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The C programming language is insecure

ïany buffer overflow can be catastrophic

ï~100 different undefined behaviors

in the usual C compiler:
Åuse after frees and double frees, invalid type casts, 

signed integer overflows, concurrency bugs, ...

ïroot cause, but very challenging to fix:

Åefficiency, precision, scalability,

backwards compatibility, deployment
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Mitigation: compartmentalization

ÅThe C programming language does provide useful abstractions
ïstructured control flow, procedures, pointers & shared memory

ïused in most programs, but not enforced at all during compilation

ïadd fine-grained compartments to C which can naturally interact

ÅSecure compilation chain that protects these abstractions
ïall the way down, at compartments boundaries (so hopefully more efficient)

ïagainst compartments dynamically compromised by undefined behavior

ÅTargeting various enforcement mechanisms
ïsoftware-fault isolation (SFI), capability machines, ...
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ÅWhat does it mean for a compilation chain
for vulnerable C compartments to be secure?
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ÅWhat does it mean for a compilation chain
for vulnerable C compartments to be secure?

ÅAs a warmup, I will first show an easier definition
ïprotecting 1 trusted compartmentfrom 1 untrusted one (arbitrary ASM)

ïtrusted compartment has no vulnerabilities, e.g. formally verified
Åe.g. EverCrypt verified crypto library, shipping in Firefox, Linux Kernel, ...

Åe.g. simple verified web server, linked with unverified libraries[POPL'24]

ÅWhat does it mean to securely compile such a verified 
compartment againstlinked adversarial target-level code?
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