
1

Joint work with
Carmine Abate, Cezar-Constantin Andrici, Sven Argo, Arthur Azevedode Amorim,

Roberto Blanco,  ǘŜŦŀƴ/ƛƻōŃŎŇ, Adrien Durier, AkramEl-Korashy, Boris Eng,
Ana Nora Evans, GuglielmoFachini, Deepak Garg, AïnaLinn Georges, ThéoLaurent, 
DongjaeLee, Guido Martínez, Marco Patrignani, Benjamin Pierce, ExequielRivas, 

Marco Stronati, ÉricTanter, JérémyThibault, Andrew Tolmach, ThéoWinterhalter, ...

In part supported by ERC Starting Grant SECOMP

Hiring: PostDoc, interns, PhD students



The C programming language is insecure

ïany buffer overflow can be catastrophic

2



The C programming language is insecure

ïany buffer overflow can be catastrophic

ï~100 different undefined behaviors

in the usual C compiler:
Åuse after frees and double frees, invalid type casts, 

signed integer overflows, concurrency bugs, ...

2



The C programming language is insecure

ïany buffer overflow can be catastrophic

ï~100 different undefined behaviors

in the usual C compiler:
Åuse after frees and double frees, invalid type casts, 

signed integer overflows, concurrency bugs, ...

ïroot cause, but very challenging to fix:

Åefficiency, precision, scalability,

backwards compatibility, deployment

2



Mitigation: compartmentalization

3



Mitigation: compartmentalization

ÅThe C programming language does provide useful abstractions
ïstructured control flow, procedures, pointers & shared memory

3



Mitigation: compartmentalization

ÅThe C programming language does provide useful abstractions
ïstructured control flow, procedures, pointers & shared memory

ïused in most programs, but not enforced at all during compilation

3



Mitigation: compartmentalization

ÅThe C programming language does provide useful abstractions
ïstructured control flow, procedures, pointers & shared memory

ïused in most programs, but not enforced at all during compilation

ïadd fine-grained compartments to C which can naturally interact

3



Mitigation: compartmentalization

ÅThe C programming language does provide useful abstractions
ïstructured control flow, procedures, pointers & shared memory

ïused in most programs, but not enforced at all during compilation

ïadd fine-grained compartments to C which can naturally interact

ÅSecure compilation chain that protects these abstractions
ïall the way down, at compartments boundaries (so hopefully more efficient)

3



Mitigation: compartmentalization

ÅThe C programming language does provide useful abstractions
ïstructured control flow, procedures, pointers & shared memory

ïused in most programs, but not enforced at all during compilation

ïadd fine-grained compartments to C which can naturally interact

ÅSecure compilation chain that protects these abstractions
ïall the way down, at compartments boundaries (so hopefully more efficient)

ïagainst compartments dynamically compromised by undefined behavior

3



Mitigation: compartmentalization

ÅThe C programming language does provide useful abstractions
ïstructured control flow, procedures, pointers & shared memory

ïused in most programs, but not enforced at all during compilation

ïadd fine-grained compartments to C which can naturally interact

ÅSecure compilation chain that protects these abstractions
ïall the way down, at compartments boundaries (so hopefully more efficient)

ïagainst compartments dynamically compromised by undefined behavior

ÅTargeting various enforcement mechanisms
ïsoftware-fault isolation (SFI), capability machines, ...

3



4



4



4



4



4



5



ÅWhat does it mean for a compilation chain
for vulnerable C compartments to be secure?

5



ÅWhat does it mean for a compilation chain
for vulnerable C compartments to be secure?

ÅAs a warmup, I will first show an easier definition
ïprotecting 1 trusted compartmentfrom 1 untrusted one (arbitrary ASM)

ïtrusted compartment has no vulnerabilities, e.g. formally verified
Åe.g. EverCrypt verified crypto library, shipping in Firefox, Linux Kernel, ...

Åe.g. simple verified web server, linked with unverified libraries[POPL'24]

ÅWhat does it mean to securely compile such a verified 
compartment againstlinked adversarial target-level code?

5



Preserving security against adversarial contexts

6



security property ̄

Preserving security against adversarial contexts

6



verified
program

security property ̄

Preserving security against adversarial contexts

6



verified
program satisfies ̄

security property ̄

Preserving security against adversarial contexts

6



F* code
verified

program satisfies ̄F*code

security property ̄

Preserving security against adversarial contexts

6



F* code
verified

program

compiled
program

compiler

satisfies ̄F*code

security property ̄

Preserving security against adversarial contexts

6



F* code

low-level
code

verified
program

compiled
program

compiler

satisfies ̄

satisfies ̄

F*code

low-level
code

ᵼ
security property ̄

Preserving security against adversarial contexts

6



F* code

low-level
code

verified
program

compiled
program

compiler

satisfies ̄

satisfies ̄
no extra powerprotected

F*code

low-level
code

ᵼ
security property ̄

Preserving security against adversarial contexts

6



F* code

low-level
code

verified
program

compiled
program

compiler

satisfies ̄

satisfies ̄
no extra powerprotected

Where ̄ can e.g. be"the web server's private key is not leaked"

F*code

low-level
code

ᵼ
security property ̄

Preserving security against adversarial contexts

6



F* code

low-level
code

verified
program

compiled
program

compiler

satisfies ̄

satisfies ̄
no extra powerprotected

Where ̄ can e.g. be"the web server's private key is not leaked"

F*code

low-level
code

ᵼ
security property ̄

Preserving security against adversarial contexts

6


