SECOMP: Formally Secure Compilation
of Compartmentalized C Programs

Catalin Hritcu, MPI-SP, Bochum

Hiring: PostDoc, interns, PhD students

Jointwork with
CarmineAbate, Ceza€onstantinAndrici,Sven ArgpArthur Azevedade Amorim,
Roberto Blanco @ S/F i % ¢ AtiteeNDurier AkramEKorashyBorisEng
AnaNora EvansiuglielmoFachinj DeepakGarg,AinaLinnGeorgesThéoLaurent
Dongjaelee GuidoMartinez Marco Patrignani, Benjamin PieréeequieRivas,
Marco Stronatj EricTanter JérémyT hibault AndrewTolmach ThéoWinterhalter, ...

In part supportecby ERGStarting GranSECOMP !



TheC programmindganguage Is insecure

I anybuffer overflow can be catastrophic W



TheC programmindganguage Is insecure

I anybuffer overflow can be catastrophic
I ~100 differentundefined behaviors @
In the usual C compiler:

Ause after frees and double frees, invalid type casts,
signed integer overflows, concurrency bugs, ... -




TheC programmindganguage Is insecure

I anybuffer overflow can be catastrophic
I ~100 differentundefined behaviors %
In the usual C compiler:

Ause after frees and double frees, invalid type casts,
signed integer overflows, concurrency bugs, ... -

I root cause but very challenging to fix:

Aefficiency, precision, scalability,
backwards compatibility, deployment




Mitigation: compartmentalization



Mitigation: compartmentalization

A The C programming language does provide useful abstraction
I structured control flow, procedures, pointers & shared memory

o



Mitigation: compartmentalization

A The C programming language does provide useful abstraction

I structured control flow, procedures, pointers & shared memory
I used in most program$&ut not enforced at all during compilation

o



Mitigation: compartmentalization

A The C programming language does provide useful abstraction

I structured control flow, procedures, pointers & shared memory
I used in most program$&ut not enforced at all during compilation
I add fine-grained compartments to @hich can naturally interact

o



Mitigation: compartmentalization

A The C programming language does provide useful abstraction

I structured control flow, procedures, pointers & shared memory
I used in most program$&ut not enforced at all during compilation
I add fine-grained compartments to @hich can naturally interact

A Secure compilation chain that protects these abstractions
i all the way down, at compartments boundaries (so hopefully more efficient)

o

M



Mitigation: compartmentalization

A The C programming language does provide useful abstraction

I structured control flow, procedures, pointers & shared memory
I used in most program$&ut not enforced at all during compilation
I add fine-grained compartments to @hich can naturally interact

A Secure compilation chain that protects these abstractions

i all the way down, at compartments boundaries (so hopefully more efficient)
I against compartments dynamically compromised by undefined behavior

o

M



Mitigation: compartmentalization

A The C programming language does provide useful abstraction

I structured control flow, procedures, pointers & shared memory
I used in most program$&ut not enforced at all during compilation
I add fine-grained compartments to @hich can naturally interact

A Secure compilation chain that protects these abstractions

i all the way down, at compartments boundaries (so hopefully more efficient)
I against compartments dynamically compromised by undefined behavior

A Targeting various enforcement mechanisms “
>

I softwarefault isolation (SFI), capability machines, ... .



Formally
Verified
Security



Formally
Verified
Security



Formally
Verified
Security

Eqlfelgacment



Formally
Verified
Security

Eqlfelgacment



Formally Secure Compilation of C Compartments

Formally
Verified
Security

Eqlfelgacment



1. Security Goal



1. Security Goal

A What does it mean for a compilation chain
for vulnerable C compartments to be secure?



@ 1. Security Goal

A What does it mean for a compilation chain
for vulnerable C compartments to be secure?

A As a warmup, | will first show an easier definition
I protecting 1 trusted compartmentfrom 1 untrusted one (arbitrary ASM)

I trusted compartment has no vulnerabilities, e.g. formally verified
A e.g. EverCrypt verified crypto library, shipping in Firefox, Linux Kernel,
A e.g. simple verified web server, linked with unverified librajiesPL'24]

A What does it mean to securely compile such a verified
compartmentagainstlinked adversarial targetevel code



Preserving securitagainst adversarial contexts



Preserving securitagainst adversarial contexts

securityproperty -



Preserving securitagainst adversarial contexts

securityproperty -
yproperty J

p'q verified
program




Preserving securitagainst adversarial contexts

securityproperty -

A —
4 verifie P -
P’;pmgram | satisfies




Preserving securitagainst adversarial contexts

securityproperty -
yproperty J

F*code F”Yvenﬁed (}E) F*COde\ljzsatiSﬁeS_

program




Preserving securitagainst adversarial contexts

securityproperty -
yproperty y

\ s
D D o
Frcode l’ verified % F*code\ljzsatISfleS_

program

compilerl

compiled
program




Preserving securitagainst adversarial contexts

securityproperty -
yproperty u 4

F*code Ffzverified (}E) F*COde\!EzsatiSﬁeS_

program

compileri

low-level compiled '0W Ievel SatISfleS
code program




Preserving securitagainst adversarial contexts

securityproperty -
yproperty J 4

F*code Ffzverified (}E) F*COde\!EI‘FsatiSﬁeS_

program

compilerl

low-level Comp”ed '0W Ievel SatISfleS
code program

protected no extra power




Preserving securitagainst adversarial contexts

securityproperty -
yproperty J 4

F*code Ffzverified (}E) F*COde\l'EzsatiSﬁeS_

program

compilerl

low-level Comp”ed '0W Ievel SatISfIES
code program

protected no extra power

Where™ can e.g. bé'the web server's private key is not leaked"



Preserving securitagainst adversarial contexts

securityproperty -
yproperty J 4

F*code Ffzverified (}E) F*COde\l'EzsatiSﬁeS_

program

compilerl

low-level Comp”ed '0W Ievel SatISfIES
code program

protected no extra power

Where™ can e.g. bé'the web server's private key is not leaked"



