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Good programming languages provide helpful
abstractions for writing more secure code

e e.g. HACL* and miTLS written in Low* which provides:
— low-level abstractions associated with safe C programs

— higher-level abstractions associated with ML-like languages
— most features of verification systems like Coq and Dafny

— patterns specific to cryptographic code
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Secure compilation

 Protect source-level abstractions
even against linked adversarial low-level code

* Enable source-level security reasoning

— even an adversarial target-level context cannot
break the security properties of the compiled program
any more than some source-level context could

— no "low-level" attacks

— no need to worry about the compilation chain
(compiler, linker, loader, runtime, system, hardware)
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But what does "secure" mean?
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What security properties should we preserve?

 We explore a large space of security properties

e Study preserving various classes of ...
— trace properties (safety, liveness)
— hyperproperties (e.g. noninterference)
— relational hyperproperties (e.g. trace equivalence)

... against adversarial target-level contexts
* No “one-size-fits-all solution”

— e.g. full abstraction does not imply the other criteria we study
— stronger criteria are harder to achieve and prove, both challenging
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Results

 Mapped the space of secure compilation criteria
based on robust "property" preservation
— Property-free characterizations and implications in Coq

— Separation results (e.g. robust safety/liveness preservation
strictly weaker than robust trace property preservation)

— Surprising collapse between preserving all hyperproperties
and preserving just hyperliveness

* Showed that even strongest criterion is achievable

— for simple translation from a statically to a dynamically typed
language with first-order functions and I/O
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* Practically achieving secure interoperability
with lower-level code

— More realistic languages and secure compilation chains

— Achieve noninterference preservation
in realistic attacker model with side-channels

— Efficient enforcement mechanisms

* Scalable proof techniques for other criteria

— (hyper)liveness preservation (possible?)

* Nontrivial relation between source and target traces
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Part 2 of 2 W
When Good Components Go Bad

Secure Compilation Despite Dynamic Compromise
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Undefined behavior

#include <string.h>

int main (int argc, char **argv) {
char c[12];
strcpy(c, argv[1l]);
return 0;

} Buffer overflow

$ gcc target.c
$ ./a.out haha
$ ./a.out hahahahahahahahahaha

zsh: segmentation fault (core dumped)
$ ./exploit.sh | a.out




Undefined behavior

#include <string.h>
int main (int argc, char **argv) {

char C[12], | calewt.. — U X
S‘tr‘cpy(c, ar\gv[l]); View Edit Help
return 9, 0
} — || cE || C s erfIOW
7 5
$ gcc target.c @
1

$ ./a.out haha
$ ./a.out hahal

zsh: segmentation fault (core dumped)
$ ./exploit.sh | a.out
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Practical mitigation: compartmentalization

Main idea:

— break up security-critical C applications into
mutually distrustful components with clearly specified
privileges & interacting via strictly enforced interfaces

———————————————————————————————————————————————————————————————————————

Strong security guarantees & interesting attacker model

— "avulnerability in one component does not immediately
destroy the security of the whole application”

"each component is protected from all the others"

"each components receives guarantees as long as
it has not encountered undefined behavior"

———————————————————————————————————————————————————————————————————————

Goal 1: Formalize this

-——————————————————
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LANGUAGE
risn W, Kernighan ¢ Dennis M. Rilchi
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Goal 2: Build secure compilation chains

Add components to C
— interacting only via strictly enforced interfaces

THE

PROGRAMMING
LANGUAGE

=

A

Enforce "component C" abstractions:

— component separation, call-return discipline, ...

Secure compilation chain:
— compiler, linker, loader, runtime, system, hardware

Use efficient enforcement mechanisms:

— OS processes (all web browsers) — WebAssembly (web browsers)
— software fault isolation (SFl) — capability machines
— hardware enclaves (SGX) — tagged architectures
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Goal 1: Formalizing the security of
compartmentalizing compilation
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Restricting undefined behavior

* Mutually-distrustful components

restrict spatial scope of undefined behavior

* Dynamic compromise

restrict temporal scope of undefined behavior
undefined behavior = observable trace event

effects of undefined behavior
shouldn't percolate before earlier observable events
» careful with code motion, backwards static analysis, ...

CompCert already offers this saner temporal model
GCC and LLVM currently violate this model

21



Dynamic compromise

* each component gets guarantees as long as it
has not encountered undefined behavior



Dynamic compromise

* each component gets guarantees as long as it
has not encountered undefined behavior

* a component only loses guarantees after an
attacker discovers and exploits a vulnerability



Dynamic compromise

* each component gets guarantees as long as it
has not encountered undefined behavior

* a component only loses guarantees after an
attacker discovers and exploits a vulnerability

 the mere existence of vulnerabilities doesn't
immediately make a component compromised
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3 a dynamic compromise scenario explaining t in source language
for instance leading to the following compromise sequence:

(0) ‘ C, \ vw>* my;Undef(C,)
IA
)3 . O ..! G ...! ¥ my;Undef(C))

- rewind execution

IA
A A m Trace is very helpful
1 2 . .
A\ T K - detect undefined behavior
(2) EIAZ a s A st A w> T
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Now we know what these words mean!

