
1

Joint work with
Carmine Abate, Cezar-Constantin Andrici, Arthur Azevedo de Amorim,

Roberto Blanco, Ştefan Ciobâcă, Adrien Durier, Akram El-Korashy, Boris Eng,
Ana Nora Evans, Guglielmo Fachini, Deepak Garg, Aïna Linn Georges, Théo Laurent,
Guido Martínez, Marco Patrignani, Benjamin Pierce, Exequiel Rivas, Marco Stronati,

Éric Tanter, Jérémy Thibault, Andrew Tolmach, Théo Winterhalter, ...

In part supported by ERC Starting Grant SECOMP

We are increasingly reliant on computers

2

... trusting them with our digital lives

Computers vulnerable to hacking

3

Need to break the exploitation cycle

• Once the stakes are high enough, attackers
will find a way to exploit any vulnerability

• Weak security defenses get deployed,
but are routinely circumvented in practice

• Security arms race

– defenders find clever ways to "increase attacker effort"

– attackers find clever ways around them

4

We need a deeper understanding that we can
use to build provably secure defenses

Web browsers are frequently hacked

5

Browser gets its input from the internet: a webpage (spiegel.de)

300+ resources loaded: html, image files, javascript, styles, ...

from 25+ different internet servers

4 are clearly for ads:
- ad.doubleclick.net
- ad.yieldlab.net
- amazon-adsystem.com
- adalliance.io

Malicious server can hack the browser

• send it an image that looks like an ad

• specially crafted to exploit a vulnerability
in the browser's image drawing engine

• this compromises the whole browser

– i.e. gives server complete control over it

• malicious server can now:

– steal the user's data

– take control of the victim's computer

– encrypt victim's data and ask for ransom

6

Compromised browser can steal user's data

I've just given my password to
the compromised browser
controlled by ad.doubleclick.net

7

Compartmentalization can help

compartment 2compartment 1

compromised not compromised

8

amazon.de password
is still secure!

Good news: browsers now compartmentalized!
• each tab indeed started in separate compartment

9

Bad news, so far:
• limited compartmentalization mechanisms

– compartments coarse-grained, most often OS processes
• can compartmentalize tabs, but not origins or resources within a tab

– compartments can't naturally interact
• even for tabs this required big restructuring of web browsers

Source language compartments

• Mozilla Firefox mostly implemented in C/C++

• Programming languages like C/C++, Rust, Java, ...
already provide natural abstractions for
fine-grained compartmentalization:
– procedures, interfaces, classes, objects, modules, libraries, ...

– a compartment can be a library/module/class
or even an object (e.g., an image or an origin)

• In the source language fine-grained compartments
are easy to define and can naturally interact

12

Source language compartments
(simple example in simplified source language)

compartment C1 {

private var x;

private procedure p() {
x := get_counter();
x := password;

}
}

compartment C2 {
private var counter;
private var password;

public procedure get_counter() {
counter := counter + 1;
return counter;

}
}

13

←not allowed

Abstractions lost during compilation

• Computers don't directly run C/C++, Java, Rust, or F*
– Compiler translates Firefox from C/C++/Rust to machine code instructions

• All high-level abstractions lost during compilation
– no procedures, no interfaces, no classes, no objects, no modules, ...

• Secure compilation
– preserve compartment abstractions through compilation,

enforce them all the way down

• Shared responsibility of the whole compilation chain:
– source language, compiler, operating system, and hardware

• Goal: secure compilation chain for compartmentalized code

14

Machine-code level

Compartment C1

<<check rx∈C1>>
load r ← [rx]

put rc ← apassword

<<check rx∈C1

or rx∈C2's interface>>
jump-and-link rx
sub r ← r-1

Compartment C2

put rc ← acounter

load r ← [rc]
add r ← r+1
store r → [rc]
jump ra

acounter : 42
apassword: ...

