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We are increasingly reliant on computers
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... trusting them with our digital lives



Computers vulnerable to hacking
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Need to break the exploitation cycle

• Once the stakes are high enough, attackers
will find a way to exploit any vulnerability

• Weak security defenses get deployed,
but are routinely circumvented in practice

• Security arms race

– defenders find clever ways to "increase attacker effort"

– attackers find clever ways around them
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We need a deeper understanding that we can
use to build provably secure defenses



Web browsers are frequently hacked
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Browser gets its input from the internet: a webpage (spiegel.de)

300+ resources loaded: html, image files, javascript, styles, ...

from 25+ different internet servers

4 are clearly for ads:
- ad.doubleclick.net
- ad.yieldlab.net
- amazon-adsystem.com
- adalliance.io



Malicious server can hack the browser

• send it an image that looks like an ad

• specially crafted to exploit a vulnerability 
in the browser's image drawing engine

• this compromises the whole browser

– i.e. gives server complete control over it

• malicious server can now:

– steal the user's data

– take control of the victim's computer

– encrypt victim's data and ask for ransom
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Compromised browser can steal user's data

I've just given my password to
the compromised browser
controlled by ad.doubleclick.net
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Compartmentalization can help

compartment 2compartment 1

compromised not compromised
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amazon.de password
is still secure!



Good news: browsers now compartmentalized!
• each tab indeed started in separate compartment
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Bad news, so far:
• limited compartmentalization mechanisms

– compartments coarse-grained, most often OS processes
• can compartmentalize tabs, but not origins or resources within a tab

– compartments can't naturally interact
• even for tabs this required big restructuring of web browsers



Source language compartments

• Mozilla Firefox mostly implemented in C/C++

• Programming languages like C/C++, Rust, Java, ...
already provide natural abstractions for
fine-grained compartmentalization:
– procedures, interfaces, classes, objects, modules, libraries, ...

– a compartment can be a library/module/class
or even an object (e.g., an image or an origin)

• In the source language fine-grained compartments
are easy to define and can naturally interact
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Source language compartments
(simple example in simplified source language)

compartment C1 {

private var x;

private procedure p() {
x := get_counter();
x := password;

}
}

compartment C2 {
private var counter;
private var password;

public procedure get_counter() {
counter := counter + 1;
return counter;

}
}
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←not allowed



Abstractions lost during compilation

• Computers don't directly run C/C++, Java, Rust, or F*
– Compiler translates Firefox from C/C++/Rust to machine code instructions

• All high-level abstractions lost during compilation
– no procedures, no interfaces, no classes, no objects, no modules, ...

• Secure compilation
– preserve compartment abstractions through compilation,

enforce them all the way down

• Shared responsibility of the whole compilation chain:
– source language, compiler, operating system, and hardware

• Goal: secure compilation chain for compartmentalized code
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Machine-code level

Compartment C1

<<check rx∈C1>>
load r ← [rx]

put rc ← apassword

<<check rx∈C1

or rx∈C2's interface>>
jump-and-link rx
sub r ← r-1

Compartment C2

put rc ← acounter

load r ← [rc]
add r ← r+1
store r → [rc]
jump ra

acounter : 42
apassword: ...
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Securely enforcing source abstractions is challenging!

e.g. software checks complicated (uncircumventable, efficient)

←not allowed

←not allowed compiled
get_counter
(public
procedure)

←not enough
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• What does it mean for a compilation chain
for unsafe C compartments to be secure?

– formal definition expressing end-to-end security guarantees

– these guarantees were not understood before

• Will only show an easier definition

– protecting 1 trusted compartment from 1 untrusted one

– untrusted compartment arbitrary (e.g. compromised Firefox)

– trusted compartment has no vulnerabilities
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This is not just hypothetical!
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Mozilla shipping EverCrypt
verified crypto library

(also used by Microsoft, Linux, ...)

Formal verification milestone:
40.000+ lines of highly-efficient code,

mathematically proved to be free of vulnerabilities
(and functionally correct and side-channel resistant)

[POPL'16,'17,'18,'20, 
ICFP'17,'19, ESOP'19, 
CPP'18, SNAPL'17]

Firefox



Putting things into perspective
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20.000.000 lines
+ external libraries

all unverified

40.000 lines

EverCrypt
(verified in F*)

Without compartmentalization interoperability is insecure:
if Firefox is compromised it can break security of verified code

Firefox

What does secure compartmentalization mean in this setting?



