Formally Secure Compilation

Catalin Hritcu

Inria Paris

https://secure-compilation.github.io

https://secure-compilation.github.io/

Devastating low-level attacks

Devastating low-level attacks

inherently insecure languages like C/C++

— e.g. memory unsafe: any buffer overflow is catastrophic
allowing remote attackers to gain complete control

Devastating low-level attacks

inherently insecure languages like C/C++

— e.g. memory unsafe: any buffer overflow is catastrophic
allowing remote attackers to gain complete control

— ~100 different undefined behaviors in usual C compiler

Devastating low-level attacks

inherently insecure languages like C/C++

— e.g. memory unsafe: any buffer overflow is catastrophic
allowing remote attackers to gain complete control

— ~100 different undefined behaviors in usual C compiler

insecure interoperability with lower-level code

— even code in more secure languages (Java, OCaml, Rust)
has to interoperate with low-level code (C, C++, ASM)

— insecure interoperability: all source-level guarantees lost

Devastating low-level attacks

inherently insecure languages like C/C++

— e.g. memory unsafe: any buffer overflow is catastrophic
allowing remote attackers to gain complete control

— ~100 different undefined behaviors in usual C compiler

/insecure interoperability with lower-level code N

— even code in more secure languages (Java, OCaml, Rust)
has to interoperate with low-level code (C, C++, ASM)

— insecure interoperability: all source-level guarantees lost
_Part 1: formalize what it means to solve this problem .

Devastating low-level attacks

6art 2: give meaning to mitigation (protected component&
inherently insecure languages like C/C++

— e.g. memory unsafe: any buffer overflow is catastrophic
allowing remote attackers to gain complete control

\— ~100 different undefined behaviors in usual C compiler

g9 W,

/insecure interoperability with lower-level code N

— even code in more secure languages (Java, OCaml, Rust)
has to interoperate with low-level code (C, C++, ASM)

— insecure interoperability: all source-level guarantees lost
_Part 1: formalize what it means to solve this problem .

Part 1 of 2

Secure Interoperability
with Lower-Level Code

ra

R Jérémy
Carmine Catalin Thibault
Abate MPI-SWS Hritcu Inria Paris
Inria Paris Inria Paris ENS Rennes
U. Trento

Marco
Patrignani

CISPA
Stanford

Good programming languages provide helpful
abstractions for writing more secure code

Good programming languages provide helpful
abstractions for writing more secure code

e e.g. HACL* and miTLS written in Low* which provides:

Good programming languages provide helpful
abstractions for writing more secure code

e e.g. HACL* and miTLS written in Low* which provides:
— low-level abstractions associated with safe C programs

Good programming languages provide helpful
abstractions for writing more secure code

e e.g. HACL* and miTLS written in Low* which provides:
— low-level abstractions associated with safe C programs

— higher-level abstractions associated with ML-like languages

Good programming languages provide helpful
abstractions for writing more secure code

e e.g. HACL* and miTLS written in Low* which provides:
— low-level abstractions associated with safe C programs

— higher-level abstractions associated with ML-like languages

— most features of verification systems like Coq and Dafny

Good programming languages provide helpful
abstractions for writing more secure code

e e.g. HACL* and miTLS written in Low* which provides:
— low-level abstractions associated with safe C programs

— higher-level abstractions associated with ML-like languages
— most features of verification systems like Coq and Dafny

— patterns specific to cryptographic code

Abstractions not enforced when linking
with adversarial low-level code

* .,
. .

£ ~10.000 LOCiin Low* ™

:]
L_r HACL* Iibrar;]

*
.....
--

Abstractions not enforced when linking
with adversarial low-level code

lll
. g
05 ‘e

ll
g
3

£+"~10.000 LOC in Low* ™ 16.000.000+ LOC in C/C++ *

1Nl =S =
L_ HACL* Iibrary] LL[Firefoxweb browser]

0000

. *
., .

--

Abstractions not enforced when linking
with adversarial low-level code

lll
. g
05 ‘e

M L L L L L L AL L TN 0‘
“ .‘

mn S -
[—[_[HACL* Iibrary] LL[Firefox web browser]

Verified KreMLin
l+ CompCert lGCC
H ASM <> ASM]

0000

. *
., .

--

Insecure interoperability: compromised (or malicious) application
linking in miTLS can easily read and write miTLS’s data and code,
jump to arbitrary instructions, smash the stack, ... 5

Secure compilation

 Protect source-level abstractions
even against linked adversarial low-level code

Secure compilation

 Protect source-level abstractions
even against linked adversarial low-level code

* Enable source-level security reasoning

Secure compilation

 Protect source-level abstractions
even against linked adversarial low-level code

* Enable source-level security reasoning

— even an adversarial target-level context cannot
break the security properties of the compiled program
any more than some source-level context could

Secure compilation

 Protect source-level abstractions
even against linked adversarial low-level code

* Enable source-level security reasoning

— even an adversarial target-level context cannot
break the security properties of the compiled program
any more than some source-level context could

— no "low-level" attacks

Secure compilation

 Protect source-level abstractions
even against linked adversarial low-level code

* Enable source-level security reasoning

— even an adversarial target-level context cannot
break the security properties of the compiled program
any more than some source-level context could

— no "low-level" attacks

— no need to worry about the compilation chain
(compiler, linker, loader, runtime, system, hardware)

Source-level security reasoning

Source-level security reasoning

source source source
context component context secure

Source-level security reasoning

V source source source
context component context secure

compilerl

target compiled target
V context {[Componenﬁé context secure

Source-level security reasoning

\ , source source source
context component context secure

compiler

target compiled target
V context [component context secure

protected no extra power

Source-level security reasoning

\ , source source source
context [[component context secure

compilerl

target compiled target
V context {[component context secure

protected no extra power

But what does "secure" mean?

