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2Part 1: formalize what it means to solve this problem

Part 2: give meaning to mitigation (protected components)
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Good programming languages provide helpful 
abstractions for writing more secure code

• e.g. HACL* and miTLS written in Low* which provides:

– low-level abstractions associated with safe C programs

• structured control flow, procedures, abstract memory model

– higher-level abstractions associated with ML-like languages

• modules, interfaces, and parametric polymorphism

– most features of verification systems like Coq and Dafny

• effects, dependent types, logical pre- and post-conditions

– patterns specific to cryptographic code

• abstract types and interfaces for mitigating side-channel attacks
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Abstractions not enforced when linking 
with adversarial low-level code

5

HACL* library Firefox web browser

ASM ASM

Insecure interoperability: compromised (or malicious) application
linking in miTLS can easily read and write miTLS’s data and code,
jump to arbitrary instructions, smash the stack, ...

~10.000 LOC in Low* 16.000.000+ LOC in C/C++

KreMLin
+ CompCert GCC

Verified
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Secure compilation

• Protect source-level abstractions
even against linked adversarial low-level code

• Enable source-level security reasoning

– even an adversarial target-level context cannot
break the security properties of the compiled program
any more than some source-level context could

– no "low-level" attacks

– no need to worry about the compilation chain
(compiler, linker, loader, runtime, system, hardware)
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What security properties should we preserve?

• We explore a large space of security properties

• Study preserving various classes of ...
– trace properties (safety, liveness)

– hyperproperties (e.g. noninterference)

– relational hyperproperties (e.g. trace equivalence)

... against adversarial target-level contexts

• No “one-size-fits-all solution”
– e.g. full abstraction does not imply the other criteria we study

– stronger criteria are harder to achieve and prove, both challenging
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More secure

More efficient
Easier to prove
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Results
• Mapped the space of secure compilation criteria

based on robust "property" preservation

– Property-free characterizations and implications in Coq

– Separation results (e.g. robust safety/liveness preservation
strictly weaker than robust trace property preservation)

– Surprising collapse between preserving all hyperproperties
and preserving just hyperliveness

• Showed that even strongest criterion is achievable

– for simple translation from a statically to a dynamically typed
language with first-order functions and I/O
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Some open problems

• Practically achieving secure interoperability
with lower-level code

– More realistic languages and secure compilation chains

– Achieve noninterference preservation
in realistic attacker model with side-channels

– Efficient enforcement mechanisms

• Scalable proof techniques for other criteria

– (hyper)liveness preservation (possible?)

• Nontrivial relation between source and target traces

13
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Where is full abstraction?

14

with internal
nondeterminism

without internal
nondeterminism

+what extra assumptions?
compiler correctness enough??

???
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Goal 2: Build secure compilation chains

• Add components to C

– interacting only via strictly enforced interfaces

• Enforce "component C" abstractions:

– component separation, call-return discipline, ...

• Secure compilation chain:

– compiler, linker, loader, runtime, system, hardware

• Use efficient enforcement mechanisms:
– OS processes (all web browsers) — WebAssembly (web browsers)

– software fault isolation (SFI) — capability machines

– hardware enclaves (SGX) — tagged architectures

19



Goal 1: Formalizing the security of 
compartmentalizing compilation
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Restricting undefined behavior

• Mutually-distrustful components
– restrict spatial scope of undefined behavior

• Dynamic compromise
– restrict temporal scope of undefined behavior

– undefined behavior = observable trace event

– effects of undefined behavior
shouldn't percolate before earlier observable events
• careful with code motion, backwards static analysis, ...

– CompCert already offers this saner temporal model

– GCC and LLVM currently violate this model

21
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Dynamic compromise

• each component gets guarantees as long as it
has not encountered undefined behavior

• a component only loses guarantees after an
attacker discovers and exploits a vulnerability

• the mere existence of vulnerabilities doesn't 
immediately make a component compromised
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Trace is very helpful
- detect undefined behavior
- rewind execution
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Now we know what these words mean!

Mutual distrust

Dynamic compromise

Static privilege

C1 A2 C3 A4 A5

C0 A1 C2 ⇓m2; Undef(C2)
↯

i0 i1 i2

C0 A1 C2

(at least in the setting of compartmentalization for unsafe low-level languages)
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Inline reference monitor enforcing:
- component separation
- procedure call and return discipline
(program rewriting, shadow call stack)

software fault isolation

Tag-based reference monitor enforcing:
- component separation
- procedure call and return discipline
(linear capabilities / linear entry points)

(mostly)

Verified
in Coq

Systematically tested (with QuickChick)
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– exploring a continuum, security vs efficiency tradeoff

• Secure compilation despite dynamic compromise

– restrict scope of undefined behavior

• spatially to the component that caused it

• temporally by treating UB as an observable trace event

• We're hiring!

– PostDocs, Young Researchers, Interns, PhD students
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More goals of secure compilation

• Enabling source-level security reasoning

• Making the source language safer

– memory and type safety, less/no undefined behavior

• Making it easier to express security intent

– marking secrets, specifying security properties

• Making exploits more difficult

– CFI, CPI, stack protection, randomization, diversity

30
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