Preserving security against adversarial contexts

F* context

machine
code                                                     

context

EverCrypt

compiled

compiler

satisfies π

satisfies π
EverCrypt

no extra powerprotected
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Where "security property" can e.g., be data confidentiality

F*context∀

machine
code

context∀

⇒
∀security property π

π = "private key is not leaked"
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More secure

More efficient
to enforce

Easier to prove

Journey Beyond Full Abstraction [CSF'19, ESOP'20, TOPLAS'21]

trace properties
(safety & liveness)

hyperproperties
(noninterference)

relational
hyperproperties
(trace equivalence)

only integrity

+ data confidentiality

+ code confidentiality

No one-size-fits-all security criterion

fine for code without vulnerabilities (F*) , but ...

let's start with an "easier" one



Compartment 1

Extra challenges in defining secure compilation
for unsafe C compartments [CSF'16, CCS'18]

• Program split into many mutually distrustful compartments

• We don't know which compartments will be compromised

– every compartment should be protected from all the others

• We don't know when a compartment will be compromised

– every compartment should receive protection until compromised

21

Compartment 1 Compartment 2 Compartment 3 Compartment 4Compartment 4 Compartment 5Compartment 5



CompCert C
with compartments

CompCert RISC-V ASM
with compartments

Micro-Policies: ASM
with programmable tags

vanilla ASM

CompCert verified C compiler extended with compartments

CHERI RISC-V
capability machine
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magically secure semantics for RISC-V ASM

large subset of the C language (ISO C 2011)

Hardware-accelerated enforcement

[POPL'14, S&P'15, ASPLOS'15,
POST'18, CCS'18, CSF'23 subm.]

Software-Fault Isolation

Done for simplified languages,
yet to be ported to RISC-V

(inspiration for ARM Morello)



CompCert
extended with 
compartments
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mutually distrustful,
with clearly specified interfaces,
interacting via procedure calls

all 15 verified compilation passes
from Clight to RISC-V ASM
(magically secure semantics)

compiler correctness proofs
a lot of work, reusing for security

large subtest of C



Capabilities Backend

• Targeting the CHERI RISC-V capability machine
– capabilities = unforgeable pointers with base and bounds

• Secure and efficient calling convention enforcing stack safety
[Aïna Linn Georges et al, Le temps de cerises, OOPSLA 2022]

– Uninitialized capabilities: cannot read memory before initializing

– Directed capabilities: cannot access old stack frames

• Mutual distrustful compartments: capability-protected wrappers
– on calls and returns clear registers and

prevent passing capabilities between compartments

• Also investigating calling convention based solely on wrappers

– no new kind of capability over what CHERI already provides

– but more interesting stack layout (not a single contiguous block)
23



• Proving mathematically that our compilation chain
for C compartments achieves secure compilation

– such proofs generally very difficult and tedious

• wrong conjectures survived for decades

• 250 pages of proof on paper for toy compiler

– we propose a more scalable proof technique

– focus on machine-checked proofs in the Coq proof assistant

• with property-based testing stopgap to find bugs early
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CompCert C
with compartments

CompCert RISC-V ASM
with compartments

Micro-Policies: ASM
with programmable tags

vanilla ASM

CompCert with
compartments

CHERI RISC-V
capability machine

Proving secure compilation in Coq

Scalable proof technique for secure compilation
•applied to simpler languages [CCS'18, CSF'22]
•currently porting to CompCert with compartments
•reuses our extended compiler correctness proof
•aiming to finish this in the next couple of months

–milestone for secure compilation in terms of scale/realism
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Software-Fault Isolation

Done for simpler languages,
yet to be ported to RISC-V

Verification

Testing and

Systematic testing with QuickChick [POPL'17, ICFP'13, ITP'15, JFP'16]

Next verification
challenge



Future work: extending proof technique

• Verifying backends more challenging

– can't hide all information about compartment's code (memory layout)

– proof step inspired by full abstraction no longer works (recomposition)

• Fine-grained dynamic memory sharing by capability passing

– already proved in Coq in simpler setting [Akram El-Korashy et al, CSF'22]

• Beyond preserving safety against adversarial contexts

– towards preserving hyperproperties (data confidentiality)

– even relational hyperproperties (observational equivalence)

• secure compilation criteria strictly stronger than full abstraction

• can do this for CompCert, but won't hold for backends

[Jérémy Thibault et al, CSF'19, ICFP'21 submission]
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[CSF'19, ESOP'20,
TOPLAS'21]



Future work (continued)

• Enforcement beyond preserving safety against adversarial contexts

– towards preserving hyperproperties (data confidentiality)

– challenging at the lowest level: [micro-architectural] side-channels attacks

• Dynamic component creation
– from code-based to data-based compartmentalization (e.g. browser tabs)

• Dynamic privileges
– passing capabilities, dynamic interfaces, history-based access control, ...