What security properties should we preserve?

What security properties should we preserve?

 We explore a large space of security properties

What security properties should we preserve?

 We explore a large space of security properties

e Study preserving various classes of ...
— trace properties (safety, liveness)
— hyperproperties (e.g. noninterference)
— relational hyperproperties (e.g. trace equivalence)

... against adversarial target-level contexts

What security properties should we preserve?

 We explore a large space of security properties

e Study preserving various classes of ...
— trace properties (safety, liveness)
— hyperproperties (e.g. noninterference)
— relational hyperproperties (e.g. trace equivalence)

... against adversarial target-level contexts
* No “one-size-fits-all solution”

— e.g. full abstraction does not imply the other criteria we study
— stronger criteria are harder to achieve and prove, both challenging

Robust Relational
Hyperproperty Preservation
I
Robust k-Relational
Hyperproperty Preservation

|
Robust 2-Relational

/ Hyperproperty Preservation

Trace Equivalence

Preservation Robust Hyperproperty

Preservation
I
Robust Subset-Closed
Hyperproperty Preservation
I
Robust K-Subset-Closed
Hyperproperty Preservation
I
Robust 2-Subset-Closed
Hyperproperty Preservation
I
Robust Trace
Property Preservation

/

Robust Liveness
Preservation

~ T

Robust Relational Robust Relational

Property Preservation Hypersafety Preservation
\ e |
Robust K-Relational Robust Relational
Property Preservation Safety Preservation
\ | /
Robust 2-Relational Robust Finite-Relational
Property Preservation Safety Preservation
|
Robust K-Relational
Safety Preservation |
| I
Robust 2-Relational «
Safety Preservation

Robust Hypersafety
Preservation
\

Robust K-Hypersafety + determinacy

Preservation :
E— ! Observational Equivalence
Robust 2-Hypersafety | ey)
Preservation

~0/

Robust Safety
Preservation

More secure
A

v

More efficient
Easier to prove

9

Robust Trace Property Preservation

Robust Trace Property Preservation

Vsource component.
Vnt trace property.

source
context source

V sourcad wt = tET
tracet, componenr context

U

Robust Trace Property Preservation

Vsource component.
Vnt trace property.

source
context source
V sourcad wt = tET
tracet, componenr context
| I compiler

target i
g compileqd target st = tETT
context componen® | context

trace t,

10

Robust Trace Property Preservation

ﬂroperty-based characterizaticﬁ

Vsource component.
Vnt trace property.

source
context source

V sourcad wt = tET
tracet, componenr context

| I compiler

target i

g compileqd target st = tETT
context componen® | context
trace t,

preservation of robust satisfaction

10

Robust Trace Property Preservation

ﬂroperty-based characterizaticm ﬁ)perty-free characteriza%

Vsource component.
Vnt trace property.

source
V context sourcel
trace t, componenr

| I compiler

target compiled
V context componen®
trace t

preservation of robust satisfaction

source

target

]W\»t = tEn
context

J"W’t = ten
context / \

—

/

how one can prove it

Robust Trace Property Preservation

ﬂroperty-based characterizaticm /
]*\N‘)t = teEn

Vsource component.
Vnt trace property.

sourcel
componenr
| I compiler
target

V context {{
trace t

preservation of robust satisfaction

source
context
trace t,

source
context

target
context

compileqd]
'

componen

property-free characterizati%
Vsource component.

V(bad attack) trace t.

source
component

\— |
compiler

3 target { target | ..t
\c ontext o context

how one can prove it

compiled]
Iy

componen

Robust Trace Property Preservation

ﬂroperty-based characterizaticm /
]*\N‘)t = teEn

Vsource component.
Vnt trace property.

sourcel
componenr
| I compiler
target

V context {{
trace t

preservation of robust satisfaction

source
context
trace t,

source
context

target
context

compileqd]
'

componen

property-free characterizati%

source | .
context
| | compiler

3 target { target | ¢
\c ontext o context

how one can prove it

Vsource component.
V(bad attack) trace t.

] [[w:.:’:;;z:r]

source
context ,

compiled]
Iy

componen

Robust Trace Property Preservation

ﬂroperty-based characterizaticm /

Vsource component.
Vnt trace property.

source
context
trace t,

sourcel
r

componen

[[

source
context

property-free characterizati%
Vsource component.

V(bad attack) trace t.

