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Course outline

* 0. Compiler correctness

— as Trace Property Preservation

e 1. Secure interoperability with lower-level code

— Secure 2-Compartmentalizing Compilation
as Robust Property Preservation

— Property € Trace Properties, Hyperproperties, Relational ...
e 2. Secure compilation despite dynamic compromise

— Compartmentalizing Compilation for Unsafe Languages
— Restricting the temporal + spatial scope of undefined behavior
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Devastating low-level attacks

6art 2: give meaning to mitigation (protected component&
inherently insecure languages like C/C++

— e.g. memory unsafe: any buffer overflow is catastrophic
allowing remote attackers to gain complete control

\— ~100 different undefined behaviors in usual C compiler

A W,

/insecure interoperability with lower-level code N

— even code in more secure languages (Java, OCaml, Rust)
has to interoperate with low-level code (C, C++, ASM)

— insecure interoperability: all source-level guarantees lost
\_Part 1: formalize what it means to solve this problem .




Part 2 of 2 L
When Good Components Go Bad

Secure Compilation Despite Dynamic Compromise

To appear @ Computer and Communications Security (CCS 2018)
https://arxiv.org/abs/1802.00588
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https://arxiv.org/abs/1802.00588
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Undefined behavior

#include <string.h>
int main (int argc, char **argv) {

char C[12], | calewt.. — U X
S‘tr‘cpy(c, ar\gv[l]); View Edit Help
return 9, 0
} — || cE || C s erfIOW
7 5
$ gcc target.c @
1

$ ./a.out haha

$ ./a.out hahal
zsh: segmentation fault (core dumped)
$ ./exploit.sh | a.out
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Practical mitigation: compartmentalization

Main idea:

— break up security-critical C applications into
mutually distrustful components with clearly specified
privileges & interacting via strictly enforced interfaces

———————————————————————————————————————————————————————————————————————

Strong security guarantees & interesting attacker model
— "avulnerability in one component does not immediately
destroy the security of the whole application”

— "each component is protected from all the others"

— "each components receives guarantees as long as
it has not encountered undefined behavior"

———————————————————————————————————————————————————————————————————————

Goal 1: Formalize this

-——————————————————



Goal 2: Build secure compilation chains

Add components to C
— interacting only via strictly enforced interfaces

THE

PROGRAMMING
LANGUAGE

=

A

Enforce "component C" abstractions:

— component separation, call-return discipline, ...

Secure compilation chain:
— compiler, linker, loader, runtime, system, hardware

Use efficient enforcement mechanisms:

— OS processes (all web browsers) — WebAssembly (web browsers)
— software fault isolation (SFl) — capability machines
— hardware enclaves (SGX) — tagged architectures



Goal 1: Formalizing the security of
compartmentalizing compilation



Restricting undefined behavior

* Mutually-distrustful components

— restrict spatial scope of undefined behavior

* Dynamic compromise

— restrict temporal scope of undefined behavior
— undefined behavior = observable trace event

— effects of undefined behavior
shouldn't percolate before earlier observable events
» careful with code motion, backwards static analysis, ...

— CompCert already offers this saner temporal model
— Cstandard, GCC, and LLVM currently violate this model
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Dynamic compromise

* each component gets guarantees as long as it
has not encountered undefined behavior

* a component only loses guarantees after an
attacker discovers and exploits a vulnerability

 the mere existence of vulnerabilities doesn't
immediately make a component compromised



3 a dynamic compromise scenario explaining t in source language
for instance leading to the following compromise sequence:

(O) E G ; M* ml.Undef(Cl)
IA
3 . G :‘QCZ ; % m, Undef(C,)

- rewind execution

IA
A A m Trace is very helpful
1 2 . .
A\ T K - detect undefined behavior
(2) EIAZ a s A st A w> T



Now we know what these words mean!

(at least in the setting of compartmentalization for unsafe low-level languages)

Mutual distrust @ LA, @ LA LA
Dynamic compromise i A F LG FUmy; Undef(Cy)

Statlc prl\”lege 2 A s G 4



Goal 2: Towards building
secure compilation chains



(mostly) 4
Verified J [

Compartmentalized | g ffers procedures, components
unsafe source Q interacting via strictly enforced interfaces

in Coq

Compartmentalized Simple RISC abstract machine with
abstract machine ¥ | 1, ijq.in compartmentalization

1 1software fault isolation

Micro-policy Bare-bone
SN machine

Tag-based reference monitor enforcing: Inline reference monitor enforcing:

- component separation - component separation

- procedure call and return discipline - procedure call and return discipline
(linear capabilities / linear entry points) (program rewriting, shadow call stack)

———
Systematically tested (with QuickChick) « <=
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Making this more practical ... next steps:

e Scale up to more of C

— first step: allow pointer passing (capabilities)

e Verify compartmentalized applications

— put the source-level reasoning principles to work

Extend all this to dynamic component creation

... and dynamic privileges:

— capabilities, dynamic interfaces, HBAC, ...

Support other enforcement mechanisms (back ends)

Measure & lower overhead
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Wrapping up

* 1. Secure interoperability with lower-level code

— exploring a continuum, security vs efficiency tradeoff

e 2. Secure compilation despite dynamic compromise
— restricting the scope of undefined behavior

* spatially to the component that caused it

* temporally by treating UB as an observable trace event

* We're hiring! now!

PostDocs, Young Researchers,

Interns, PhD students “mm
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