
Formally Secure Compilation

Cătălin Hrițcu

Inria Paris

1
https://secure-compilation.github.io

Compartmentalizing

https://secure-compilation.github.io/

Course outline

• 0. Compiler correctness

– as Trace Property Preservation

• 1. Secure interoperability with lower-level code

– Secure 2-Compartmentalizing Compilation
as Robust Property Preservation

– Property ∈ Trace Properties, Hyperproperties, Relational ...

• 2. Secure compilation despite dynamic compromise

– Compartmentalizing Compilation for Unsafe Languages

– Restricting the temporal + spatial scope of undefined behavior
2

Devastating low-level attacks

inherently insecure languages like C/C++

– e.g. memory unsafe: any buffer overflow is catastrophic
allowing remote attackers to gain complete control

– ~100 different undefined behaviors in usual C compiler

insecure interoperability with lower-level code

– even code in more secure languages (Java, OCaml, Rust)
has to interoperate with low-level code (C, C++, ASM)

– insecure interoperability: all source-level guarantees lost

3Part 1: formalize what it means to solve this problem

Part 2: give meaning to mitigation (protected components)

When Good Components Go Bad
Secure Compilation Despite Dynamic Compromise

Part 2 of 2

4
https://arxiv.org/abs/1802.00588

To appear @ Computer and Communications Security (CCS 2018)

https://arxiv.org/abs/1802.00588

Collaborators for Part 2

Cătălin
Hrițcu

Marco
Stronati

Arthur
Azevedo

de Amorim

Ana Nora
Evans

Andrew
Tolmach

Benjamin
Pierce

Théo
Laurent

Carmine
Abate

Inria Paris CMU U. Virginia U. Trento Paris 7 ENS Paris Portland State UPenn

Yannis
Juglaret

Guglielmo
Fachini

5

Rob
Blanco

Florian
Groult

Undefined behavior
#include <string.h>

int main (int argc, char **argv) {

char c[12];

strcpy(c, argv[1]);

return 0;

}

$ gcc target.c
$./a.out haha
$./a.out hahahahahahahahahaha
zsh: segmentation fault (core dumped)
$./exploit.sh | a.out

Buffer overflow

6

Practical mitigation: compartmentalization

• Main idea:

– break up security-critical C applications into
mutually distrustful components with clearly specified
privileges & interacting via strictly enforced interfaces

• Strong security guarantees & interesting attacker model

– "a vulnerability in one component does not immediately

destroy the security of the whole application"

– "each component is protected from all the others"

– "each components receives guarantees as long as

it has not encountered undefined behavior"

7

Goal 1: Formalize this

Goal 2: Build secure compilation chains

• Add components to C

– interacting only via strictly enforced interfaces

• Enforce "component C" abstractions:

– component separation, call-return discipline, ...

• Secure compilation chain:

– compiler, linker, loader, runtime, system, hardware

• Use efficient enforcement mechanisms:
– OS processes (all web browsers) — WebAssembly (web browsers)

– software fault isolation (SFI) — capability machines

– hardware enclaves (SGX) — tagged architectures

8

Goal 1: Formalizing the security of
compartmentalizing compilation

9

Restricting undefined behavior

• Mutually-distrustful components
– restrict spatial scope of undefined behavior

• Dynamic compromise
– restrict temporal scope of undefined behavior

– undefined behavior = observable trace event

– effects of undefined behavior
shouldn't percolate before earlier observable events
• careful with code motion, backwards static analysis, ...

– CompCert already offers this saner temporal model

– C standard, GCC, and LLVM currently violate this model

10

Dynamic compromise

• each component gets guarantees as long as it
has not encountered undefined behavior

• a component only loses guarantees after an
attacker discovers and exploits a vulnerability

• the mere existence of vulnerabilities doesn't
immediately make a component compromised

11

i0 i1 i2

C0 C1 C2

∃ a dynamic compromise scenario explaining t in source language
for instance leading to the following compromise sequence:

↓ ↓ ↓ ⇝ t

i0 i1 i2

C0 C1 C2
⇝* m1·Undef(C1)

↯
(0)

(1)
i0 i1 i2

C0 A1 C2
⇝* m2·Undef(C2)

↯

(2)
i0 i1 i2

C0 A1 A2
⇝ t

≤

≤

Trace is very helpful
- detect undefined behavior
- rewind execution

∃A1.

∃A2.

If then

12

Now we know what these words mean!

Mutual distrust

Dynamic compromise

Static privilege

C1 A2 C3 A4 A5

C0 A1 C2 ⇓m2; Undef(C2)
↯

i0 i1 i2

C0 A1 C2

(at least in the setting of compartmentalization for unsafe low-level languages)

13

Goal 2: Towards building
secure compilation chains

14

Compartmentalized
unsafe source

Compartmentalized
abstract machine

Buffers, procedures, components
interacting via strictly enforced interfaces

Micro-policy
machine

Bare-bone
machine

Simple RISC abstract machine with

build-in compartmentalization

Inline reference monitor enforcing:
- component separation
- procedure call and return discipline
(program rewriting, shadow call stack)

software fault isolation

Tag-based reference monitor enforcing:
- component separation
- procedure call and return discipline
(linear capabilities / linear entry points)

(mostly)

Verified
in Coq

Systematically tested (with QuickChick)

15

Making this more practical ... next steps:

• Scale up to more of C
– first step: allow pointer passing (capabilities)

• Verify compartmentalized applications
– put the source-level reasoning principles to work

• Extend all this to dynamic component creation

• ... and dynamic privileges:
– capabilities, dynamic interfaces, HBAC, ...

• Support other enforcement mechanisms (back ends)

• Measure & lower overhead
16

Wrapping up

• 1. Secure interoperability with lower-level code

– exploring a continuum, security vs efficiency tradeoff

• 2. Secure compilation despite dynamic compromise

– restricting the scope of undefined behavior

• spatially to the component that caused it

• temporally by treating UB as an observable trace event

• We're hiring!

– PostDocs, Young Researchers, Interns, PhD students

17

now!

