
Formally Secure Compilation

Cătălin Hrițcu

Inria Paris

1
https://secure-compilation.github.io

Compartmentalizing

https://secure-compilation.github.io/

Secure compilation has various goals

• Preventing low-level attacks and
Enabling source-level security reasoning

– by compartmentalizing compilation

• Making the source language safer

– memory and type safety, less/no undefined behavior

• Making it easier to express security intent

– marking secrets, specifying security properties

• Making exploits more difficult

– CFI, CPI, stack protection, randomization, diversity 2

this course
is only about

Devastating low-level attacks

inherently insecure languages like C/C++

– e.g. memory unsafe: any buffer overflow is catastrophic
allowing remote attackers to gain complete control

– ~100 different undefined behaviors in usual C compiler

insecure interoperability with lower-level code

– even code in more secure languages (Java, OCaml, Rust)
has to interoperate with low-level code (C, C++, ASM)

– insecure interoperability: all source-level guarantees lost

3Part 1: formalize what it means to solve this problem

Part 2: give meaning to mitigation (protected components)

Secure Interoperability
with Lower-Level Code

Part 1 of 2

4

Carmine
Abate

Deepak
Garg Marco

Patrignani

Cătălin
Hrițcu

Jérémy
Thibault

MPI-SWS

CISPA
Stanford

Inria Paris
Inria Paris Inria Paris

Rob
Blanco

Journey Beyond Full Abstraction:
Exploring Robust Property Preservation for Secure Compilation

https://arxiv.org/abs/1807.04603

Inria Paris

https://arxiv.org/abs/1807.04603

Good programming languages provide helpful
abstractions for writing more secure code

• e.g. HACL* and miTLS written in Low* which provides:

– low-level abstractions associated with safe C programs

• structured control flow, procedures, abstract memory model

– higher-level abstractions associated with ML-like languages

• modules, interfaces, and parametric polymorphism

– most features of verification systems like Coq and Dafny

• effects, dependent types, logical pre- and post-conditions

– patterns specific to cryptographic code

• abstract types and interfaces for mitigating side-channel attacks

5

Abstractions not enforced when linking
with adversarial low-level code

6

HACL* library Firefox web browser

ASM ASM

Insecure interoperability: compromised (or malicious) application
linking in miTLS can easily read and write miTLS’s data and code,
jump to arbitrary instructions, smash the stack, ...

~10.000 LOC in Low* 16.000.000+ LOC in C/C++

KreMLin
+ CompCert GCC

Verified

Secure compilation

• Protect source-level abstractions
even against linked adversarial low-level code

• Enable source-level security reasoning

– even adversarial target-level context cannot
break security properties of compiled program
any more than some source-level context could

– no "low-level" attacks

7

Three important concerns
for secure compilation

1. What are we trying to achieve?

• Identifying and formalizing secure
compilation criteria and attacker models

2. How can we achieve it efficiently?

• compartmentalization can be achieved using:
OS processes, software-fault isolation, hardware
enclaves, tagged architectures, capability machines

3. How can prove it effectively?

• e.g. (bi)simulations, logical relations, game semantics, ...
8

this course mostly
focused on 1

(does touch on
2+3 a bit too)

Source-level security reasoning

source
context

target
context

source

compiled

compiler

secure

secure

component

component

no extra powerprotected

9

But what does "secure" mean?

source
context∀

target
context∀

What security properties should we preserve?

• We explored a large space of security properties

• Studied preserving various classes of ...
– trace properties (safety, liveness)

– hyperproperties (e.g. noninterference)

– relational hyperproperties (e.g. trace equivalence)

... against adversarial target-level contexts

• No “one-size-fits-all solution”
– e.g. full abstraction does not imply the other criteria we study

– stronger criteria are harder to achieve and prove, both challenging

10

11

More secure

More efficient
Easier to prove

Robust Trace Property Preservation

12

source
context

target
context

source
component

compiled
component

source
context∃

target
context∃

.

.

compiler

∀source component.
∀(bad attack) trace t.

⇒

source
context

target
context

source
component

compiled
component

source
context
trace t∀

target
context
trace t

∀

.

.

compiler

∀source component.
∀π trace property.

⇒

⇝t⇒ t∈π

property-based characterization

⇝t⇒ t∈π

property-free characterization

⇔

⇝t

⇝t

back-
translation

preservation of robust satisfaction how one can prove it

13

back-translating
finite trace prefix
∀P∀CT∀m≤t∃CS...

back-translating
prog & context
∀P∀CT∃CS∀t...

back-translating
context

∀CT∃CS∀P∀t...

back-translating
finite set of
finite trace prefixes
∀k∀P1..Pk∀CT

∀m1..mk ∃CS...

back-translating
prog & context & trace
∀P∀CT∀t∃CS...

Some of proof difficulty is manifest in
property-free characterization

Summarizing recent results
• Mapped the space of secure compilation criteria

based on robust "property" preservation

– Property-free characterizations and implications in Coq

– Separation results (e.g. robust safety/liveness preservation
strictly weaker than robust trace property preservation)

– Collapse between preserving all hyperproperties
and preserving just hyperliveness

• Showed that even strongest criterion is achievable

– for simple translation from a statically to a dynamically typed
language with first-order functions and I/O

14

[arXiv:1807.04603]

http://arxiv.org/abs/1807.04603

Some open problems

• Practically achieving
secure interoperability with lower-level code
– More realistic languages and secure compilation chains

– Achieve robust noninterference preservation
in realistic attacker model with side-channels

– Efficient enforcement mechanisms

• Scalable proof techniques for other criteria
– robust (hyper)liveness preservation (possible?)

• Proving robust satisfaction for source programs

– partial semantics, program logics, logical relations, ...

15

Where is full abstraction?

16

with internal
nondeterminism

without internal
nondeterminism

Q: Under what extra assumptions does
full abstraction imply anything?

compiler correctness
not enough!

divergence
finitely

observable

Wrapping up the intro

• 1. Secure interoperability with lower-level code

– exploring a continuum, security vs efficiency tradeoff

• We're hiring!

– PostDocs, Young Researchers, Interns, PhD students

17

now!

Plan for the rest of this course

• 0. Compiler correctness

– as Trace Property Preservation

• 1. Secure interoperability with lower-level code

– Secure 2-Compartmentalizing Compilation
as Robust Property Preservation

– Property ∈ Trace Properties, Hyperproperties, Relational ...

• 2. Secure compilation despite dynamic compromise

– Compartmentalizing Compilation for Unsafe Languages

– Restricting the temporal + spatial scope of undefined behavior
18

19

