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I anybuffer overflow can be catastrophic
I ~100 differentundefined behaviors %
In the usual C compiler:

Ause after frees and double frees, invalid type casts,
signed integer overflows, concurrency bugs, ... -

I root cause but very challenging to fix:

Aefficiency, precision, scalability,
backwards compatibility, deployment
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Mitigation: compartmentalization

A The C programming language does provide useful abstraction

I structured control flow, procedures, pointers & shared memory
I used in most program$&ut not enforced at all during compilation
I add fine-grained compartments to @hich can naturally interact

A Secure compilation chain that protects these abstractions

i all the way down, at compartments boundaries (so hopefully more efficient)
I against compartments dynamically compromised by undefined behavior

A Targeting various enforcement mechanisms “
>

I softwarefault isolation (SFI), capability machines, ... .
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@ 1. Security Goal

A What does it mean for a compilation chain
for vulnerable C compartments to be secure?

A As a warmup, | will first show an easier definition
I protecting 1 trusted compartmentfrom 1 untrusted one (arbitrary ASM)

I trusted compartment has no vulnerabilities, e.g. formally verified
A e.g. EverCrypt verified crypto library, shipping in Firefox, Linux Kernel,
A e.g. simple verified web server, linked with unverified librajiesPL'24]

A What does it mean to securely compile such a verified
compartmentagainstlinked adversarial targetevel code
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