
Journey Beyond Full Abstraction:
Exploring Robust Property Preservation

for Secure Compilation

Carmine
Abate

Deepak
Garg

Marco
Patrignani

Cătălin
Hrițcu

Jérémy
Thibault

MPI-SWS
Saarbrücken

Stanford
& CISPA

MPI-SP
Bochum

MPI-SP
Bochum

MPI-SP
Bochum

Rob
Blanco

MPI-SP
Bochum

Good programming languages provide
helpful abstractions for writing more secure code

• structured control flow, procedures, modules, interfaces,
correctness and security specifications, ...

2

abstractions not enforced when compiling
and linking with adversarial low-level code

• all source-level security guarantees are lost

We need secure compilation chains

• Protect source-level abstractions
even against linked adversarial low-level code
– various enforcement mechanisms:

processes, SFI, capabilities, tagged architectures, ...

– shared responsibility: compiler, linker, loader, OS, HW

• Goal: enable source-level security reasoning
– linked adversarial target code cannot break the security of

compiled program any more than some linked source code

– no "low-level" attacks introduced by compilation
3

Robustly preserving security

source
context

target
context

source

compiled

compiler

secure

secure

program

program

no extra powerprotected

4

But what should "secure" mean?

source
context∀

target
context∀

⇒

5

More secure

More efficient
to enforce

Easier to prove

What properties should we robustly preserve?

trace properties
(safety & liveness)

hyperproperties
(noninterference)

relational
hyperproperties
(trace equivalence)

only integrity

+ data confidentiality

+ code confidentiality

No one-size-fits-all security criterion

⇔

Robust Trace Property Preservation

6

property-based characterization

property-free characterization

what one might want to achieve

how one can prove it

∀P ∀CT∀t. CT[P↓]↝t ⇒ ∃CS. CS[P]↝t

∀P.∀π∈2Trace. (∀CS t. CS[P]↝t ⇒ t∈π)

⇒ (∀CT t. CT[P↓]↝t ⇒ t∈π)

7

back-translating
finite trace prefix m

∀P ∀CT∀m ∃CS...

back-translating
prog & context

∀P ∀CT∃CS∀t...

back-translating
context

∀CT∃CS∀P ∀t...

back-translating
finite set of
finite trace prefixes

∀k∀P1...Pk∀CT

∀m1...mk ∃CS...

back-translating
prog & context & trace

∀P ∀CT∀t ∃CS...

Some of the proof difficulty is manifest in
property-free characterization

Journey Beyond Full Abstraction

• Thoroughly explored secure compilation criteria
based on robust property preservation

• Carefully studied the criteria and their relations
– Property-free characterizations

– implications, collapses, separations results

• Extended diagram to arbitrary trace relations [ESOP 2020]

• Helped better understand full abstraction and its limitations

• Embraced and extended full abstraction proof techniques

8

[CSF 2019]

rest of this talk

Extended this to arbitrary trace relations

• Source and target traces connected by arbitrary relation

– Undefined behavior (CompCert):
tS~tT ⇔ tS=tT ∨ (∃m≤tT. tS=m·Goes_wrong)

– Resource exhaustion (CakeML):
tS~tT ⇔ tS=tT ∨ (∃m≤tS. tT=m·Resource_limit_hit)

– Different values, Side-channels, IO granularity, etc.

• Interesting for secure compilation & compiler correctness

• Main question: how are source/target properties related?

9

[ESOP 2020]

Extending Robust Trace Property Preservation

10

property-free characterization

∀P.∀CT∀tT. CT[P↓]↝tT ⇒ ∃CS.∃tS~tT. CS[P]↝tS

2 equivalent property-full characterizations

∀P.∀πS.

(∀CS. CS[P] ⊧ πS)

⇒ (∀CT. CT[P↓] ⊧ τ~(πS))

∀P. ∀πT.

(∀CS. CS[P] ⊧ σ~(πT))

⇒ (∀CT. CT[P↓] ⊧ πT)
⇔

τ~(πS) = target guarantee
(existential image of ~)

σ~(πT) = source obligation
(universal image of ~)

τ~⇄σ~
(Galois connection)

property-full characterization

without internal nondeterminism,
full abstraction is around here

Where is Full Abstraction?

11

doesn't imply any other criterion

(i.e. robust behavioral equivalence preservation)

Full abstraction does not imply
any other criterion in our diagram

• Intuitive counterexample adapted from Marco&Deepak [CSF'17]

• When target context passes in bad input value (e.g. ill-typed)

the compiled program:

– lunches the missiles - breaks Robust Safety Preservation

– or loops forever - breaks Robust Liveness Preservation

– or leaks secret inputs - breaks Robust NI Preservation

• Yet this doesn't break full abstraction or compiler correctness!

• Full abstraction only ensures code confidentiality

– no integrity, no safety, no data confidentiality, ...
12

It's actually a bit more subtle than this ...

• Seems that sometimes one can ensure that FA implies RTINIP

– Full abstraction ensures program confidentiality, so make secrets

part of the "data section" of the program [Busi et al, CSF 2020]

– Would be good to formalize this, even if it's a very indirect way to get RTINIP

• FA implies RHP~ [Abate & Busi, FCS 2020]

– but only for crazy ~ depending on the compiler, which is thus still in the TCB!

• All full abstraction results have the compiler in their TCB

– For any two languages, there exists a fully abstract compiler!

[Parrow, MSCS 2014] [Gorla & Nestmann, MSCS 2014]

• Still unclear to what extent full abstraction

makes sense as a criterion for secure compilation

– Fortunately now we have many other criteria

13

Embraced and extended™ proof techniques

14

back-translating
context by universal

embedding

∀CT∃CS∀P ∀t...

[New et al, ICFP'16]

generic technique
back-translating
finite set of
finite trace prefixes
∀k∀P1..Pk∀CT

∀m1..mk ∃CS...

[Jeffrey & Rathke, ESOP'05]
[Patrignani et al,TOPLAS'15]

for simple translation from statically to dynamically typed
language with first-order functions and I/O

strongest
criterion

achievable

Future directions

• Achieving provably secure interoperability
with low-level code in practice

– realistic languages and secure compilation chains

• More scalable proof techniques

• More trustworthy secure compilation proofs

– for correct compilation all proofs are machine checked,
why should this be any different for secure compilation?

• Verifying robust satisfaction for source programs

15