]*'W‘)t = ten

| I compiler

target

V context
trace t,

compiler

compileqd
componen

3

[{

target
context

preservation of robust satisfaction

=

source
context ,

3 target
\context .

how one can prove it

[[

sourcel
componenP

source o
context

’0 ’
back?*

L 2 .
nslation

[{

compiled]
Iy

componen

target

w> £
context/

Robust Relational

Hyperproperty Preservation \
I
Robust k-Relational \

Hyperproperty Preservation Robust Relational Robust Relational
| Property Preservation Hypersafety Preservation
Robust 2-Relational \ T |
Hyperproperty Preservation Robust K-Relational Robust Relational
‘ Property Preservation Safety Preservation
\ | .
Trace Equivalence Robust 2-Relational Robust Finite-Relational
Preservation Robust Hyperproperty Property Preservation Safety Preservation
Preservation |

| Robust K-Relational
Robust Subset-Closed : Safety Preservation

Hyperproperty Preservation | rl
T Ay Robust 2-Relational |

Robust K-Subset-Closed Robust Hypersafety Safety Preservation |
Hyperproperty Preservation Preservation
| | : _
Robust 2-Subset-Closed Robust K-Hypersafety 5"’ determinacy
Hyperproperty Preservation Preservation .
| — | Observational Equivalence
Robust Trace Robust 2-Hypersafety Preservation
Preservation

Property Preservation

S ~. /

Robust Liveness Robust Safety
Preservation Preservation

11

Robust Relational

Hyperproperty Preservation \
I
Robust k-Relational \

Hyperproperty Preservation Robust Relational Robust Relational
| Property Preservation Hypersafety Preservation
Robust 2-Relational \ T |
Hyperproperty Preservation Robust K-Relational Robust Relational
‘ Property Preservation Safety Preservation
\ | .
Trace Equivalence Robust 2-Relational Robust Finite-Relational
Preservation Robust Hyperproperty Property Preservation Safety Preservation
Preservation |

| Robust K-Relational
Robust Subset-Closed Safety Preservation

Hyperproperty Preservation | f
Y e Robust 2-Relational

Robust K-Subset-Closed Robust Hypersafety Safety Preservation |
Hyperproperty Preservation Preservation
| | : _
Robust 2-Subset-Closed Robust K-Hypersafety 5"’ determinacy
Hyperproperty Preservation Preservation .
| — | Observational Equivalence
Robust Trace Robust 2-Hypersafety Preservation

Property Preservation Preservation

S ~. /

Robust Liveness Robust Safety
Preservation Preservation

back-translating
prog & context & trace
VPYC,Vt3Cs...

11

Robust Relational

Hyperproperty Preservation \
I
Robust k-Relational \

Hyperproperty Preservation

|
Robust 2-Relational

/ Hyperproperty Preservation

Trace Equivalence

Preservation Robust Hyperproperty

Preservation

|
Robust Subset-Closed
Hyperproperty Preservation
|
Robust K-Subset-Closed
Hyperproperty Preservation
|
Robust 2-Subset-Closed
Hyperproperty Preservation

I —_—

Robust Trace
Property Preservation

Property Preservation
Property Preservation

Property Preservation

\
Robust K-Hypersafety

Robust 2-Hypersafety

Robust Relational

Hypersafety Preservation

\ T |
Robust K-Relational Robust Relational
Safety Preservation

\ | |
Robust 2-Relational Robust Finite-Relational
Safety Preservation

|
Robust K-Relational
Safety Preservation

| !
_______ Robust 2-Relational

Robust Hypersafety Safety Preservation |
Preservation

Robust Relational

-+ determinacy
Preservation '

! Observational Equivalence

) Preservation
Preservation

S ~. /

Robust Liveness
Preservation

back-translating
prog & context & trace
VPYC,Vt3Cs...

Robust Safety

Preservation

back-translating
finite trace prefixes
VPYC;VmstiCg...

11

Robust Relational

Hyperproperty Preservation \
I
Robust k-Relational \

| Property Preservation Hypersafety Preservation
Robust 2-Relational \ T |
Property Preservation Safety Preservation
\ |
Trace Equjvalence ‘ Robust 2-Relational Robust Finite-Relational back_tra nslatl ng
Preservation Robust Hyperproperty Property Preservation Safety Preservation ..
Preservation | finite sets of
| Robust K-Relational ini i
e Gl : finite trace prefixes
Safety Preservation
Hyperproperty Preservation | | VkVP»] . PKVCT
Y e Robust 2-Relational Ym,..m, 3C-...
Robust K-Subset-Closed Robust Hypersafety Safety Preservation | kTS
Hyperproperty Preservation Preservation
[\ : .
Robust 2-Subset-Closed Robust K-Hypersafety : + determinacy
Hyperproperty Preservation Preservation :
| —_— Observational Equivalence
Robust Trace Robust 2-Hyp|_3rsafety Preservation
Property Preservation Pres/ervatlon
Robust Liveness Robust Safety
Preservation Preservation
back-translating back-translating
prog & context & trace finite trace prefixes

VPVC;Vt1Cs... VPVC;Ymst3Cs... 11

back-translating Robust Relational
contexts Hyperpmpert?z Preservation \
VCT - CSVPVt .. Robust k-Relational \

