Compartmentalizing
Formally Secure Compilation

Catalin Hritcu

Inria Paris

https://secure-compilation.github.io

https://secure-compilation.github.io/

Secure compilation has various goals

Preventing low-level attacks and « this course
Enabling source-level security reasoning 1S only about

— by compartmentalizing compilation

Making the source language safer

— memory and type safety, less/no undefined behavior
Making it easier to express security intent

— marking secrets, specifying security properties
Making exploits more difficult

— CFl, CPI, stack protection, randomization, diversity ,

Devastating low-level attacks

6art 2: give meaning to mitigation (protected component&
inherently insecure languages like C/C++

— e.g. memory unsafe: any buffer overflow is catastrophic
allowing remote attackers to gain complete control

\— ~100 different undefined behaviors in usual C compiler

g9 W,

/insecure interoperability with lower-level code N

— even code in more secure languages (Java, OCaml, Rust)
has to interoperate with low-level code (C, C++, ASM)

— insecure interoperability: all source-level guarantees lost
_Part 1: formalize what it means to solve this problem .

Part 1 of 2

Secure Interoperability |

with Lower-Level Code

CARMINE
ABATE
11 8ACI0 DRl

: Rob Jérémy
Carmine Blanco Garg Catalin Thibault
Abate Inria Paris MPI-SWS Hritcu Inria Paris
Inria Paris Inria Paris

Journey Beyond Full Abstraction:

Marco
Patrignani

CISPA
Stanford

Exploring Robust Property Preservation for Secure Compilation

https://arxiv.org/abs/1807.04603

https://arxiv.org/abs/1807.04603

Good programming languages provide helpful
abstractions for writing more secure code

e e.g. HACL* and miTLS written in Low* which provides:
— low-level abstractions associated with safe C programs

» structured control flow, procedures, abstract memory model

— higher-level abstractions associated with ML-like languages

* modules, interfaces, and parametric polymorphism

— most features of verification systems like Coq and Dafny

» effects, dependent types, logical pre- and post-conditions

— patterns specific to cryptographic code

e abstract types and interfaces for mitigating side-channel attacks

Abstractions not enforced when linking
with adversarial low-level code

lll
. g
05 ‘e

M L L L L L L AL L TN 0‘
“ .‘

mn S -
[—[_[HACL* Iibrary] LL[Firefox web browser]

Verified KreMLin
l+ CompCert lGCC
H ASM <> ASM]

0000

. *
., .

--

Insecure interoperability: compromised (or malicious) application
linking in miTLS can easily read and write miTLS’s data and code,
jump to arbitrary instructions, smash the stack, ... 6

Secure compilation

 Protect source-level abstractions
even against linked adversarial low-level code

* Enable source-level security reasoning

— even adversarial target-level context cannot
break security properties of compiled program
any more than some source-level context could

— no "low-level" attacks

Three important concerns

for secure compilation

1. What are we trying to achieve? < this course mostly
focused on 1

* Identifying and formalizing secure
L e (does touch on
compilation criteria and attacker models _
2+3 a bit too)

2. How can we achieve it efficiently?

e compartmentalization can be achieved using:
OS processes, software-fault isolation, hardware
enclaves, tagged architectures, capability machines

3. How can prove it effectively?
 e.g. (bi)simulations, logical relations, game semantics, ...

8

Source-level security reasoning

\ , source source source
context [[component context secure

compilerl

target compiled target
V context {[component context secure

protected no extra power

But what does "secure" mean?

What security properties should we preserve?