15

Securely enforcing source abstractions is challenging!

e.g. software checks complicated (uncircumventable, efficient)

←not allowed

←not allowed compiled
get_counter
(public
procedure)

←not enough

16

• What does it mean for a compilation chain
for unsafe C compartments to be secure?

– formal definition expressing end-to-end security guarantees

– these guarantees were not understood before

• Will only show an easier definition

– protecting 1 trusted compartment from 1 untrusted one

– untrusted compartment arbitrary (e.g. compromised Firefox)

– trusted compartment has no vulnerabilities

17

This is not just hypothetical!

18

Mozilla shipping EverCrypt
verified crypto library

(also used by Microsoft, Linux, ...)

Formal verification milestone:
40.000+ lines of highly-efficient code,

mathematically proved to be free of vulnerabilities
(and functionally correct and side-channel resistant)

[POPL'16,'17,'18,'20,
ICFP'17,'19, ESOP'19,
CPP'18, SNAPL'17]

Firefox

Putting things into perspective

19

20.000.000 lines
+ external libraries

all unverified

40.000 lines

EverCrypt
(verified in F*)

Without compartmentalization interoperability is insecure:
if Firefox is compromised it can break security of verified code

Firefox

What does secure compartmentalization mean in this setting?

Preserving security against adversarial contexts

F* context

machine
code

context

EverCrypt

compiled

compiler

satisfies π

satisfies π
EverCrypt

no extra powerprotected

20

Where "security property" can e.g., be data confidentiality

F*context∀

machine
code

context∀

⇒
∀security property π

π = "private key is not leaked"

35

More secure

More efficient
to enforce

Easier to prove

Journey Beyond Full Abstraction [CSF'19, ESOP'20, TOPLAS'21]

trace properties
(safety & liveness)

hyperproperties
(noninterference)

relational
hyperproperties
(trace equivalence)

only integrity

+ data confidentiality

+ code confidentiality

No one-size-fits-all security criterion

fine for code without vulnerabilities (F*) , but ...

let's start with an "easier" one

Compartment 1

Extra challenges in defining secure compilation
for unsafe C compartments [CSF'16, CCS'18]

• Program split into many mutually distrustful compartments

• We don't know which compartments will be compromised

– every compartment should be protected from all the others

• We don't know when a compartment will be compromised

– every compartment should receive protection until compromised

21

Compartment 1 Compartment 2 Compartment 3 Compartment 4Compartment 4 Compartment 5Compartment 5

CompCert C
with compartments

CompCert RISC-V ASM
with compartments

Micro-Policies: ASM
with programmable tags

vanilla ASM

CompCert verified C compiler extended with compartments

CHERI RISC-V
capability machine

21

magically secure semantics for RISC-V ASM

large subset of the C language (ISO C 2011)

Hardware-accelerated enforcement

[POPL'14, S&P'15, ASPLOS'15,
POST'18, CCS'18, CSF'23 subm.]

Software-Fault Isolation

Done for simplified languages,
yet to be ported to RISC-V

(inspiration for ARM Morello)

CompCert
extended with
compartments

22

mutually distrustful,
with clearly specified interfaces,
interacting via procedure calls

all 15 verified compilation passes
from Clight to RISC-V ASM
(magically secure semantics)

compiler correctness proofs
a lot of work, reusing for security

large subtest of C

Capabilities Backend

• Targeting the CHERI RISC-V capability machine
– capabilities = unforgeable pointers with base and bounds

• Secure and efficient calling convention enforcing stack safety
[Aïna Linn Georges et al, Le temps de cerises, OOPSLA 2022]

– Uninitialized capabilities: cannot read memory before initializing

– Directed capabilities: cannot access old stack frames

• Mutual distrustful compartments: capability-protected wrappers
– on calls and returns clear registers and

prevent passing capabilities between compartments

• Also investigating calling convention based solely on wrappers

– no new kind of capability over what CHERI already provides

– but more interesting stack layout (not a single contiguous block)
23

• Proving mathematically that our compilation chain
for C compartments achieves secure compilation