Hyperproperty Preservation RObUSt Relational RObUSt Relational
| Property Preservation Hypersafety Preservation
Robust 2-Relational \ T |
Hyperproperty Preservation RObUSt K'Relatlonal RObUSt Relational
Property Preservation Safety Preservation
\ |
Trace Equivalence ‘ Robust 2-Relational Robust Finite-Relational h3ck-translati ng
Preservation Robust Hyperproperty Property Preservation Safety Preservation .
Preservation | flnlte SetS Of
. | Robust K-Relational ini i
back-translati ng Robust Subset-Closed - finite trace preflxes
_ Safety Preservation VKYP.. P.YC
prog & context Hyperpropert?(Preservation) | : 1 | v 1--Fk - (—E
: Robust 2-Relationa m,..m .
VPVCTH CSVt Y Robust K-Subset-Closed Robust Hypersafety Safety Preservation | 1 k S
Hyperproperty Preservation Preservation
| ! 5 .
Robust 2-Subset-Closed Robust K-Hypersafety : + determinacy
Hyperproperty Preservation Preservation :
| —_— Observational Equivalence
Robust Trace Robust 2-Hyp|_3rsafety Preservation
Property Preservation Pres;vatlon
Robust Liveness Robust Safety
Preservation Preservation
back-translating back-translating
prog & context & trace finite trace prefixes

VPVC;Vt1Cs... VPVC;Ymst3Cs... 11

Results

 Mapped the space of secure compilation criteria
based on robust "property" preservation

Results

 Mapped the space of secure compilation criteria
based on robust "property" preservation

— Property-free characterizations and implications in Coq

12

Results

Mapped the space of secure compilation criteria
based on robust "property" preservation

— Property-free characterizations and implications in Coq

— Separation results (e.g. robust safety/liveness preservation
strictly weaker than robust trace property preservation)

12

Results

 Mapped the space of secure compilation criteria
based on robust "property" preservation
— Property-free characterizations and implications in Coq

— Separation results (e.g. robust safety/liveness preservation
strictly weaker than robust trace property preservation)

— Surprising collapse between preserving all hyperproperties
and preserving just hyperliveness

12

Results

 Mapped the space of secure compilation criteria
based on robust "property" preservation
— Property-free characterizations and implications in Coq

— Separation results (e.g. robust safety/liveness preservation
strictly weaker than robust trace property preservation)

— Surprising collapse between preserving all hyperproperties
and preserving just hyperliveness

* Showed that even strongest criterion is achievable

— for simple translation from a statically to a dynamically typed
language with first-order functions and I/O

12

Some open problems

* Practically achieving secure interoperability
with lower-level code

Some open problems

* Practically achieving secure interoperability
with lower-level code

— More realistic languages and secure compilation chains

13

Some open problems

* Practically achieving secure interoperability
with lower-level code
— More realistic languages and secure compilation chains

— Achieve noninterference preservation
in realistic attacker model with side-channels

13

Some open problems

* Practically achieving secure interoperability
with lower-level code
— More realistic languages and secure compilation chains

— Achieve noninterference preservation
in realistic attacker model with side-channels

— Efficient enforcement mechanisms

13

Some open problems

* Practically achieving secure interoperability
with lower-level code
— More realistic languages and secure compilation chains

— Achieve noninterference preservation
in realistic attacker model with side-channels

— Efficient enforcement mechanisms

* Scalable proof techniques for other criteria

— (hyper)liveness preservation (possible?)

13

Some open problems

* Practically achieving secure interoperability
with lower-level code

— More realistic languages and secure compilation chains

— Achieve noninterference preservation
in realistic attacker model with side-channels

— Efficient enforcement mechanisms

* Scalable proof techniques for other criteria

— (hyper)liveness preservation (possible?)

* Nontrivial relation between source and target traces

13

Where is full abstraction?

Robust Relational

Hyperproperty Preservation \
I
Robust k-Relational \

Hyperproperty Preservation Robust Relational Robust Relational
| Property Preservation Hypersafety Preservation
Robust 2-Relational | T \
Hyperproperty Preservation Robust K-Relational Robust Relational
‘ Property Preservation Safety Preservation
| \
Trace Equivalence Robust 2-Relational Robust Finite-Relational
Preservation Robust Hyperproperty Property Preservation Safety Preservation
Preservation

| Robust K-Relational
Robust Subset-Closed Safety Preservation

Hyperproperty Preservation ‘
' Robust 2-Relational

Robust K-Subset-Closed Robust Hypersafety Safety Preservation
Hyperproperty Preservation Preservation -
| | : _
Robust 2-Subset-Closed Robust K-Hypersafety : + determinacy
Hyperproperty Preservation Preservation .
| — | Observational Equivalence
Robust Trace Robust 2-Hypersafety Preservation

Property Preservation Preservation

/ ~0 /

Robust Liveness Robust Safety
Preservation Preservation

14

Where is full abstraction?

Robust Relational

Hyperproperty Preservation \
. . I
with internal Robust k-Relational \

Hyperproperty Preservation RObUSt RElatlDIlal RObUSt Relational

nondeterminism | Property Preservation Hypersafety Preservation
Robust 2-Relational | e \
\ / Hyperproperty Preservation Robust K-Relational Robust Relational

Property Preservation Safety Preservation

I \
Trace Equivalence ‘ Robust 2-Relational Robust Finite-Relational

Preservation Robust Hyperproperty Property Preservation Safety Preservation

Preservation |

| Robust K-Relational
Robust Subset-Closed Safety Preservation

Hyperproperty Preservation ‘
' Robust 2-Relational

Robust K-Subset-Closed Robust Hypersafety Safety Preservation
Hyperproperty Preservation Preservation .
| | : _
Robust 2-Subset-Closed Robust K-Hypersafety : + determinacy
Hyperproperty Preservation Preservation .
| — | Observational Equivalence
Robust Trace Robust 2-Hypersafety Preservation
Preservation

Property Preservation

/ ~0 /

Robust Liveness Robust Safety
Preservation Preservation

14

Where is full abstraction?