 We explored a large space of security properties

e Studied preserving various classes of ...
— trace properties (safety, liveness)
— hyperproperties (e.g. noninterference)
— relational hyperproperties (e.g. trace equivalence)

... against adversarial target-level contexts
* No “one-size-fits-all solution”

— e.g. full abstraction does not imply the other criteria we study
— stronger criteria are harder to achieve and prove, both challenging

10

Robust Relational Hyperproperty

Preservation (RrHP)

Robust K-Relational Hyperpropert

Preservation (RKrHP)
|

Robust 2-Relational Hyperproperty

/ Preservation (R2rHP)
Robust Trace i
Equivaler?ce Robust Hyperproperty
Preservation Preservation (RHP)

(RTEP) |

Robust Subset-Closed
Hyperproperty Preservation
(RSCHP)
|
Robust K-Subset-Closed

Hyperproperty Preservation
(RKSCHP)
|
Robust 2-Subset-Closed
Hyperproperty Preservation
(R2SCHP)
|
Robust Trace Property
J Preservation (RTP)

Robust Dense Property
Preservation (RDP)

Robust Trace Equivalence

Robust Relational

Property Preservation (RrTP) \

| Robust Relational
Robust K-Relational Safety Preservation (RrSP)

Property Preservation (RKrTP) |

| Robust Finite-Relational
Robust 2-Relational Safety Preservation

Property Preservation (R2rTP) (RFrSP)

Robust K-Relational
Safety Preservation

- + determinacy

Preservation (RTEP) (RKrSP)
|
____________ Robust 2-Relational
Robust Hypersafety Safety Preservation
Preservation (RHSP) (R2rSP)
| - + determinacy
Robust K-Hypersafety S rervoble
Preservation (RKHSP) divergence
¢ Robust Trace Equivalence
Robust 2-Hypersafety Preservation (RTEP)
Preservation (R2HSP)
¢ Robust Termination-Insensitive
Robust Safety Property Noninterference Preservation

Preservation (RSP) (RTINIP)

More secure
A

\ 4
More efficient
Easier to prove

11

Robust Trace Property Preservation

ﬂroperty-based characterizaticm /

Vsource component.
Vnt trace property.
source source

source
context

trace t,

]*'W‘)t = ten

[{component l context
| I compiler
target

target

compiler

context

compiled wi = tETT
context component
trace t,

preservation of robust satisfaction

3 target
\context .

property-free characterizati%
Vsource component.

V(bad attack) trace t.

3 source source |
component context

| |
- back-
- translation

source
context ,

[{ compiled target
%9 w ¢
component context/

how one can prove it ,

| Some of proof difficulty is manifest in
back-translati ng Robust Relatlonz.al Hyperproperty . .
Preservation (RrHP) \ property-free characterization
y

context |
\V/C 3 Csvpvt Robust K-Relational Hyperpropert
T e

Preservation (RKrHP)

|
Robust 2-Relational Hyperproperty

Robust Relational

Property Preservation (RFTP)
| Robust Relational

Preservation (R2rHP) Robust K-Relational Safety Preservation (RrSP)
Property Preservation (RKrTP) |
Robust Trace L | Robust Finite-Relational back-translati ng
Equivalence, p b ot 1 Robust 2-Relational Safety Preservation
. st Hyperproperty) ..
Preservation Preservation (RHP) Property Preservation (R2rTP) (RFrSP) finite set of
RTEP ; o ;
(RIER) | L+ et L finite trace prefixes
Robust Subset-Closed : Rol?ust K-Relational
b k t I t. Hyperproperty Preservation Robust Trace Equivalence Safety Preservation VkVP1 s PkVCT
ack-transiating (RSCHP) Preservation (RTEP) (RKTSP) Vm m HC
prog & context | o P kTS
VPVC 3 C Vt Robust K-Subset-Closed Robust Hvpersafet Robust 2-Relat10'nal
T SV&t-- Hyperproperty Preservation p ¢ us.> type(;ili_lesg) Safety Preservation
(RKSCHP) reservation .(Rzrsp)
| | . + determinacy
Robust 2-Subset-Closed Robust K-Hypersafety -+ observable
Hyperproperty Preservation Preservation (RKHSP) . divergence
R2SCHP ;
(|) ¢ Robust Trace Equivalence
Robust 2-Hypersafety Preservation (RTEP)
Robust Trace Property Preservation (R2HSP)
J Preservation (RTP)
¢ Robust Termination-Insensitive
Robust Dense Property Robust Safety Property Noninterference Preservation
Preservation (RDP) Preservation (RSP) (RTINIP)

back-translating

finite trace prefix

prog & context & trace

back-translating

Summarizing recent results arxiv:1807.04603]