– such proofs generally very difficult and tedious

• wrong conjectures survived for decades

• 250 pages of proof on paper for toy compiler

– we propose a more scalable proof technique

– focus on machine-checked proofs in the Coq proof assistant

• with property-based testing stopgap to find bugs early

29

CompCert C
with compartments

CompCert RISC-V ASM
with compartments

Micro-Policies: ASM
with programmable tags

vanilla ASM

CompCert with
compartments

CHERI RISC-V
capability machine

Proving secure compilation in Coq

Scalable proof technique for secure compilation
•applied to simpler languages [CCS'18, CSF'22]
•currently porting to CompCert with compartments
•reuses our extended compiler correctness proof
•aiming to finish this in the next couple of months

–milestone for secure compilation in terms of scale/realism

25

Software-Fault Isolation

Done for simpler languages,
yet to be ported to RISC-V

Verification

Testing and

Systematic testing with QuickChick [POPL'17, ICFP'13, ITP'15, JFP'16]

Next verification
challenge

Future work: extending proof technique

• Verifying backends more challenging

– can't hide all information about compartment's code (memory layout)

– proof step inspired by full abstraction no longer works (recomposition)

• Fine-grained dynamic memory sharing by capability passing

– already proved in Coq in simpler setting [Akram El-Korashy et al, CSF'22]

• Beyond preserving safety against adversarial contexts

– towards preserving hyperproperties (data confidentiality)

– even relational hyperproperties (observational equivalence)

• secure compilation criteria strictly stronger than full abstraction

• can do this for CompCert, but won't hold for backends

[Jérémy Thibault et al, CSF'19, ICFP'21 submission]

26

[CSF'19, ESOP'20,
TOPLAS'21]

Future work (continued)

• Enforcement beyond preserving safety against adversarial contexts

– towards preserving hyperproperties (data confidentiality)

– challenging at the lowest level: [micro-architectural] side-channels attacks

• Dynamic component creation
– from code-based to data-based compartmentalization (e.g. browser tabs)

• Dynamic privileges
– passing capabilities, dynamic interfaces, history-based access control, ...

• Protecting higher-level abstractions (than those of the C lang.)
– Securely Compiling Verified F* Programs With IO

[Cezar-Constantin Andrici et al, ICFP'23 submission]

• using reference monitoring and higher-order contracts

• preserving all relational hyperproperties against adversarial contexts

• first step towards formally secure F*-OCaml interoperability

27

– preserve properties against adversarial contexts

– we overcame additional challenges to support
mutually distrustful components and dynamic compromise

– SFI or tagged architecture or capability machine

– scalable proof technique machine-checked in Coq

– applying it to CompCert extended with compartments

28

Fine-grained compartmentalization

10

spiegel.de doubleclick.net

spiegel.de

adalliance.io

Fine-grained compartmentalization

11

Spiegel.de password
is still protected

facebook.com

spiegel.de

spiegel.de spiegel.de

My dream: secure compilation at scale

33

EverCrypt

memory safe
C component

legacy C
component

ASM
component

C language
+ components
+ memory safety

ASM language
(RISC-V + micro-policies)

language

Going beyond Robust
Preservation of Safety

Journey Beyond Full Abstraction (CSF 2019)

34

Carmine
Abate

Deepak
Garg Marco

Patrignani

Cătălin
Hrițcu

Jérémy
Thibault

MPI-SWS

Stanford
& CISPA

Inria Paris
Inria Paris Inria Paris

Rob
Blanco

Inria Paris

35

More secure

More efficient
to enforce

Easier to prove

Going beyond Robust Preservation of Safety [CSF'19]

trace properties
(safety & liveness)

hyperproperties
(noninterference)

relational
hyperproperties
(trace equivalence)

only integrity

+ data confidentiality

+ code confidentiality

No one-size-fits-all security criterion

realistically
enforceable?

current
proof
technique

Formalizing security of mitigations is hard

• We want source-level security reasoning principles

– easier to reason about security in the source language
if and application is compartmentalized

• ... even in the presence of undefined behavior

– can't be expressed at all by source language semantics!