Robust Relational
Hyperproperty Preservation \
|
Robust k-Relational \

Hyperproperty Preservation Robust Relational
| Property Preservation

Robust 2-Relational | — |
Hyperproperty Preservation Robust K-Relational Robust Relational

‘ Property Preservation Safety Preservation

with internal
nondeterminism

N

Trace Equivalence
Preservation

Robust Relational

| \

Robust 2-Relational

Robust Hyperproperty Property Preservation Safety Preservation
Preservation |

| Robust K-Relational
Robust Subset-Closed Safety Preservation

Hyperproperty Preservation ‘
' Robust 2-Relational
Robust K-Subset-Closed Robust Hypersafety Safety Preservation
Hyperproperty Preservation Preservation
I |
Robust 2-Subset-Closed Robust K-Hypersafety

Hypersafety Preservation

Robust Finite-Relational

'without internal
nondeterminism

P+ determinacy

Hyperproperty Preservation Preservation .
| —_— | Observational Equivalence
Robust Trace Robust 2-Hyp<_ersafety Preservation
Property Preservation Pr ¢357vat10n
Robust Liveness Robust Safety
Preservation Preservation

14

Where is full abstraction?

Robust Relational

Hyperproperty Preservation \
. . I
with internal Robust k-Relational \

Hyperproperty Preservation RObUSt RElatlDIlal RObUSt Relational

nondeterminism | Property Preservation Hypersafety Preservation
Robust 2-Relational | e \
\ / Hyperproperty Preservation Robust K-Relational Robust Relational

Property Preservation Safety Preservation

| \
Trace Equivalence ‘ Robust 2-Relational Robust Finite-Relational

Preservation Robust Hyperproperty Property Preservation Safety Preservation

Preservation |

| Robust K-Relational
Robust Subset-Closed Safety Preservation

Hyperproperty Preservation ‘

l Robust 2-Relational without internal

Robust K-Subset-Closed Robust Hypersafety Safety Preservation | NON determinism
Hyperproperty Preservation Preservation .
| | : _
Robust 2-Subset-Closed Robust K-Hypersafety : + determinacy
Hyperproperty Preservation Preservation .
| — | Observational Equivalence
Robust Trace Robust 2-Hyp<_ersafety Preservation
Property Preservation Preservation R

/ \ / ??2."+what extra assumptions?

' i ??
Robust Liveness Robust Safety _ir+™ compiler correctness enough?:

Preservation Preservation 14

Part 2 of 2 W
When Good Components Go Bad

Secure Compilation Despite Dynamic Compromise

https://arxiv.org/abs/1802.00588

15

https://arxiv.org/abs/1802.00588

Collaborators for Part 2

CARMINE
ABATE
184cio B

Chi ha

che il buon
cioccolato &

Arthur Blanco AnaNora Guglielmo

Abate Azevedo Evans Fachini
de Amorim

le plus
petit
cirque

du monde

Yannis Théo
Catalin Juglaret Laurent Benjamin Marco Andrew
Hritcu Pierce Stronati Tolmach

Inria Paris CMU U. Virginia U.Trento Paris7 ENS Paris Portland State UPenn
16

Undefined behavior

#include <string.h>

int main (int argc, char **argv) {
char c[12];
strcpy(c, argv[l]);
return 0;

Undefined behavior

#include <string.h>

int main (int argc, char **argv) {
char c[12];
strcpy(c, argv[l]);
return 0;

} Buffer overflow

$ gcc target.c
$./a.out haha

Undefined behavior

#include <string.h>

int main (int argc, char **argv) {
char c[12];
strcpy(c, argv[1l]);
return 0;

} Buffer overflow

$ gcc target.c
$./a.out haha
$./a.out hahahahahahahahahaha

zsh: segmentation fault (core dumped)

Undefined behavior

#include <string.h>

int main (int argc, char **argv) {
char c[12];
strcpy(c, argv[1l]);
return 0;

} Buffer overflow

$ gcc target.c
$./a.out haha
$./a.out hahahahahahahahahaha

zsh: segmentation fault (core dumped)
$./exploit.sh | a.out

Undefined behavior

#include <string.h>
int main (int argc, char **argv) {

char C[12], | calewt.. — U X
S‘tr‘cpy(c, ar\gv[l]); View Edit Help
return 9, 0
} — || cE || C s erfIOW
7 5
$ gcc target.c @
1

$./a.out haha
$./a.out hahal

zsh: segmentation fault (core dumped)
$./exploit.sh | a.out

Practical mitigation: compartmentalization

18

Practical mitigation: compartmentalization

o

A

e Main idea:

— break up security-critical C applications into
mutually distrustful components with clearly specified
privileges & interacting via strictly enforced interfaces

18

Practical mitigation: compartmentalization

e Main idea:

