
Courses we teach at RUB

Roberto Blanco, Clara Schneidewind, Cătălin Hrițcu

Max Planck Institute for Security and Privacy (MPI-SP)
1

1. Functional Programming (SS 2024)
2. Proofs are Programs (WS 2024/25)
3. Foundations of Programming Languages, 

Verification, and Security (SS 2025)



1. Functional Programming
• Write computations as mathematical functions

– using recursion, immutable datatypes, and pattern matching

– limit side-effects, such as mutating stateful data structures

• Functional languages have some practical success

– Meta (OCaml, Haskell, Rust), Microsoft (OCaml, F#, F*, and Rust), X (Scala),

Mozilla (Rust), Google (Rust), Amazon (Rust), Financial industry, Blockchains, ...

• Not yet fully mainstream, but ...

– Many cool ideas already adopted by mainstream languages:

• Lambdas, Generics in Java/C#, Rust's type system, datatypes, pattern matching

(most admired language on Stack Overflow for the last 11 years!)

– Functional programmers often earn more (Stack Overflow developer survey)

– Functional programs are concise, elegant, beautiful

• This makes reasoning about programs easier, both informally and formally 2



2. Proofs are Programs
• Follow up course directly builds on functional programming to

provide a gentle introduction to formal verification in Coq

– Coq proof assistant is based on functional programming
• Coq's dependent types more powerful than OCaml types

• Can express and prove specifications for programs

– Coq helps build formal proofs interactively

– Proving in Coq is like programming
• gamified, addictive, and lots of fun

• if you like programming, you will also like Coq proofs

– This helps you deeply understand proofs

– In fact, formal proofs are just purely functional programs
• Curry-Howard: deep connection between logic and functional programming

3



3. Foundations of ...
• Programming Languages

– formalize simple imperative and functional languages in Coq

– type systems, program transformations, simple compilers

– semantics, metatheory (proving properties of the language)

• Verification

– Hoare Logic: verify imperative programs

– Relational Hoare Logic: program equivalence and security

• Security

– Information flow control: preventing direct + indirect leaks

– Preventing timing side channels for crypto code:
cryptographic constant time, speculative constant time

4



Three very hands on courses

1. Functional Programming (SS 2024)

2. Proofs are Programs (WS 2024/25)

3. Foundations of Programming Languages,
Verification, and Security (SS 2025)

• Based on 4 book volumes for lecture notes

• Many exercises in OCaml and Coq
– Automatic grading, immediate feedback

– Taking gamification to the next level! It's fun!

• Better understand programming and proving!

5

Introduction to Functional 
Programming and the 

Structure of Programming 
Languages using OCaml

Gert Smolka