– what does the following program do?

#include <string.h>

int main (int argc, char **argv) {

char c[12];

strcpy(c, argv[1]);

return 0;

} 22

Compartmentalizing compilation should ...

• Restrict spatial scope of undefined behavior

– mutually-distrustful components
• each component protected from all the others

• Restrict temporal scope of undefined behavior

– dynamic compromise
• each component gets guarantees

as long as it has not encountered undefined behavior

• i.e. the mere existence of vulnerabilities doesn't
necessarily make a component compromised

23

i0 i1 i2

C0 C1 C2

∃ a sequence of component compromises explaining the finite trace m
in the source language, for instance m=m1·m2·m3 and

↓ ↓ ↓ ⇝machine m

i0 i1 i2

C0 C1 C2
⇝source m1·Undef(C1)

↯
(1)

(2)
i0 i1 i2

C0 A1 C2
⇝source m1·m2·Undef(C2)

↯

(3)
i0 i1 i2

C0 A1 A2
⇝source m1·m2·m3

Finite trace m records which component encountered
undefined behavior and allows us to rewind execution

∃A1.

∃A2.

If then

Security
definition:

24

tpc’ tm3’

Micro-Policies [POPL'14, Oakland'15, ASPLOS'15, POST'18, CCS'18]

27

pc tpc

r0 tr0

r1 tr1

mem[0] tm0

“store r0 r1” tm1

mem[2] tm2

mem[3] tm3

tpc tr0 tr1 tm3 tm1

monitor
allow

tpc’ tm3’

tpc

tr0

tr1

tm1

store

software monitor’s decision is hardware cached

software-defined, hardware-accelerated, tag-based monitoring

disallow
policy violation stopped!

(e.g. out of bounds write)

tm3

tm3≠

tm3

=

Compartment C1

load r ← [rx]

put rc ← apassword

jump-and-link rx
sub r ← r-1

Compartment C2

a1: put rc ← acounter

a2: load r ← [rc]
a3: add r ← r+1
a4: store r → [rc]
a5: jump ra

acounter : 42
apassword: ...

Challenge: making sure returns go to the right place

pc@C1

@EntryPoint
@NoEntry

pc@C2

@NoEntry
@ ...

@NoEntry

28

Compartmentalization micro-policy

not
allowed

ra

Compartmentalization micro-policy
(calls and returns)

jump-and-link r

...@EntryPoint

...

...

...

load ⋆rm → ra

jump ra

pc

memory

C1

C2

...

pc ra

r

rm

@n

@(n+1)

@Ret n

registers

store ra → ⋆rm

pc ...@(n+1)

cross-component call
only allowed at EntryPoint

linear return capability
stack level

current color

changed color

increment

loads and stores to the same
component always allowed

@Ret n

pc ra rm
@(n+1)

invariant:
at most one
return capability
per call stack level

pc ra rm
@(n+1)

cross-component
return only allowed
via return capability

Enforcement
quickly gets
complicated

We reduce our proof goal to a variant of:

Robust Safety Preservation

source
context

target
context

source
components

compiled
components

source
context∃

target
context∃

.

.

compiler

∀source components.
∀(bad/attack) finite trace m.

⇒

source
context

target
context

source
components

compiled
components

source
context
trace t∀

target
context
trace t

∀

.

.

compiler

∀source components.
∀π safety property.

⇒

⇝t⇒ t∈π

⇝t⇒ t∈π

⇔

⇝m

⇝m

back-
translation

proof-oriented characterizationrobust preservation of safety

Scalable proof technique
(for our variant of Robust Safety Preservation)

1. back-translating finite trace prefix to whole source program

2+4. compiler correctness proof (à la CompCert) used as a black-box

3+5. also simulation proofs, but at a single level

