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Secure compilation has various goals

Preventing low-level attacks and « this course
Enabling source-level security reasoning 1S only about

— by compartmentalizing compilation

Making the source language safer

— memory and type safety, less/no undefined behavior
Making it easier to express security intent

— marking secrets, specifying security properties
Making exploits more difficult

— CFl, CPI, stack protection, randomization, diversity ,



Devastating low-level attacks

6art 2: give meaning to mitigation (protected component&
inherently insecure languages like C/C++

— e.g. memory unsafe: any buffer overflow is catastrophic
allowing remote attackers to gain complete control

\— ~100 different undefined behaviors in usual C compiler

g9 W,

/insecure interoperability with lower-level code N

— even code in more secure languages (Java, OCaml, Rust)
has to interoperate with low-level code (C, C++, ASM)

— insecure interoperability: all source-level guarantees lost
\_Part 1: formalize what it means to solve this problem .
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Good programming languages provide helpful
abstractions for writing more secure code

e e.g. HACL* and miTLS written in Low* which provides:
— low-level abstractions associated with safe C programs

» structured control flow, procedures, abstract memory model

— higher-level abstractions associated with ML-like languages

* modules, interfaces, and parametric polymorphism

— most features of verification systems like Coq and Dafny

» effects, dependent types, logical pre- and post-conditions

— patterns specific to cryptographic code

e abstract types and interfaces for mitigating side-channel attacks



Abstractions not enforced when linking
with adversarial low-level code
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Insecure interoperability: compromised (or malicious) application
linking in miTLS can easily read and write miTLS’s data and code,
jump to arbitrary instructions, smash the stack, ... 6



Secure compilation

 Protect source-level abstractions
even against linked adversarial low-level code

* Enable source-level security reasoning

— even adversarial target-level context cannot
break security properties of compiled program
any more than some source-level context could

— no "low-level" attacks



Three important concerns

for secure compilation

1. What are we trying to achieve? < this course mostly
focused on 1

* Identifying and formalizing secure
L e (does touch on
compilation criteria and attacker models _
2+3 a bit too)

2. How can we achieve it efficiently?

e compartmentalization can be achieved using:
OS processes, software-fault isolation, hardware
enclaves, tagged architectures, capability machines

3. How can prove it effectively?
 e.g. (bi)simulations, logical relations, game semantics, ...
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Source-level security reasoning

\ , source source source
context [[component context secure

compilerl

target compiled target
V context {[ component context secure

protected no extra power

But what does "secure" mean?



What security properties should we preserve?

 We explored a large space of security properties

e Studied preserving various classes of ...
— trace properties (safety, liveness)
— hyperproperties (e.g. noninterference)
— relational hyperproperties (e.g. trace equivalence)

... against adversarial target-level contexts
* No “one-size-fits-all solution”

— e.g. full abstraction does not imply the other criteria we study
— stronger criteria are harder to achieve and prove, both challenging
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Robust Relational Hyperproperty
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Robust Trace Property Preservation
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Summarizing recent results arxiv:1807.04603]

Mapped the space of secure compilation criteria
based on robust "property" preservation
— Property-free characterizations and implications in Coq

— Separation results (e.g. robust safety/liveness preservation
strictly weaker than robust trace property preservation)

— Collapse between preserving all hyperproperties
and preserving just hyperliveness

Showed that even strongest criterion is achievable

— for simple translation from a statically to a dynamically typed
language with first-order functions and I/O
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Some open problems

Practically achieving
secure interoperability with lower-level code

— More realistic languages and secure compilation chains

— Achieve robust noninterference preservation
in realistic attacker model with side-channels

— Efficient enforcement mechanisms

Scalable proof techniques for other criteria
— robust (hyper)liveness preservation (possible?)

Proving robust satisfaction for source programs
— partial semantics, program logics, logical relations, ...

15



Where is full abstraction?
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Wrapping up the intro

* 1. Secure interoperability with lower-level code

— exploring a continuum, security vs efficiency tradeoff

 We're hiring! now!

PostDocs, Young Researchers,

Interns, PhD students "imm
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Plan for the rest of this course

* 0. Compiler correctness

— as Trace Property Preservation

e 1. Secure interoperability with lower-level code

— Secure 2-Compartmentalizing Compilation
as Robust Property Preservation

— Property € Trace Properties, Hyperproperties, Relational ...
e 2. Secure compilation despite dynamic compromise

— Compartmentalizing Compilation for Unsafe Languages
— Restricting the temporal + spatial scope of undefined behavior
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