
Formally Secure Compilation

Cătălin Hrițcu

Inria Paris

1
https://secure-compilation.github.io

https://secure-compilation.github.io/

Devastating low-level attacks

2

Devastating low-level attacks

inherently insecure languages like C/C++

– e.g. memory unsafe: any buffer overflow is catastrophic
allowing remote attackers to gain complete control

2

Devastating low-level attacks

inherently insecure languages like C/C++

– e.g. memory unsafe: any buffer overflow is catastrophic
allowing remote attackers to gain complete control

– ~100 different undefined behaviors in usual C compiler

2

Devastating low-level attacks

inherently insecure languages like C/C++

– e.g. memory unsafe: any buffer overflow is catastrophic
allowing remote attackers to gain complete control

– ~100 different undefined behaviors in usual C compiler

insecure interoperability with lower-level code

– even code in more secure languages (Java, OCaml, Rust)
has to interoperate with low-level code (C, C++, ASM)

– insecure interoperability: all source-level guarantees lost

2

Devastating low-level attacks

inherently insecure languages like C/C++

– e.g. memory unsafe: any buffer overflow is catastrophic
allowing remote attackers to gain complete control

– ~100 different undefined behaviors in usual C compiler

insecure interoperability with lower-level code

– even code in more secure languages (Java, OCaml, Rust)
has to interoperate with low-level code (C, C++, ASM)

– insecure interoperability: all source-level guarantees lost

2Part 1: formalize what it means to solve this problem

Devastating low-level attacks

inherently insecure languages like C/C++

– e.g. memory unsafe: any buffer overflow is catastrophic
allowing remote attackers to gain complete control

– ~100 different undefined behaviors in usual C compiler

insecure interoperability with lower-level code

– even code in more secure languages (Java, OCaml, Rust)
has to interoperate with low-level code (C, C++, ASM)

– insecure interoperability: all source-level guarantees lost

2Part 1: formalize what it means to solve this problem

Part 2: give meaning to mitigation (protected components)

Secure Interoperability
with Lower-Level Code

Part 1 of 2

3

Carmine
Abate

Deepak
Garg Marco

Patrignani

Cătălin
Hrițcu

Jérémy
Thibault

MPI-SWS

CISPA
Stanford

Inria Paris
ENS RennesInria Paris

U. Trento

Inria Paris

Good programming languages provide helpful
abstractions for writing more secure code

4

Good programming languages provide helpful
abstractions for writing more secure code

• e.g. HACL* and miTLS written in Low* which provides:

4

Good programming languages provide helpful
abstractions for writing more secure code

• e.g. HACL* and miTLS written in Low* which provides:

– low-level abstractions associated with safe C programs

• structured control flow, procedures, abstract memory model

4

Good programming languages provide helpful
abstractions for writing more secure code

• e.g. HACL* and miTLS written in Low* which provides:

– low-level abstractions associated with safe C programs

• structured control flow, procedures, abstract memory model

– higher-level abstractions associated with ML-like languages

• modules, interfaces, and parametric polymorphism

4

Good programming languages provide helpful
abstractions for writing more secure code

• e.g. HACL* and miTLS written in Low* which provides:

– low-level abstractions associated with safe C programs

• structured control flow, procedures, abstract memory model

– higher-level abstractions associated with ML-like languages

• modules, interfaces, and parametric polymorphism

– most features of verification systems like Coq and Dafny

• effects, dependent types, logical pre- and post-conditions

4

Good programming languages provide helpful
abstractions for writing more secure code

• e.g. HACL* and miTLS written in Low* which provides:

– low-level abstractions associated with safe C programs

• structured control flow, procedures, abstract memory model

– higher-level abstractions associated with ML-like languages

• modules, interfaces, and parametric polymorphism

– most features of verification systems like Coq and Dafny

• effects, dependent types, logical pre- and post-conditions

– patterns specific to cryptographic code

• abstract types and interfaces for mitigating side-channel attacks

4

Abstractions not enforced when linking
with adversarial low-level code

5

HACL* library

~10.000 LOC in Low*

Abstractions not enforced when linking
with adversarial low-level code

5

HACL* library Firefox web browser

~10.000 LOC in Low* 16.000.000+ LOC in C/C++

Abstractions not enforced when linking
with adversarial low-level code

5

HACL* library Firefox web browser

ASM ASM

Insecure interoperability: compromised (or malicious) application
linking in miTLS can easily read and write miTLS’s data and code,
jump to arbitrary instructions, smash the stack, ...

