abstraction conjecture survived for decades

– 250 pages of proof on paper even for toy compilers

16



Proving that our compilation chain
for C compartments achieves secure compilation

• such proofs generally very difficult and tedious

– wrong full abstraction conjecture survived for decades

– 250 pages of proof on paper even for toy compilers

• we propose a more scalable proof technique

16



Proving that our compilation chain
for C compartments achieves secure compilation

• such proofs generally very difficult and tedious

– wrong full abstraction conjecture survived for decades

– 250 pages of proof on paper even for toy compilers

• we propose a more scalable proof technique

• we focus on machine-checked proofs in the Coq proof assistant

16



Proving that our compilation chain
for C compartments achieves secure compilation

• such proofs generally very difficult and tedious

– wrong full abstraction conjecture survived for decades

– 250 pages of proof on paper even for toy compilers

• we propose a more scalable proof technique

• we focus on machine-checked proofs in the Coq proof assistant

– with property-based testing stopgap [POPL'17, ICFP'13, ITP'15, JFP'16]

• to find wrong conjectures early

• to deal with the parts we couldn't (yet) verify
16



Large subset of C
with compartments

RISC-V ASM
with compartments

Micro-Policies: ASM
with programmable tags

vanilla ASM

SECOMP

CHERI RISC-V
capability machine

17

Software-Fault Isolation

Done for simpler languages,
yet to be ported to RISC-V



Large subset of C
with compartments

RISC-V ASM
with compartments

Micro-Policies: ASM
with programmable tags

vanilla ASM

SECOMP

CHERI RISC-V
capability machine

17

Software-Fault Isolation

Done for simpler languages,
yet to be ported to RISC-V

Machine-checked
proofs in Coq



Large subset of C
with compartments

RISC-V ASM
with compartments

Micro-Policies: ASM
with programmable tags

vanilla ASM

SECOMP

CHERI RISC-V
capability machine

Scalable proof technique for secure compilation
• first applied to simpler languages [CCS'18, CSF'22]

17

Software-Fault Isolation

Done for simpler languages,
yet to be ported to RISC-V

Machine-checked
proofs in Coq



Large subset of C
with compartments

RISC-V ASM
with compartments

Micro-Policies: ASM
with programmable tags

vanilla ASM

SECOMP

CHERI RISC-V
capability machine

Scalable proof technique for secure compilation
• first applied to simpler languages [CCS'18, CSF'22]
• then scaled up to C compartments [CCS'24]

–this reuses extended CompCert correctness proof
–verified strong full-abstraction-like property (~38K LoC)

17

Software-Fault Isolation

Done for simpler languages,
yet to be ported to RISC-V

Machine-checked
proofs in Coq



Large subset of C
with compartments

RISC-V ASM
with compartments

Micro-Policies: ASM
with programmable tags

vanilla ASM

SECOMP

CHERI RISC-V
capability machine

Scalable proof technique for secure compilation
• first applied to simpler languages [CCS'18, CSF'22]
• then scaled up to C compartments [CCS'24]

–this reuses extended CompCert correctness proof
–verified strong full-abstraction-like property (~38K LoC)

•milestone in terms of realism!

17

Software-Fault Isolation

Done for simpler languages,
yet to be ported to RISC-V

Machine-checked
proofs in Coq



Large subset of C
with compartments

RISC-V ASM
with compartments

Micro-Policies: ASM
with programmable tags

vanilla ASM

SECOMP

CHERI RISC-V
capability machine

Scalable proof technique for secure compilation
• first applied to simpler languages [CCS'18, CSF'22]
• then scaled up to C compartments [CCS'24]

–this reuses extended CompCert correctness proof
–verified strong full-abstraction-like property (~38K LoC)

•milestone in terms of realism!
–optimizing C compiler with 19 passes

17

Software-Fault Isolation

Done for simpler languages,
yet to be ported to RISC-V

Machine-checked
proofs in Coq



Large subset of C
with compartments

RISC-V ASM
with compartments

Micro-Policies: ASM
with programmable tags

vanilla ASM

SECOMP

CHERI RISC-V
capability machine

Scalable proof technique for secure compilation
• first applied to simpler languages [CCS'18, CSF'22]
• then scaled up to C compartments [CCS'24]