— break up security-critical C applications into
mutually distrustful components with clearly specified
privileges & interacting via strictly enforced interfaces

e Strong security guarantees & interesting attacker model

— "avulnerability in one component does not immediately
destroy the security of the whole application”

18

Practical mitigation: compartmentalization

e Main idea:

— break up security-critical C applications into
mutually distrustful components with clearly specified
privileges & interacting via strictly enforced interfaces

e Strong security guarantees & interesting attacker model

— "avulnerability in one component does not immediately
destroy the security of the whole application”

— "each component is protected from all the others"

18

Practical mitigation: compartmentalization

e Main idea:

— break up security-critical C applications into
mutually distrustful components with clearly specified
privileges & interacting via strictly enforced interfaces

e Strong security guarantees & interesting attacker model

— "avulnerability in one component does not immediately
destroy the security of the whole application”

— "each component is protected from all the others"

— "each components receives guarantees as long as
it has not encountered undefined behavior"

18

’/

o T T N

Practical mitigation: compartmentalization

Main idea:

— break up security-critical C applications into
mutually distrustful components with clearly specified
privileges & interacting via strictly enforced interfaces

———

Strong security guarantees & interesting attacker model

— "avulnerability in one component does not immediately
destroy the security of the whole application”

"each component is protected from all the others"

"each components receives guarantees as long as
it has not encountered undefined behavior"

———

Goal 1: Formalize this

-——————————————————

18

Goal 2: Build secure compilation chains

19

Goal 2: Build secure compilation chains

 Add components to C
— interacting only via strictly enforced interfaces

PROGRAMMING
LANGUAGE
risn W, Kernighan ¢ Dennis M. Rilchi

19

Goal 2: Build secure compilation chains

 Add components to C
— interacting only via strictly enforced interfaces

* Enforce "component C" abstractions:

— component separation, call-return discipline, ... ’.

\‘~/

19

Goal 2: Build secure compilation chains

 Add components to C
— interacting only via strictly enforced interfaces

* Enforce "component C" abstractions:

— component separation, call-return discipline, ...

e Secure compilation chain:

— compiler, linker, loader, runtime, system, hardware

OGRAMMING
LANGUAGE

19

Goal 2: Build secure compilation chains

Add components to C
— interacting only via strictly enforced interfaces

THE

PROGRAMMING
LANGUAGE

=

A

Enforce "component C" abstractions:

— component separation, call-return discipline, ...

Secure compilation chain:
— compiler, linker, loader, runtime, system, hardware

Use efficient enforcement mechanisms:

— OS processes (all web browsers) — WebAssembly (web browsers)
— software fault isolation (SFl) — capability machines
— hardware enclaves (SGX) — tagged architectures

19

Goal 1: Formalizing the security of
compartmentalizing compilation

20

Restricting undefined behavior

* Mutually-distrustful components

— restrict spatial scope of undefined behavior

21

Restricting undefined behavior

* Mutually-distrustful components

— restrict spatial scope of undefined behavior

* Dynamic compromise

— restrict temporal scope of undefined behavior

21

Restricting undefined behavior

* Mutually-distrustful components

— restrict spatial scope of undefined behavior

* Dynamic compromise

— restrict temporal scope of undefined behavior
— undefined behavior = observable trace event

— effects of undefined behavior
shouldn't percolate before earlier observable events

» careful with code motion, backwards static analysis, ...

21

Restricting undefined behavior

* Mutually-distrustful components

restrict spatial scope of undefined behavior

* Dynamic compromise

restrict temporal scope of undefined behavior
undefined behavior = observable trace event

effects of undefined behavior
shouldn't percolate before earlier observable events

» careful with code motion, backwards static analysis, ...

CompCert already offers this saner temporal model

21

Restricting undefined behavior

* Mutually-distrustful components

restrict spatial scope of undefined behavior

* Dynamic compromise

restrict temporal scope of undefined behavior
undefined behavior = observable trace event

effects of undefined behavior
shouldn't percolate before earlier observable events
» careful with code motion, backwards static analysis, ...

CompCert already offers this saner temporal model
GCC and LLVM currently violate this model

21

Dynamic compromise

* each component gets guarantees as long as it
has not encountered undefined behavior

Dynamic compromise

* each component gets guarantees as long as it
has not encountered undefined behavior

* a component only loses guarantees after an
attacker discovers and exploits a vulnerability

Dynamic compromise

* each component gets guarantees as long as it
has not encountered undefined behavior

* a component only loses guarantees after an
attacker discovers and exploits a vulnerability

 the mere existence of vulnerabilities doesn't
immediately make a component compromised

3 a dynamic compromise scenario explaining t in source language

3 a dynamic compromise scenario explaining t in source language
for instance leading to the following compromise sequence:

(0) @ w»* m;Undef(C,)

3 a dynamic compromise scenario explaining t in source language
for instance leading to the following compromise sequence:

(0) !‘ch \ vw>* my;Undef(C,)
IA
3 2 A ‘-&Cz : w* my;Undef(C,)

3 a dynamic compromise scenario explaining t in source language
for instance leading to the following compromise sequence:

(0) !‘ch \ vw>* my;Undef(C,)
IA
3 . 2 A ‘-&Cz : w* my;Undef(C,)

IN
AR A
(2) HAZ- ﬁ : AZ ; W t

3 a dynamic compromise scenario explaining t in source language
for instance leading to the following compromise sequence:

(0) ‘ C, \ vw>* my;Undef(C,)
IA
)3 . O ..! G ...! ¥ my;Undef(C))

- rewind execution

IA
A A m Trace is very helpful
1 2 . .
A\ T K - detect undefined behavior
(2) EIAZ a s A st A w> T

Now we know what these words mean!