(at least in the setting of compartmentalization for unsafe low-level languages)

Mutual distrust @ LA, @ LA LA
Dynamic compromise i A F LG FUmy; Undef(Cy)

Statlc prl\”lege 2 A s G 4



Goal 2: Towards building
secure compilation chains
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unsafe source %

[ Compartmentalized

Buffers, procedures, components
interacting via strictly enforced interfaces

1

Compartmentalized

abstract machine Q

Simple RISC abstract machine with
build-in compartmentalization

!

Micro-policy
machine

Tag-based reference monitor enforcing:
- component separation

- procedure call and return discipline
(linear capabilities / linear entry points)

1software fault isolation

Bare-bone
machine

Inline reference monitor enforcing:

- component separation

- procedure call and return discipline
(program rewriting, shadow call stack)
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(mostly) f? )
e A Compartmentalized | g fers, procedures, components
Verified unsafe source interacting via strictly enforced interfaces

in Coq 1

Compartmentalized Simple RISC abstract machine with
abstract machine 8| pyild-in compartmentalization

1 1software fault isolation
Micro-policy Bare-bone
machine [ machine
Tag-based reference monitor enforcing: Inline reference monitor enforcing:
- component separation - component separation
- procedure call and return discipline - procedure call and return discipline
(linear capabilities / linear entry points) (program rewriting, shadow call stack)
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(mostly) 4
Verified J [

Compartmentalized Buffers, procedures, components
unsafe source interacting via strictly enforced interfaces

in Coq

Compartmentalized Simple RISC abstract machine with
abstract machine #8| pbuild-in compartmentalization

1 1software fault isolation

Micro- pollcy Bare-bone
machine ¢ machine

Tag-based reference monitor enforcing: Inline reference monitor enforcing:

- component separation - component separation

- procedure call and return discipline - procedure call and return discipline
(linear capabilities / linear entry points) (program rewriting, shadow call stack)

———
Systematically tested (with QuickChick) « <=
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Making this more practical ... next steps:

Scale up to more of C

— first step: allow pointer passing (capabilities)

Verify compartmentalized applications

— put the source-level reasoning principles to work

Extend all this to dynamic component creation
... and dynamic privileges:

— capabilities, dynamic interfaces, HBAC, ...

Support other enforcement mechanisms (back ends)
Measure & lower overhead

27



Wrapping up

* Secure interoperability with lower-level code
— exploring a continuum, security vs efficiency tradeoff
e Secure compilation despite dynamic compromise
— restrict scope of undefined behavior

* spatially to the component that caused it
* temporally by treating UB as an observable trace event
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Wrapping up

* Secure interoperability with lower-level code

— exploring a continuum, security vs efficiency tradeoff

e Secure compilation despite dynamic compromise
— restrict scope of undefined behavior
* spatially to the component that caused it
* temporally by treating UB as an observable trace event

 We're hiring!
— PostDocs, Young Researchers, Interns, PhD students ‘ﬂm
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More goals of secure compilation

Enabling source-level security reasoning
Making the source language safer

— memory and type safety, less/no undefined behavior
Making it easier to express security intent

— marking secrets, specifying security properties

Making exploits more difficult

— CFl, CPI, stack protection, randomization, diversity
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Micro-Policies

software-defined, hardware-accelerated, tag-based monitoring

pc tpc’ mem|[0] tmO
r0 tr0 “store r0 r1” tm1l
rl trl mem|[2] tm2

> mem|[3] tm3’

tr0 “ trl = tm3 “ tml

store
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Micro-Policies

software-defined, hardware-accelerated, tag-based monitoring

|
pc tpc L mem|[0] tmO0
r0 tr0 “store r0 r1” tm1l
rl trl mem|[2] tm2
> mem|[3] tm3

tr0 “ trl z tm3 “ tml

v |
store |$\ K/

w policy violation stopped!
disallow (¢ o out of bounds write)
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* |low level + fine grained: unbounded per-word metadata,
checked & propagated on each instruction
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* |low level + fine grained: unbounded per-word metadata,
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* flexible: tags and monitor defined by software

o efficient: software decisions hardware cached siiec*

/@){presswe complex policies for secure compilation

* secure and simple enough to verify security in Coq /

* real: FPGA implementation on top of RISC-V
DRAPER DLCVER o
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Expressiveness

:* information flow control (IFC) [POPL14]

° monitor self-protection Verified ¢
° protected compartments [gr;kﬁg:();l'ls_i
;¢ dynamic sealing :
° heap memory safety

E..’....E?.‘?'..e.?.‘?'.?.t?...s.? paration

e control-flow integrity (CFl)
e taint tracking
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Expressiveness

:* information flow control (IFC) [POPL14]
.+ monitor self-protection Verified %
. protected compartments [gglj;):c)yﬁ
;e dynamic sealing :
E'E':"'H'é'én'B"r'ﬁ'e"r'\'iaf'{/"é}'a'féﬁl' ........................................

* code-data separation

: * control-flow integrity (CFl)

Evaluated

* taint tracking (<10% runtime overhead)
[ASPLOS’15]




