
1

Joint work with
Carmine Abate, Sven Argo, Arthur Azevedo de Amorim, Roberto Blanco, Adrien Durier,
Akram El-Korashy, Ana Nora Evans, Guglielmo Fachini, Deepak Garg, Aïna Linn Georges,

Théo Laurent, Benjamin Pierce, Marco Stronati, Jérémy Thibault, Andrew Tolmach, ...

In part supported by ERC Starting Grant SECOMP



2



2

• Insecure languages like C enable devastating vulnerabilities



2

Compartment 1

• Insecure languages like C enable devastating vulnerabilities

• Mitigate vulnerabilities by compartmentalizing the program

Compartment 2 Compartment 3 Compartment 4 Compartment 5



2

Compartment 1

• Insecure languages like C enable devastating vulnerabilities

• Mitigate vulnerabilities by compartmentalizing the program

• We don't know which compartments will be compromised

Compartment 2 Compartment 3 Compartment 4 Compartment 5



2

Compartment 1

• Insecure languages like C enable devastating vulnerabilities

• Mitigate vulnerabilities by compartmentalizing the program

• We don't know which compartments will be compromised

Compartment 2 Compartment 3 Compartment 4 Compartment 5Compartment 5



2

Compartment 1

• Insecure languages like C enable devastating vulnerabilities

• Mitigate vulnerabilities by compartmentalizing the program

• We don't know which compartments will be compromised
– protect vulnerable C compartments from each other

Compartment 2 Compartment 3 Compartment 4 Compartment 5Compartment 5



2

Compartment 1

• Insecure languages like C enable devastating vulnerabilities

• Mitigate vulnerabilities by compartmentalizing the program

• We don't know which compartments will be compromised
– protect vulnerable C compartments from each other

• We don't know when a compartment will be compromised

Compartment 2 Compartment 3 Compartment 4 Compartment 5Compartment 5



2

Compartment 1

• Insecure languages like C enable devastating vulnerabilities

• Mitigate vulnerabilities by compartmentalizing the program

• We don't know which compartments will be compromised
– protect vulnerable C compartments from each other

• We don't know when a compartment will be compromised

Compartment 2 Compartment 3 Compartment 4Compartment 4 Compartment 5Compartment 5



2

Compartment 1

• Insecure languages like C enable devastating vulnerabilities

• Mitigate vulnerabilities by compartmentalizing the program

• We don't know which compartments will be compromised
– protect vulnerable C compartments from each other

• We don't know when a compartment will be compromised

Compartment 1 Compartment 2 Compartment 3 Compartment 4Compartment 4 Compartment 5Compartment 5



2

Compartment 1

• Insecure languages like C enable devastating vulnerabilities

• Mitigate vulnerabilities by compartmentalizing the program

• We don't know which compartments will be compromised
– protect vulnerable C compartments from each other

• We don't know when a compartment will be compromised
– every compartment should receive protection until compromised

Compartment 1 Compartment 2 Compartment 3 Compartment 4Compartment 4 Compartment 5Compartment 5



2

Compartment 1

• Insecure languages like C enable devastating vulnerabilities

• Mitigate vulnerabilities by compartmentalizing the program

• We don't know which compartments will be compromised
– protect vulnerable C compartments from each other

• We don't know when a compartment will be compromised
– every compartment should receive protection until compromised

• Formalized this as a variant of robust safety preservation [CCS'18]

Compartment 1 Compartment 2 Compartment 3 Compartment 4Compartment 4 Compartment 5Compartment 5



Large subset of C
with compartments

3



Large subset of C
with compartments

SECOMP: CompCert extended with secure compartments

3



Large subset of C
with compartments

CompCert RISC-V ASM
with compartments

SECOMP: CompCert extended with secure compartments

3

magically secure semantics



Large subset of C
with compartments

CompCert RISC-V ASM
with compartments

vanilla ASM

SECOMP: CompCert extended with secure compartments

3

magically secure semantics

Software-Fault Isolation



Large subset of C
with compartments

CompCert RISC-V ASM
with compartments

Micro-Policies: ASM
with programmable tags

vanilla ASM

SECOMP: CompCert extended with secure compartments

3

magically secure semantics

Hardware-accelerated enforcement

[POPL'14, S&P'15, ASPLOS'15,
POST'18, CCS'18, CSF'23]

Software-Fault Isolation



Large subset of C
with compartments

CompCert RISC-V ASM
with compartments

Micro-Policies: ASM
with programmable tags

vanilla ASM

SECOMP: CompCert extended with secure compartments

3

magically secure semantics

Hardware-accelerated enforcement

[POPL'14, S&P'15, ASPLOS'15,
POST'18, CCS'18, CSF'23]

Software-Fault Isolation

Done for simplified languages,
yet to be ported to RISC-V



Large subset of C
with compartments

CompCert RISC-V ASM
with compartments

Micro-Policies: ASM
with programmable tags

vanilla ASM

SECOMP: CompCert extended with secure compartments

CHERI RISC-V
capability machine

3

magically secure semantics

Hardware-accelerated enforcement

[POPL'14, S&P'15, ASPLOS'15,
POST'18, CCS'18, CSF'23]