(at least in the setting of compartmentalization for unsafe low-level languages)

R R R
0 . » 0y 0 0y
° D . D . D .
L - L - L -
f Al PA, A
- " L] L]
. 2 ~ - 4 J - 5 d
e o * o * X
- * *
LI LI LI

Now we know what these words mean!

(at least in the setting of compartmentalization for unsafe low-level languages)

R R R
0 . » 0y 0 0y
° D . D . D .
L - L - L -
f Al PA, A
- " L] L]
. 2 ~ - 4 J - 5 d
e o * o * X
- * *
LI LI LI

Dynamic compromise A éc U m,; Undef{(C,)

Now we know what these words mean!

(at least in the setting of compartmentalization for unsafe low-level languages)

Mutual distrust @ LA, @ LA LA
Dynamic compromise i A F LG FUmy; Undef(Cy)

Statlc prl\”lege 2 A s G 4

Goal 2: Towards building
secure compilation chains

Compartmentalized
unsafe source ¥

1

Compartmentalized
abstract machine ¥

!

Micro-policy
machine %

|

Compartmentalized
unsafe source

a

1

Compartmentalized
abstract machine ¥

!

Micro-policy

machine F%

Buffers, procedures, components
interacting via strictly enforced interfaces

26

[

Compartmentalized
unsafe source

®a

1

Compartmentalized
abstract machine ¥

!

Micro-policy

machine %

Buffers, procedures, components
interacting via strictly enforced interfaces

Simple RISC abstract machine with
build-in compartmentalization

26

unsafe source %

1

Compartmentalized
abstract machine ¥

[Compartmentalized]

!

Micro-policy
machine ¥

Tag-based reference monitor enforcing:
- component separation

- procedure call and return discipline
(linear capabilities / linear entry points)

Buffers, procedures, components
interacting via strictly enforced interfaces

Simple RISC abstract machine with
build-in compartmentalization

26

unsafe source %

[Compartmentalized

Buffers, procedures, components
interacting via strictly enforced interfaces

1

Compartmentalized

abstract machine Q

Simple RISC abstract machine with
build-in compartmentalization

!

Micro-policy
machine

Tag-based reference monitor enforcing:
- component separation

- procedure call and return discipline
(linear capabilities / linear entry points)

1software fault isolation

Bare-bone
machine

Inline reference monitor enforcing:

- component separation

- procedure call and return discipline
(program rewriting, shadow call stack)

26

(mostly) f?)
e A Compartmentalized | g fers, procedures, components
Verified unsafe source interacting via strictly enforced interfaces

in Coq 1

Compartmentalized Simple RISC abstract machine with
abstract machine 8| pyild-in compartmentalization

1 1software fault isolation
Micro-policy Bare-bone
machine [machine
Tag-based reference monitor enforcing: Inline reference monitor enforcing:
- component separation - component separation
- procedure call and return discipline - procedure call and return discipline
(linear capabilities / linear entry points) (program rewriting, shadow call stack)

26

(mostly) 4
Verified J [

Compartmentalized Buffers, procedures, components
unsafe source interacting via strictly enforced interfaces

in Coq

Compartmentalized Simple RISC abstract machine with
abstract machine #8| pbuild-in compartmentalization

1 1software fault isolation

Micro- pollcy Bare-bone
machine ¢ machine

Tag-based reference monitor enforcing: Inline reference monitor enforcing:

- component separation - component separation

- procedure call and return discipline - procedure call and return discipline
(linear capabilities / linear entry points) (program rewriting, shadow call stack)

———
Systematically tested (with QuickChick) « <=

26

Making this more practical ... next steps:

27

Making this more practical ... next steps:

e Scale up to more of C

— first step: allow pointer passing (capabilities)

27

Making this more practical ... next steps:

e Scale up to more of C

— first step: allow pointer passing (capabilities)

e Verify compartmentalized applications

— put the source-level reasoning principles to work

27

Making this more practical ... next steps:

e Scale up to more of C

— first step: allow pointer passing (capabilities)

e Verify compartmentalized applications

— put the source-level reasoning principles to work

* Extend all this to dynamic component creation

27

Making this more practical ... next steps:

Scale up to more of C

— first step: allow pointer passing (capabilities)

Verify compartmentalized applications

— put the source-level reasoning principles to work

Extend all this to dynamic component creation
... and dynamic privileges:

— capabilities, dynamic interfaces, HBAC, ...

27

Making this more practical ... next steps:

Scale up to more of C

— first step: allow pointer passing (capabilities)

Verify compartmentalized applications

— put the source-level reasoning principles to work

Extend all this to dynamic component creation
... and dynamic privileges:

— capabilities, dynamic interfaces, HBAC, ...

