Compartmentalizing
Formally Secure Compilation

Catalin Hritcu

Inria Paris

https://secure-compilation.github.io

https://secure-compilation.github.io/

Course outline

* 0. Compiler correctness

— as Trace Property Preservation

e 1. Secure interoperability with lower-level code

— Secure 2-Compartmentalizing Compilation
as Robust Property Preservation

— Property € Trace Properties, Hyperproperties, Relational ...
e 2. Secure compilation despite dynamic compromise

— Compartmentalizing Compilation for Unsafe Languages
— Restricting the temporal + spatial scope of undefined behavior

2

Devastating low-level attacks

6art 2: give meaning to mitigation (protected component&
inherently insecure languages like C/C++

— e.g. memory unsafe: any buffer overflow is catastrophic
allowing remote attackers to gain complete control

\— ~100 different undefined behaviors in usual C compiler

A W,

/insecure interoperability with lower-level code N

— even code in more secure languages (Java, OCaml, Rust)
has to interoperate with low-level code (C, C++, ASM)

— insecure interoperability: all source-level guarantees lost
_Part 1: formalize what it means to solve this problem .

Part 2 of 2 L
When Good Components Go Bad

Secure Compilation Despite Dynamic Compromise

To appear @ Computer and Communications Security (CCS 2018)
https://arxiv.org/abs/1802.00588

4

https://arxiv.org/abs/1802.00588

Collaborators for Part 2

CARMINE
ABATE - %

Chi ha detto

che il buon

cioccolato 9)

Florian
Ana Nora Guglielmo Groult
Evans Fachini

Carmine
Abate

le plus
petit
cirque

du monde

Yannis Théo
Catalin Juglaret Laurent Benjamin Marco Andrew
Hritcu Pierce Stronati Tolmach

Inria Paris CMU U. Virginia U.Trento Paris7 ENS Paris Portland State UPenn

Undefined behavior

#include <string.h>
int main (int argc, char **argv) {

char C[12], | calewt.. — U X
S‘tr‘cpy(c, ar\gv[l]); View Edit Help
return 9, 0
} — || cE || C s erfIOW
7 5
$ gcc target.c @
1

$./a.out haha

$./a.out hahal
zsh: segmentation fault (core dumped)
$./exploit.sh | a.out

’/

o T T N

Practical mitigation: compartmentalization

Main idea:

— break up security-critical C applications into
mutually distrustful components with clearly specified
privileges & interacting via strictly enforced interfaces

———

Strong security guarantees & interesting attacker model
— "avulnerability in one component does not immediately
destroy the security of the whole application”

— "each component is protected from all the others"

— "each components receives guarantees as long as
it has not encountered undefined behavior"

———

Goal 1: Formalize this

-——————————————————

Goal 2: Build secure compilation chains

Add components to C
— interacting only via strictly enforced interfaces

THE

PROGRAMMING
LANGUAGE

=

A

Enforce "component C" abstractions:

— component separation, call-return discipline, ...

Secure compilation chain:
— compiler, linker, loader, runtime, system, hardware

Use efficient enforcement mechanisms:

— OS processes (all web browsers) — WebAssembly (web browsers)
— software fault isolation (SFl) — capability machines
— hardware enclaves (SGX) — tagged architectures

Goal 1: Formalizing the security of
compartmentalizing compilation

Restricting undefined behavior

* Mutually-distrustful components

— restrict spatial scope of undefined behavior

* Dynamic compromise

— restrict temporal scope of undefined behavior
— undefined behavior = observable trace event

— effects of undefined behavior
shouldn't percolate before earlier observable events
» careful with code motion, backwards static analysis, ...

— CompCert already offers this saner temporal model
— Cstandard, GCC, and LLVM currently violate this model

10

Dynamic compromise

* each component gets guarantees as long as it
has not encountered undefined behavior

* a component only loses guarantees after an
attacker discovers and exploits a vulnerability

 the mere existence of vulnerabilities doesn't
immediately make a component compromised

3 a dynamic compromise scenario explaining t in source language
for instance leading to the following compromise sequence:

(O) E G ; M* ml.Undef(Cl)
IA
3 . G :‘QCZ ; % m, Undef(C,)

- rewind execution

IA
A A m Trace is very helpful
1 2 . .
A\ T K - detect undefined behavior
(2) EIAZ a s A st A w> T

Now we know what these words mean!

(at least in the setting of compartmentalization for unsafe low-level languages)

Mutual distrust @ LA, @ LA LA
Dynamic compromise i A F LG FUmy; Undef(Cy)

Statlc prl\”lege 2 A s G 4

Goal 2: Towards building
secure compilation chains

(mostly) 4
Verified J [

Compartmentalized | g ffers procedures, components
unsafe source Q interacting via strictly enforced interfaces

in Coq

Compartmentalized Simple RISC abstract machine with
abstract machine ¥ | 1, ijq.in compartmentalization

1 1software fault isolation

Micro-policy Bare-bone
SN machine

Tag-based reference monitor enforcing: Inline reference monitor enforcing:

- component separation - component separation

- procedure call and return discipline - procedure call and return discipline
(linear capabilities / linear entry points) (program rewriting, shadow call stack)

———
Systematically tested (with QuickChick) « <=

15

Making this more practical ... next steps:

e Scale up to more of C

— first step: allow pointer passing (capabilities)

e Verify compartmentalized applications

— put the source-level reasoning principles to work

Extend all this to dynamic component creation

... and dynamic privileges:

— capabilities, dynamic interfaces, HBAC, ...

Support other enforcement mechanisms (back ends)

Measure & lower overhead

16

Wrapping up

* 1. Secure interoperability with lower-level code

— exploring a continuum, security vs efficiency tradeoff

e 2. Secure compilation despite dynamic compromise
— restricting the scope of undefined behavior

* spatially to the component that caused it

* temporally by treating UB as an observable trace event

* We're hiring! now!

PostDocs, Young Researchers,

Interns, PhD students “mm

17