Mapped the space of secure compilation criteria
based on robust "property" preservation
— Property-free characterizations and implications in Coq

— Separation results (e.g. robust safety/liveness preservation
strictly weaker than robust trace property preservation)

— Collapse between preserving all hyperproperties
and preserving just hyperliveness

Showed that even strongest criterion is achievable

— for simple translation from a statically to a dynamically typed
language with first-order functions and I/O

14

http://arxiv.org/abs/1807.04603

Some open problems

Practically achieving
secure interoperability with lower-level code

— More realistic languages and secure compilation chains

— Achieve robust noninterference preservation
in realistic attacker model with side-channels

— Efficient enforcement mechanisms

Scalable proof techniques for other criteria
— robust (hyper)liveness preservation (possible?)

Proving robust satisfaction for source programs
— partial semantics, program logics, logical relations, ...

15

Where is full abstraction?

Q: Under what extra assumptions does
Robust Relational Hyperproperty

Preservation (RrHP) \ fu" abStraCtiOn imply anything?
| .
W|th “‘]ternal Robust K-Relational Hyperproperty Compller Correctness

Robust Relational

Preservation (RKrHP) £ nOt enou h |
nondetermlnlsm | Property Preservation (RrTP) \ g H
Robust 2-Relational Hyperproperty | Robust Relational
Preservation (R2rHP) Robust K-Relational Safety Preservation (RrSP)
Property Preservation (RKrTP) |
Robust Trace l | Robust Finite-Relational
Equivalence Robust Hyperproperty Robust 2-Relational Safety Preservation
Preservation Preservation (RHP) Property Preservation (R2rTP) (RFrSP)
(RTEP) | + determinacy |
Robust Subset-Closed : Rol?ust K-Relatio.nal . .
Hyperproperty Preservation Robust Trace Equivalence Safety Preservation Wlt h ou t | nte na I
(RSCHP) Preservation (RTEP) R S —— ..
| | nondeterminism
Robust K-Subset-Closed RN a——I Robust Z-Rebtlo.nal
Hyperproperty Preservation p o t'ypez;l-lesg) Safety Preservation
(RKSCHP) reservation .(R2rSP)
| I : + determinacy
Robust 2-Subset-Closed Robust K-Hypersafety - + observable
Hyperproperty Preservation Preservation (RKHSP) - divergence .
(R2SCHP) v : _ divergence
| " . Robust Trace Equivalence f I
Robust 2-Hypersafety Preservation (RTEP) Qs | 1} |te
R(;)buSt Trace Prgl;;r) ty Preservation (R2HSP) y
reservation
J () observable
- Robust Termination-Insensitive
Robust Dense Property Robust Safety Property Noninterference Preservation

Preservation (RDP) Preservation (RSP) (RTINIP) 16

Wrapping up the intro

* 1. Secure interoperability with lower-level code

— exploring a continuum, security vs efficiency tradeoff

 We're hiring! now!

PostDocs, Young Researchers,

Interns, PhD students "imm

17

Plan for the rest of this course

* 0. Compiler correctness

— as Trace Property Preservation

e 1. Secure interoperability with lower-level code

— Secure 2-Compartmentalizing Compilation
as Robust Property Preservation

— Property € Trace Properties, Hyperproperties, Relational ...
e 2. Secure compilation despite dynamic compromise

— Compartmentalizing Compilation for Unsafe Languages
— Restricting the temporal + spatial scope of undefined behavior

18