• Protecting higher-level abstractions (than those of the C lang.)
– Securely Compiling Verified F* Programs With IO

[Cezar-Constantin Andrici et al, ICFP'23 submission]

• using reference monitoring and higher-order contracts

• preserving all relational hyperproperties against adversarial contexts

• first step towards formally secure F*-OCaml interoperability
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– preserve properties against adversarial contexts

– we overcame additional challenges to support
mutually distrustful components and dynamic compromise

– SFI or tagged architecture or capability machine

– scalable proof technique machine-checked in Coq

– applying it to CompCert extended with compartments
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Fine-grained compartmentalization
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spiegel.de doubleclick.net

spiegel.de

adalliance.io



Fine-grained compartmentalization
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Spiegel.de password
is still protected

facebook.com

spiegel.de

spiegel.de spiegel.de



My dream: secure compilation at scale
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EverCrypt

memory safe 
C component

legacy C 
component

ASM 
component

C language
+ components
+ memory safety

ASM language
(RISC-V + micro-policies)

language



Going beyond Robust
Preservation of Safety

Journey Beyond Full Abstraction (CSF 2019)

34

Carmine
Abate

Deepak
Garg Marco

Patrignani

Cătălin
Hrițcu

Jérémy
Thibault

MPI-SWS

Stanford
& CISPA

Inria Paris
Inria Paris Inria Paris

Rob
Blanco

Inria Paris



35

More secure

More efficient
to enforce

Easier to prove

Going beyond Robust Preservation of Safety [CSF'19]

trace properties
(safety & liveness)

hyperproperties
(noninterference)

relational
hyperproperties
(trace equivalence)

only integrity

+ data confidentiality

+ code confidentiality

No one-size-fits-all security criterion

realistically
enforceable?

current
proof
technique



Formalizing security of mitigations is hard

• We want source-level security reasoning principles

– easier to reason about security in the source language
if and application is compartmentalized

• ... even in the presence of undefined behavior

– can't be expressed at all by source language semantics!

– what does the following program do?

#include <string.h>

int main (int argc, char **argv) {

char c[12];

strcpy(c, argv[1]);

return 0;

} 22



Compartmentalizing compilation should ...

• Restrict spatial scope of undefined behavior

– mutually-distrustful components
• each component protected from all the others

• Restrict temporal scope of undefined behavior

– dynamic compromise
• each component gets guarantees

as long as it has not encountered undefined behavior

• i.e. the mere existence of vulnerabilities doesn't
necessarily make a component compromised

23



i0 i1 i2

C0 C1 C2

∃ a sequence of component compromises explaining the finite trace m
in the source language, for instance m=m1·m2·m3 and

↓ ↓ ↓ ⇝machine m

i0 i1 i2

C0 C1 C2
⇝source m1·Undef(C1)

↯
(1)

(2)
i0 i1 i2

C0 A1 C2
⇝source m1·m2·Undef(C2)

↯

(3)
i0 i1 i2

C0 A1 A2
⇝source m1·m2·m3

Finite trace m records which component encountered
undefined behavior and allows us to rewind execution

∃A1.

∃A2.

If then

Security
definition:

24



tpc’ tm3’

Micro-Policies [POPL'14, Oakland'15, ASPLOS'15, POST'18, CCS'18]
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pc tpc

r0 tr0

r1 tr1

mem[0] tm0

“store r0 r1” tm1

mem[2] tm2

mem[3] tm3

tpc tr0 tr1 tm3 tm1

monitor
allow

tpc’ tm3’

tpc

tr0

tr1

tm1

store

software monitor’s decision is hardware cached

software-defined, hardware-accelerated, tag-based monitoring

disallow
policy violation stopped!

(e.g. out of bounds write)

tm3

tm3≠

tm3

=



Compartment C1

load r ← [rx]

put rc ← apassword

jump-and-link rx
sub r ← r-1

Compartment C2

a1: put rc ← acounter

a2: load r ← [rc]
a3: add r ← r+1
a4: store r → [rc]
a5: jump ra

acounter : 42
apassword: ...

Challenge: making sure returns go to the right place

pc@C1

@EntryPoint
@NoEntry

pc@C2

@NoEntry
@ ...

@NoEntry

28

Compartmentalization micro-policy

not
allowed



ra

Compartmentalization micro-policy
(calls and returns)

jump-and-link r

...@EntryPoint

...

...

...

load ⋆rm → ra

jump  ra

pc

memory

C1

C2

...

pc ra

r

rm

@n

@(n+1)

@Ret n

registers

store ra → ⋆rm

pc ...@(n+1)

cross-component call
only allowed at EntryPoint

linear return capability
stack level

current color

changed color

increment

loads and stores to the same
component always allowed

@Ret n

pc ra rm
@(n+1)

invariant:
at most one
return capability
per call stack level

pc ra rm
@(n+1)

cross-component
return only allowed
via return capability

Enforcement
quickly gets
complicated



We reduce our proof goal to a variant of:

Robust Safety Preservation

source
context

target
context

source 
components 

compiled
components

source
context∃

target 
context∃

.

.

compiler

∀source components.
∀(bad/attack) finite trace m.

⇒

source
context

target
context

source 
components 

compiled
components

source
context
trace t∀

target 
context
trace t

∀

.

.

compiler

∀source components.
∀π safety property.

⇒

⇝t⇒ t∈π

⇝t⇒ t∈π

⇔

⇝m

⇝m

back-
translation

proof-oriented characterizationrobust preservation of safety



Scalable proof technique
(for our variant of Robust Safety Preservation)

1. back-translating finite trace prefix to whole source program

2+4. compiler correctness proof (à la CompCert) used as a black-box

3+5. also simulation proofs, but at a single level