Software-Fault Isolation

Done for simplified languages,
yet to be ported to RISC-V

(inspiration for ARM Morello)



Large subset of C
with compartments

RISC-V ASM
with compartments

Micro-Policies: ASM
with programmable tags

vanilla ASM

SECOMP

CHERI RISC-V
capability machine

4

Software-Fault Isolation

Done for simpler languages,
yet to be ported to RISC-V



Large subset of C
with compartments

RISC-V ASM
with compartments

Micro-Policies: ASM
with programmable tags

vanilla ASM

SECOMP

CHERI RISC-V
capability machine

4

Software-Fault Isolation

Done for simpler languages,
yet to be ported to RISC-V

Machine-checked
proofs in Coq



Large subset of C
with compartments

RISC-V ASM
with compartments

Micro-Policies: ASM
with programmable tags

vanilla ASM

SECOMP

CHERI RISC-V
capability machine

Scalable proof technique for secure compilation
• first applied to simpler languages [CCS'18, CSF'22]

4

Software-Fault Isolation

Done for simpler languages,
yet to be ported to RISC-V

Machine-checked
proofs in Coq



Large subset of C
with compartments

RISC-V ASM
with compartments

Micro-Policies: ASM
with programmable tags

vanilla ASM

SECOMP

CHERI RISC-V
capability machine

Scalable proof technique for secure compilation
• first applied to simpler languages [CCS'18, CSF'22]
• then scaled up to C compartments [CCS'24]

–this reuses extended CompCert correctness proof
–verified strong full-abstraction-like property (~38K LoC)

4

Software-Fault Isolation

Done for simpler languages,
yet to be ported to RISC-V

Machine-checked
proofs in Coq



Large subset of C
with compartments

RISC-V ASM
with compartments

Micro-Policies: ASM
with programmable tags

vanilla ASM

SECOMP

CHERI RISC-V
capability machine

Scalable proof technique for secure compilation
• first applied to simpler languages [CCS'18, CSF'22]
• then scaled up to C compartments [CCS'24]

–this reuses extended CompCert correctness proof
–verified strong full-abstraction-like property (~38K LoC)

•milestone in terms of realism!

4

Software-Fault Isolation

Done for simpler languages,
yet to be ported to RISC-V

Machine-checked
proofs in Coq



Large subset of C
with compartments

RISC-V ASM
with compartments

Micro-Policies: ASM
with programmable tags

vanilla ASM

SECOMP

CHERI RISC-V
capability machine

Scalable proof technique for secure compilation
• first applied to simpler languages [CCS'18, CSF'22]
• then scaled up to C compartments [CCS'24]

–this reuses extended CompCert correctness proof
–verified strong full-abstraction-like property (~38K LoC)

•milestone in terms of realism!
–optimizing C compiler with 19 passes

4

Software-Fault Isolation

Done for simpler languages,
yet to be ported to RISC-V

Machine-checked
proofs in Coq



Large subset of C
with compartments

RISC-V ASM
with compartments

Micro-Policies: ASM
with programmable tags

vanilla ASM

SECOMP

CHERI RISC-V
capability machine

Scalable proof technique for secure compilation
• first applied to simpler languages [CCS'18, CSF'22]
• then scaled up to C compartments [CCS'24]

–this reuses extended CompCert correctness proof
–verified strong full-abstraction-like property (~38K LoC)

•milestone in terms of realism!
–optimizing C compiler with 19 passes

4

Software-Fault Isolation

Done for simpler languages,
yet to be ported to RISC-V

Machine-checked
proofs in Coq

Systematic testing



Large subset of C
with compartments

RISC-V ASM
with compartments

Micro-Policies: ASM
with programmable tags

vanilla ASM

SECOMP

CHERI RISC-V
capability machine

Scalable proof technique for secure compilation
• first applied to simpler languages [CCS'18, CSF'22]
• then scaled up to C compartments [CCS'24]

–this reuses extended CompCert correctness proof
–verified strong full-abstraction-like property (~38K LoC)

•milestone in terms of realism!
–optimizing C compiler with 19 passes

4

Software-Fault Isolation

Done for simpler languages,
yet to be ported to RISC-V

Machine-checked
proofs in Coq

Systematic testing

Big verification
challenge for the future



5

Verify capability backend



5

Verify capability backend



5

Verify capability backend

Capability passing



5

Verify capability backend

Capability passing

Preserve data confidentiality



5

Verify capability backend

Capability passing

Preserve data confidentiality



5

Verify capability backend

Capability passing

against micro-architectural side-channel attacks,
for compartmentalized programs in F*, C, or Wasm

Preserve data confidentiality



5

Verify capability backend

Capability passing

against micro-architectural side-channel attacks,
for compartmentalized programs in F*, C, or Wasm

Preserve data confidentiality



5

Verify capability backend

ARM Morello
capability machine

Capability passing

against micro-architectural side-channel attacks,
for compartmentalized programs in F*, C, or Wasm

Preserve data confidentiality


