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Good programming languages provide
helpful abstractions for writing more secure code

• structured control flow, procedures, modules, interfaces, 
correctness and security specifications, ...
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abstractions not enforced when compiling 
and linking with adversarial low-level code

• all source-level security guarantees are lost



We need secure compilation chains

• Protect source-level abstractions
even against linked adversarial low-level code
– various enforcement mechanisms:

processes, SFI, capabilities, tagged architectures, ...

– shared responsibility: compiler, linker, loader, OS, HW

• Goal: enable source-level security reasoning
– linked adversarial target code cannot break the security of 

compiled program any more than some linked source code

– no "low-level" attacks introduced by compilation
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Robustly preserving security
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But what should "secure" mean?

source
context∀

target
context∀

⇒
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More secure

More efficient
to enforce

Easier to prove

What properties should we robustly preserve?

trace properties
(safety & liveness)

hyperproperties
(noninterference)

relational
hyperproperties
(trace equivalence)

only integrity

+ data confidentiality

+ code confidentiality

No one-size-fits-all security criterion



⇔

Robust Trace Property Preservation
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property-based characterization

property-free characterization

what one might want to achieve

how one can prove it

∀P ∀CT∀t. CT[P↓]↝t ⇒ ∃CS. CS[P]↝t

∀P.∀π∈2Trace. (∀CS t. CS[ P ]↝t ⇒ t∈π)

⇒ (∀CT t. CT[P↓]↝t ⇒ t∈π)
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back-translating
finite trace prefix m

∀P ∀CT∀m ∃CS...

back-translating
prog & context

∀P ∀CT∃CS∀t...

back-translating
context

∀CT∃CS∀P ∀t...

back-translating
finite set of
finite trace prefixes

∀k∀P1...Pk∀CT

∀m1...mk ∃CS...

back-translating
prog & context & trace

∀P ∀CT∀t ∃CS...

Some of the proof difficulty is manifest in
property-free characterization



Journey Beyond Full Abstraction

• Thoroughly explored secure compilation criteria
based on robust property preservation

• Carefully studied the criteria and their relations
– Property-free characterizations

– implications, collapses, separations results 

• Extended diagram to arbitrary trace relations [ESOP 2020]

• Helped better understand full abstraction and its limitations

• Embraced and extended full abstraction proof techniques
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[CSF 2019]

rest of this talk



Extended this to arbitrary trace relations

• Source and target traces connected by arbitrary relation

– Undefined behavior (CompCert):
tS~tT ⇔ tS=tT ∨ (∃m≤tT. tS=m·Goes_wrong)

– Resource exhaustion (CakeML):
tS~tT ⇔ tS=tT ∨ (∃m≤tS. tT=m·Resource_limit_hit)

– Different values, Side-channels, IO granularity, etc.

• Interesting for secure compilation & compiler correctness

• Main question: how are source/target properties related?
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[ESOP 2020]



Extending Robust Trace Property Preservation
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property-free characterization

∀P.∀CT∀tT. CT[P↓]↝tT ⇒ ∃CS.∃tS~tT. CS[P]↝tS

2 equivalent property-full characterizations

∀P.∀πS.

(∀CS. CS[ P ] ⊧ πS)

⇒ (∀CT. CT[P↓] ⊧ τ~(πS))

∀P. ∀πT.

(∀CS. CS[ P ] ⊧ σ~(πT))

⇒ (∀CT. CT[P↓] ⊧ πT)
⇔

τ~(πS) = target guarantee
(existential image of ~)

σ~(πT) = source obligation
(universal image of ~)

τ~⇄σ~
(Galois connection)

property-full characterization



without internal nondeterminism,
full abstraction is around here

Where is Full Abstraction?
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doesn't imply any other criterion

(i.e. robust behavioral equivalence preservation)



Full abstraction does not imply
any other criterion in our diagram

• Intuitive counterexample adapted from Marco&Deepak [CSF'17]

• When target context passes in bad input value (e.g. ill-typed)

the compiled program:

– lunches the missiles - breaks Robust Safety Preservation

– or loops forever - breaks Robust Liveness Preservation

– or leaks secret inputs - breaks Robust NI Preservation

• Yet this doesn't break full abstraction or compiler correctness!

• Full abstraction only ensures code confidentiality

– no integrity, no safety, no data confidentiality, ...
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It's actually a bit more subtle than this ...

• Seems that sometimes one can ensure that FA implies RTINIP

– Full abstraction ensures program confidentiality, so make secrets

part of the "data section" of the program [Busi et al, CSF 2020]

– Would be good to formalize this, even if it's a very indirect way to get RTINIP

• FA implies RHP~ [Abate & Busi, FCS 2020]

– but only for crazy ~ depending on the compiler, which is thus still in the TCB!

• All full abstraction results have the compiler in their TCB

– For any two languages, there exists a fully abstract compiler!

[Parrow, MSCS 2014] [Gorla & Nestmann, MSCS 2014]

• Still unclear to what extent full abstraction

makes sense as a criterion for secure compilation

– Fortunately now we have many other criteria
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Embraced and extended™ proof techniques
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back-translating
context by universal

embedding

∀CT∃CS∀P ∀t...

[New et al, ICFP'16] 

generic technique
back-translating
finite set of
finite trace prefixes
∀k∀P1..Pk∀CT

∀m1..mk ∃CS...

[Jeffrey & Rathke, ESOP'05]
[Patrignani et al,TOPLAS'15]

for simple translation from statically to dynamically typed 
language with first-order functions and I/O

strongest
criterion

achievable



Future directions

• Achieving provably secure interoperability
with low-level code in practice

– realistic languages and secure compilation chains

• More scalable proof techniques

• More trustworthy secure compilation proofs

– for correct compilation all proofs are machine checked,
why should this be any different for secure compilation?

• Verifying robust satisfaction for source programs
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