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Secure compilation has various goals

• Preventing low-level attacks and
Enabling source-level security reasoning

– by compartmentalizing compilation

• Making the source language safer

– memory and type safety, less/no undefined behavior

• Making it easier to express security intent

– marking secrets, specifying security properties

• Making exploits more difficult

– CFI, CPI, stack protection, randomization, diversity 2

this course
is only about



Devastating low-level attacks

inherently insecure languages like C/C++

– e.g. memory unsafe: any buffer overflow is catastrophic
allowing remote attackers to gain complete control

– ~100 different undefined behaviors in usual C compiler

insecure interoperability with lower-level code

– even code in more secure languages (Java, OCaml, Rust)
has to interoperate with low-level code (C, C++, ASM)

– insecure interoperability: all source-level guarantees lost

3Part 1: formalize what it means to solve this problem

Part 2: give meaning to mitigation (protected components)



Secure Interoperability
with Lower-Level Code

Part 1 of 2
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Good programming languages provide helpful 
abstractions for writing more secure code

• e.g. HACL* and miTLS written in Low* which provides:

– low-level abstractions associated with safe C programs

• structured control flow, procedures, abstract memory model

– higher-level abstractions associated with ML-like languages

• modules, interfaces, and parametric polymorphism

– most features of verification systems like Coq and Dafny

• effects, dependent types, logical pre- and post-conditions

– patterns specific to cryptographic code

• abstract types and interfaces for mitigating side-channel attacks
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Abstractions not enforced when linking 
with adversarial low-level code
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HACL* library Firefox web browser

ASM ASM

Insecure interoperability: compromised (or malicious) application
linking in miTLS can easily read and write miTLS’s data and code,
jump to arbitrary instructions, smash the stack, ...

~10.000 LOC in Low* 16.000.000+ LOC in C/C++

KreMLin
+ CompCert GCC

Verified



Secure compilation

• Protect source-level abstractions
even against linked adversarial low-level code

• Enable source-level security reasoning

– even adversarial target-level context cannot
break security properties of compiled program 
any more than some source-level context could

– no "low-level" attacks
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Three important concerns
for secure compilation

1. What are we trying to achieve?

• Identifying and formalizing secure
compilation criteria and attacker models

2. How can we achieve it efficiently?

• compartmentalization can be achieved using:
OS processes, software-fault isolation, hardware 
enclaves, tagged architectures, capability machines

3. How can prove it effectively?

• e.g. (bi)simulations, logical relations, game semantics, ...
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this course mostly
focused on 1

(does touch on
2+3 a bit too)



Source-level security reasoning
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9

But what does "secure" mean?

source
context∀

target
context∀



What security properties should we preserve?

• We explored a large space of security properties

• Studied preserving various classes of ...
– trace properties (safety, liveness)

– hyperproperties (e.g. noninterference)

– relational hyperproperties (e.g. trace equivalence)

... against adversarial target-level contexts

• No “one-size-fits-all solution”
– e.g. full abstraction does not imply the other criteria we study

– stronger criteria are harder to achieve and prove, both challenging
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More secure

More efficient
Easier to prove



Robust Trace Property Preservation
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back-translating
finite trace prefix
∀P∀CT∀m≤t∃CS...

back-translating
prog & context
∀P∀CT∃CS∀t...

back-translating
context

∀CT∃CS∀P∀t...

back-translating
finite set of
finite trace prefixes
∀k∀P1..Pk∀CT

∀m1..mk ∃CS...

back-translating
prog & context & trace
∀P∀CT∀t∃CS...

Some of proof difficulty is manifest in
property-free characterization



Summarizing recent results
• Mapped the space of secure compilation criteria

based on robust "property" preservation

– Property-free characterizations and implications in Coq

– Separation results (e.g. robust safety/liveness preservation
strictly weaker than robust trace property preservation)

– Collapse between preserving all hyperproperties
and preserving just hyperliveness

• Showed that even strongest criterion is achievable

– for simple translation from a statically to a dynamically typed
language with first-order functions and I/O
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Some open problems

• Practically achieving
secure interoperability with lower-level code
– More realistic languages and secure compilation chains

– Achieve robust noninterference preservation
in realistic attacker model with side-channels

– Efficient enforcement mechanisms

• Scalable proof techniques for other criteria
– robust (hyper)liveness preservation (possible?)

• Proving robust satisfaction for source programs

– partial semantics, program logics, logical relations, ...
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Where is full abstraction?
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with internal
nondeterminism

without internal
nondeterminism

Q: Under what extra assumptions does
full abstraction imply anything?

compiler correctness
not enough!

divergence 
finitely 

observable



Wrapping up the intro

• 1. Secure interoperability with lower-level code

– exploring a continuum, security vs efficiency tradeoff

• We're hiring!

– PostDocs, Young Researchers, Interns, PhD students
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now!



Plan for the rest of this course

• 0. Compiler correctness

– as Trace Property Preservation

• 1. Secure interoperability with lower-level code

– Secure 2-Compartmentalizing Compilation
as Robust Property Preservation

– Property ∈ Trace Properties, Hyperproperties, Relational ...

• 2. Secure compilation despite dynamic compromise

– Compartmentalizing Compilation for Unsafe Languages

– Restricting the temporal + spatial scope of undefined behavior
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