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Compartment 1

• Insecure languages like C enable devastating vulnerabilities

• Mitigate vulnerabilities by compartmentalizing the program

• We don't know which compartments will be compromised
– protect vulnerable C compartments from each other

• We don't know when a compartment will be compromised
– every compartment should receive protection until compromised

• Formalized this as a variant of robust safety preservation [CCS'18]
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Software-Fault Isolation

Done for simpler languages,
yet to be ported to RISC-V

Machine-checked
proofs in Coq

Systematic testing

Big verification
challenge for the future
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Verify capability backend

ARM Morello
capability machine

Capability passing

against micro-architectural side-channel attacks,
for compartmentalized programs in F*, C, or Wasm

Preserve data confidentiality