–this reuses extended CompCert correctness proof
–verified strong full-abstraction-like property (~38K LoC)

•milestone in terms of realism!
–optimizing C compiler with 19 passes

17

Software-Fault Isolation

Done for simpler languages,
yet to be ported to RISC-V

Machine-checked
proofs in Coq

Systematic testing



Large subset of C
with compartments

RISC-V ASM
with compartments

Micro-Policies: ASM
with programmable tags

vanilla ASM

SECOMP

CHERI RISC-V
capability machine

Scalable proof technique for secure compilation
• first applied to simpler languages [CCS'18, CSF'22]
• then scaled up to C compartments [CCS'24]

–this reuses extended CompCert correctness proof
–verified strong full-abstraction-like property (~38K LoC)

•milestone in terms of realism!
–optimizing C compiler with 19 passes

17

Software-Fault Isolation

Done for simpler languages,
yet to be ported to RISC-V

Machine-checked
proofs in Coq

Systematic testing

Big verification
challenge for the future



More scalable proof technique
for our variant of Robust Safety Preservation [CCS'18,CSF'22]

18



More scalable proof technique
for our variant of Robust Safety Preservation [CCS'18,CSF'22]

back-translating finite execution prefix to whole source program

18



More scalable proof technique
for our variant of Robust Safety Preservation [CCS'18,CSF'22]

back-translating finite execution prefix to whole source program

compiler correctness (extended from CompCert and reused)

18



More scalable proof technique
for our variant of Robust Safety Preservation [CCS'18,CSF'22]

back-translating finite execution prefix to whole source program

compiler correctness (extended from CompCert and reused)

recomposition and blame steps also simulation proofs

18



More scalable proof technique
for our variant of Robust Safety Preservation [CCS'18,CSF'22]

back-translating finite execution prefix to whole source program

compiler correctness (extended from CompCert and reused)

recomposition and blame steps also simulation proofs

18



More scalable proof technique
for our variant of Robust Safety Preservation [CCS'18,CSF'22]

back-translating finite execution prefix to whole source program

compiler correctness (extended from CompCert and reused)

recomposition and blame steps also simulation proofs

18

Challenging proof engineering for scaling this to CompCert [CCS'24]



Recomposition for SECOMP RISC-V

19



Recomposition for SECOMP RISC-V

From two synchronized RISC-V executions

2

1

B

A

same event: 

Call f v
same event: 

Ret v'

19



Recomposition for SECOMP RISC-V

From two synchronized RISC-V executions

2

1

B

A

same event: 

Call f v
same event: 

Ret v'

Obtain a “recomposed” execution:

19

1

B Call f v
Ret v'

2

1

B

A



Recomposition for SECOMP RISC-V

From two synchronized RISC-V executions

2

1

B

A

same event: 

Call f v
same event: 

Ret v'

Obtain a “recomposed” execution:

19

Challenging 3-way simulation proof with subtle invariants

1

B Call f v
Ret v'

2

1

B

A



Generic diagrams for recomposition

8 generic 3-way simulation diagrams for proving recomposition

20

1

B Call f v
Ret v'

2

1

B

A



Generic diagrams for recomposition

8 generic 3-way simulation diagrams for proving recomposition

20

1

B Call f v
Ret v'

2

1

B

A

ε

ε

ε

ε-steps



Generic diagrams for recomposition

8 generic 3-way simulation diagrams for proving recomposition

20

1

B Call f v
Ret v'

2

1

B

A

ε

ε

ε

ε-steps

e

e

Synchronous events

e



Generic diagrams for recomposition

8 generic 3-way simulation diagrams for proving recomposition

20

1

B Call f v
Ret v'

2

1

B

A

ε

ε

ε

ε-steps

e

e

Synchronous events

e



Generic diagrams for recomposition

8 generic 3-way simulation diagrams for proving recomposition

20

ε

ε

ε

ε-steps

e

e

Synchronous events

e

+ 5 more such diagrams



Generic diagrams for recomposition

8 generic 3-way simulation diagrams for proving recomposition

20

ε

ε

ε

ε-steps

e

e

Synchronous events

e

+ 5 more such diagrams

+ many more proof engineering novelties for secure completion proof [CCS'24]



