
1

Joint work with
Carmine Abate, Cezar-Constantin Andrici, Arthur Azevedo de Amorim,

Roberto Blanco, Ştefan Ciobâcă, Adrien Durier, Akram El-Korashy, Boris Eng,
Ana Nora Evans, Guglielmo Fachini, Deepak Garg, Aïna Linn Georges, Théo Laurent,
Guido Martínez, Marco Patrignani, Benjamin Pierce, Exequiel Rivas, Marco Stronati,

Éric Tanter, Jérémy Thibault, Andrew Tolmach, Théo Winterhalter, ...

In part supported by ERC Starting Grant SECOMP



• Suppose we have a secure source program ...
– For instance formally verified in F* [POPL'16,'17,'18,'20, ICFP'17,'19, ...]

– e.g. EverCrypt verified crypto library, shipping in Firefox, Linux Kernel, ...

– e.g. simple verified web server, linking with unverified libraries [arXiv'23]

• What happens when we compile such a verified program
and link it with adversarial low-level code?

– low-level code that can be buggy, vulnerable, compromised, malicious

– currently: all guarantees are lost, lower-level attacks become possible

– secure compilation: protect the source abstractions all the way down

2

adversarial
low-level code

compiled
program

protected
compartment

sandboxed
compartment



3

Compartment 1

• Insecure languages like C enable devastating vulnerabilities

• Mitigate vulnerabilities by compartmentalizing the program

• We don't know which compartments will be compromised

– protect vulnerable C compartments from each other

• We don't know when a compartment will be compromised

– every compartment should receive protection until compromised

Compartment 1 Compartment 2 Compartment 3 Compartment 4Compartment 4 Compartment 5Compartment 5



4



F* code

low-level
code

verified
program

compiled
program

compiler

satisfies π

satisfies π
no extra powerprotected

Where π can e.g. be "the web server's private key is not leaked"

F*code∀

low-level
code∀

⇒

∀security property π

We explored many classes of properties one can preserve this way:
Journey Beyond Full Abstraction [CSF'19, ESOP'20, TOPLAS'21]

More interesting definition for vulnerable C compartments [CSF'16, CCS'18]
5



Large subset of C
with compartments

RISC-V ASM
with compartments

Micro-Policies: ASM
with programmable tags

vanilla ASM

CompCert verified C compiler extended with compartments

CHERI RISC-V
capability machine

6

magically secure semantics

Hardware-accelerated enforcement

[POPL'14, S&P'15, ASPLOS'15,
POST'18, CCS'18, CSF'23]

Software-Fault Isolation

Done for simplified languages,
yet to be ported to RISC-V

(inspiration for ARM Morello)

[PriSC'23, ongoing]



• Proving mathematically that our compilation chains
achieve secure compilation
– such proofs generally very difficult and tedious

• wrong conjectures for full abstraction have survived for decades

• 250 pages of proof on paper for toy compiler

– we propose more scalable proof techniques [CCS'18, CSF'22]

– machine-checked proofs in the Coq and F* proof assistants

– systematic testing to find wrong conjectures early
[POPL'17, ICFP'13, ITP'15, JFP'16]

29



Large subset of C
with compartments

RISC-V ASM
with compartments

Micro-Policies: ASM
with programmable tags

vanilla ASM

CompCert with
compartments

CHERI RISC-V
capability machine

Proving Secure Compilation in Coq

Scalable proof technique for secure compilation
•applied to simpler languages [CCS'18, CSF'22]
•now extending to CompCert with compartments
•reuses compiler correctness proof (extended!)
•aiming to finish secure compilation proof by fall

–this will be a milestone in terms of realism!
–all prior work on full-abstraction-like proofs is toy!

8

Software-Fault Isolation

Done for simpler languages,
yet to be ported to RISC-V

Machine-checked
proofs

Testing and

Systematic testing

Future 
verification
challenge



9

Verify capability backend

ARM Morello
capability machine

Capability passing

against micro-architectural side-channel attacks,
for arbitrary compartmentalized programs in F*, C, or Wasm

(not only constant time crypto code)

Preserve data confidentiality