Support other enforcement mechanisms (back ends)

27

Making this more practical ... next steps:

Scale up to more of C

— first step: allow pointer passing (capabilities)

Verify compartmentalized applications

— put the source-level reasoning principles to work

Extend all this to dynamic component creation
... and dynamic privileges:

— capabilities, dynamic interfaces, HBAC, ...

Support other enforcement mechanisms (back ends)
Measure & lower overhead

27

Wrapping up

* Secure interoperability with lower-level code
— exploring a continuum, security vs efficiency tradeoff
e Secure compilation despite dynamic compromise
— restrict scope of undefined behavior

* spatially to the component that caused it
* temporally by treating UB as an observable trace event

28

Wrapping up

* Secure interoperability with lower-level code

— exploring a continuum, security vs efficiency tradeoff

e Secure compilation despite dynamic compromise
— restrict scope of undefined behavior
* spatially to the component that caused it
* temporally by treating UB as an observable trace event

 We're hiring!
— PostDocs, Young Researchers, Interns, PhD students ‘ﬂm

28

BACKUP SLIDES

More goals of secure compilation

Enabling source-level security reasoning
Making the source language safer

— memory and type safety, less/no undefined behavior
Making it easier to express security intent

— marking secrets, specifying security properties

Making exploits more difficult

— CFl, CPI, stack protection, randomization, diversity

Micro-Policies

software-defined, hardware-accelerated, tag-based monitoring

31

Micro-Policies

software-defined, hardware-accelerated, tag-based monitoring

[
pc L mem|[0]
ro “store rO rl”

rl mem|[2]

> mem|[3]

31

Micro-Policies

software-defined, hardware-accelerated, tag-based monitoring

pc tpc
ro tr0
rl trl

!

mem|[0] tmO
“store r0 r1” tml
mem|[2] tm2
mem([3] tm3

31

Micro-Policies

software-defined, hardware-accelerated, tag-based monitoring

pc tpc
ro tr0
rl trl

!

>

mem|[0] tmO
“store r0 r1” tml
mem|[2] tm2
mem([3] tm3

31

Micro-Policies

software-defined, hardware-accelerated, tag-based monitoring

|
pc tpc L mem|[0] tmO0
ro tr0 “store r0 r1” tm1l
rl trl mem|[2] tm2
> mem|[3] tm3
tr0 “ trl = tm3 “ tml

store

v]
I

e

allo
tpc’ “ tm3’

31

Micro-Policies

software-defined, hardware-accelerated, tag-based monitoring

|
pc tpc’ L mem|[0] tmO
ro tr0 “store rO r1” tm1l
rl trl mem|[2] tm2
> mem|[3] tm3’
tr0 “ trl = tm3 “ tml

store

v]
I

e

allo
tpc’ “ tm3’

31

Micro-Policies

software-defined, hardware-accelerated, tag-based monitoring

pc tpc’ mem|[0] tmO
r0 tr0 “store r0 r1” tm1l
rl trl mem|[2] tm2

> mem|[3] tm3’

tr0 “ trl = tm3 “ tml

store

|:\A Verg—

software monitor’s decision is hardware cached ::

Micro-Policies

software-defined, hardware-accelerated, tag-based monitoring

|
pc tpc L mem|[0] tmO0
r0 tr0 “store r0 r1” tm1l
rl trl mem|[2] tm2
> mem|[3] tm3

tr0 “ trl z tm3 “ tml

v |
store |$\ K/

w policy violation stopped!
disallow (¢ o out of bounds write)

31

* |low level + fine grained: unbounded per-word metadata,
checked & propagated on each instruction

32

low level + fine grained: unbounded per-word metadata,
checked & propagated on each instruction

flexible: tags and monitor defined by software

efficient: software decisions hardware cached siiec

expressive: complex policies for secure compilation

secure and simple enough to verify security in Coq)r/

real: FPGA implementation on top of RISC-V
DRAPER DLVER o

MICROSYSTEMS

* |low level + fine grained: unbounded per-word metadata,
checked & propagated on each instruction

* flexible: tags and monitor defined by software

o efficient: software decisions hardware cached siiec*

/@){presswe complex policies for secure compilation

* secure and simple enough to verify security in Coq /

* real: FPGA implementation on top of RISC-V
DRAPER DLCVER o

MICROSYSTEMS

Expressiveness

* information flow control (IFC) [POPL14]

Expressiveness

information flow control (IFC) [POPL14]
monitor self-protection

protected compartments

dynamic sealing

heap memory safety

code-data separation

control-flow integrity (CFl)

taint tracking

Expressiveness

:* information flow control (IFC) [POPL14]

° monitor self-protection Verified ¢
° protected compartments [gr;kﬁg:();l'ls_i
;¢ dynamic sealing :
° heap memory safety

E..’....E?.‘?'..e.?.‘?'.?.t?...s.? paration

e control-flow integrity (CFl)
e taint tracking

33

Expressiveness

:* information flow control (IFC) [POPL14]
.+ monitor self-protection Verified %
. protected compartments [gglj;):c)yﬁ
;e dynamic sealing :
E'E':"'H'é'én'B"r'ﬁ'e"r'\'iaf'{/"é}'a'féﬁl' ..

* code-data separation

: * control-flow integrity (CFl)

Evaluated

* taint tracking (<10% runtime overhead)
[ASPLOS’15]