Generic diagrams for recomposition

8 generic 3-way simulation diagrams for proving recomposition

20

ε

ε

ε

ε-steps

e

e

Synchronous events

e

+ 5 more such diagrams

+ many more proof engineering novelties for secure completion proof [CCS'24]

not too terrible: 38 KLoC is only 30% of CompCert correctness proof



Generic diagrams for recomposition

8 generic 3-way simulation diagrams for proving recomposition

20

ε

ε

ε

ε-steps

e

e

Synchronous events

e

+ 5 more such diagrams

+ many more proof engineering novelties for secure completion proof [CCS'24]

not too terrible: 38 KLoC is only 30% of CompCert correctness proof

first compiler for realistic language proved to offer

strong security guarantees for compartmentalized code



Open problem: verified backends

21



Open problem: verified backends

• Currently we only implemented the SECOMP backend
based on CHERI RISC-V plus fancy capabilities
– would be nice to also have backends targeting vanilla CHERI RISC-V or Arm Morello

– would be nice to also implement a Wasm backend (software fault isolation)

21



Open problem: verified backends

• Currently we only implemented the SECOMP backend
based on CHERI RISC-V plus fancy capabilities
– would be nice to also have backends targeting vanilla CHERI RISC-V or Arm Morello

– would be nice to also implement a Wasm backend (software fault isolation)

• These backends do the actual security enforcement
– so they would be great targets for formal verification

21



Open problem: verified backends

• Currently we only implemented the SECOMP backend
based on CHERI RISC-V plus fancy capabilities
– would be nice to also have backends targeting vanilla CHERI RISC-V or Arm Morello

– would be nice to also implement a Wasm backend (software fault isolation)

• These backends do the actual security enforcement
– so they would be great targets for formal verification

• Verifying backends is challenging though

– more concrete view of memory as array of bytes (vs CompCert one)

– once code stored in memory, can no longer hide all the information about 
compartment's code (code layout leaks)

• proof step inspired by full abstraction doesn't work all the way down (recomposition)

21



Extending proof technique in other ways

22



Extending proof technique in other ways

• Fine-grained dynamic memory sharing by capability passing (on CHERI or Morello)

– already proved in Coq in simpler setting [Akram El-Korashy et al, CSF'22]

22



Extending proof technique in other ways

• Fine-grained dynamic memory sharing by capability passing (on CHERI or Morello)

– already proved in Coq in simpler setting [Akram El-Korashy et al, CSF'22]

• Beyond preserving safety against adversarial contexts

22



Extending proof technique in other ways

• Fine-grained dynamic memory sharing by capability passing (on CHERI or Morello)

– already proved in Coq in simpler setting [Akram El-Korashy et al, CSF'22]

• Beyond preserving safety against adversarial contexts

– towards preserving hyperproperties (data confidentiality)

22



Extending proof technique in other ways

• Fine-grained dynamic memory sharing by capability passing (on CHERI or Morello)

– already proved in Coq in simpler setting [Akram El-Korashy et al, CSF'22]

• Beyond preserving safety against adversarial contexts

– towards preserving hyperproperties (data confidentiality)

– even relational hyperproperties (observational equivalence)

22



Extending proof technique in other ways

• Fine-grained dynamic memory sharing by capability passing (on CHERI or Morello)

– already proved in Coq in simpler setting [Akram El-Korashy et al, CSF'22]

• Beyond preserving safety against adversarial contexts

– towards preserving hyperproperties (data confidentiality)

– even relational hyperproperties (observational equivalence)

• secure compilation criteria strictly stronger than full abstraction

• can do this for CompCert, but won't hold for backends

[Jérémy Thibault et al, CSF'19 + more ongoing work]

22



Enforcement tricky beyond safety
• Preserving hypersafety against adversarial contexts (e.g. data confidentiality)

23



Enforcement tricky beyond safety
• Preserving hypersafety against adversarial contexts (e.g. data confidentiality)

– challenging at the lowest level: micro-architectural side-channels attacks

23



Enforcement tricky beyond safety
• Preserving hypersafety against adversarial contexts (e.g. data confidentiality)

– challenging at the lowest level: micro-architectural side-channels attacks

– compartments running in the same process, "universal read gadgets" easy

23



Enforcement tricky beyond safety
• Preserving hypersafety against adversarial contexts (e.g. data confidentiality)

– challenging at the lowest level: micro-architectural side-channels attacks

– compartments running in the same process, "universal read gadgets" easy

• Started looking into Spectre defenses compilers can insert

23



Enforcement tricky beyond safety
• Preserving hypersafety against adversarial contexts (e.g. data confidentiality)

– challenging at the lowest level: micro-architectural side-channels attacks

– compartments running in the same process, "universal read gadgets" easy

• Started looking into Spectre defenses compilers can insert

– Speculative Load Hardening (implemented in LLVM + selective variant in Jasmin DSL)

• enforces speculative constant time: chapter in new Security Foundations textbook

23



Enforcement tricky beyond safety
• Preserving hypersafety against adversarial contexts (e.g. data confidentiality)

– challenging at the lowest level: micro-architectural side-channels attacks

– compartments running in the same process, "universal read gadgets" easy

• Started looking into Spectre defenses compilers can insert

– Speculative Load Hardening (implemented in LLVM + selective variant in Jasmin DSL)

• enforces speculative constant time: chapter in new Security Foundations textbook

– Ultimate SLH [Zhang et al, USENIX SEC'23]: enforces relative security (chapter soon)

23



Enforcement tricky beyond safety
• Preserving hypersafety against adversarial contexts (e.g. data confidentiality)

– challenging at the lowest level: micro-architectural side-channels attacks

– compartments running in the same process, "universal read gadgets" easy

• Started looking into Spectre defenses compilers can insert

– Speculative Load Hardening (implemented in LLVM + selective variant in Jasmin DSL)

• enforces speculative constant time: chapter in new Security Foundations textbook

– Ultimate SLH [Zhang et al, USENIX SEC'23]: enforces relative security (chapter soon)

– New "Flexible" SLH variant: tested for relative security, hopefully proof and paper soon

23



Enforcement tricky beyond safety
• Preserving hypersafety against adversarial contexts (e.g. data confidentiality)

– challenging at the lowest level: micro-architectural side-channels attacks

– compartments running in the same process, "universal read gadgets" easy

• Started looking into Spectre defenses compilers can insert

– Speculative Load Hardening (implemented in LLVM + selective variant in Jasmin DSL)

• enforces speculative constant time: chapter in new Security Foundations textbook

– Ultimate SLH [Zhang et al, USENIX SEC'23]: enforces relative security (chapter soon)

– New "Flexible" SLH variant: tested for relative security, hopefully proof and paper soon

• Combining this with compartmentalization practically interesting

– Especially for languages like Wasm, which are used for same-process isolation

23



Last slide on future work / open problems

24



Last slide on future work / open problems
• Dynamic compartment creation

– from code-based to data-based compartmentalization (e.g. browser tabs)

24



Last slide on future work / open problems
• Dynamic compartment creation

– from code-based to data-based compartmentalization (e.g. browser tabs)

• Dynamic privileges

– passing capabilities, dynamic interfaces, history-based access control, ...

24



Last slide on future work / open problems
• Dynamic compartment creation

– from code-based to data-based compartmentalization (e.g. browser tabs)

• Dynamic privileges

– passing capabilities, dynamic interfaces, history-based access control, ...

• Protecting higher-level abstractions
(than those of the C language)
– Securely Compiling Verified F* Programs With IO

[Cezar-Constantin Andrici et al, POPL'24]

• using reference monitoring and higher-order contracts

24



Last slide on future work / open problems
• Dynamic compartment creation

– from code-based to data-based compartmentalization (e.g. browser tabs)

• Dynamic privileges

– passing capabilities, dynamic interfaces, history-based access control, ...

• Protecting higher-level abstractions
(than those of the C language)
– Securely Compiling Verified F* Programs With IO

[Cezar-Constantin Andrici et al, POPL'24]

• using reference monitoring and higher-order contracts

• preserving all relational hyperproperties against adversarial contexts

• first step towards formally secure F*-OCaml interoperability

24



– preserve properties against adversarial contexts

– we overcame additional challenges to support
mutually distrustful compartments and dynamic compromise

– Extended CompCert languages with compartments

– Unverified backend targeting CHERI RISC-V capability machine

– more scalable proof technique machine-checked in Coq

– first compiler for realistic language proved to offer
strong security guarantees for compartmentalized code

25