~10.000 LOC in Low* 16.000.000+ LOC in C/C++

KreMLin
+ CompCert GCC

Verified

Secure compilation

• Protect source-level abstractions
even against linked adversarial low-level code

6

Secure compilation

• Protect source-level abstractions
even against linked adversarial low-level code

• Enable source-level security reasoning

6

Secure compilation

• Protect source-level abstractions
even against linked adversarial low-level code

• Enable source-level security reasoning

– even an adversarial target-level context cannot
break the security properties of the compiled program
any more than some source-level context could

6

Secure compilation

• Protect source-level abstractions
even against linked adversarial low-level code

• Enable source-level security reasoning

– even an adversarial target-level context cannot
break the security properties of the compiled program
any more than some source-level context could

– no "low-level" attacks

6

Secure compilation

• Protect source-level abstractions
even against linked adversarial low-level code

• Enable source-level security reasoning

– even an adversarial target-level context cannot
break the security properties of the compiled program
any more than some source-level context could

– no "low-level" attacks

– no need to worry about the compilation chain
(compiler, linker, loader, runtime, system, hardware)

6

Source-level security reasoning

7

Source-level security reasoning

source
context

source securecomponent

7

source
context∀

Source-level security reasoning

source
context

target
context

source

compiled

compiler

secure

secure

component

component

7

source
context∀

target
context∀

Source-level security reasoning

source
context

target
context

source

compiled

compiler

secure

secure

component

component

no extra powerprotected

7

source
context∀

target
context∀

Source-level security reasoning

source
context

target
context

source

compiled

compiler

secure

secure

component

component

no extra powerprotected

7

But what does "secure" mean?

source
context∀

target
context∀

What security properties should we preserve?

8

What security properties should we preserve?

• We explore a large space of security properties

8

What security properties should we preserve?

• We explore a large space of security properties

• Study preserving various classes of ...
– trace properties (safety, liveness)

– hyperproperties (e.g. noninterference)

– relational hyperproperties (e.g. trace equivalence)

... against adversarial target-level contexts

8

What security properties should we preserve?

• We explore a large space of security properties

• Study preserving various classes of ...
– trace properties (safety, liveness)

– hyperproperties (e.g. noninterference)

– relational hyperproperties (e.g. trace equivalence)

... against adversarial target-level contexts

• No “one-size-fits-all solution”
– e.g. full abstraction does not imply the other criteria we study

– stronger criteria are harder to achieve and prove, both challenging

8

9

More secure

More efficient
Easier to prove

Robust Trace Property Preservation

10

Robust Trace Property Preservation

10

source
context

source
component

source
context
trace t∀ .

∀source component.
∀π trace property.

⇒

⇝t⇒ t∈π

Robust Trace Property Preservation

10

source
context

target
context

source
component

compiled
component

source
context
trace t∀

target
context
trace t

∀

.

.

compiler

∀source component.
∀π trace property.

⇒

⇝t⇒ t∈π

⇝t⇒ t∈π

Robust Trace Property Preservation

10

source
context

target
context

source
component

compiled
component

source
context
trace t∀

target
context
trace t

∀

.

.

compiler

∀source component.
∀π trace property.

⇒

⇝t⇒ t∈π

property-based characterization

⇝t⇒ t∈π

preservation of robust satisfaction

Robust Trace Property Preservation

10

source
context

target
context

source
component

compiled
component

source
context
trace t∀

target
context
trace t

∀

.

.

compiler

∀source component.
∀π trace property.

⇒

⇝t⇒ t∈π

property-based characterization

⇝t⇒ t∈π

property-free characterization

⇔

preservation of robust satisfaction how one can prove it

Robust Trace Property Preservation

10

target
context

source
component

compiled
component

target
context∃ .

compiler

∀source component.
∀(bad attack) trace t.

source
context

target
context

source
component

compiled
component

source
context
trace t∀

target
context
trace t

∀

.

.

compiler

∀source component.
∀π trace property.

⇒

⇝t⇒ t∈π

property-based characterization

⇝t⇒ t∈π

property-free characterization

⇔

⇝t

preservation of robust satisfaction how one can prove it

Robust Trace Property Preservation

10

source
context

target
context

source
component

compiled
component

source
context∃

target
context∃

.

.

compiler

∀source component.
∀(bad attack) trace t.

⇒

source
context

target
context

source
component

compiled
component

source
context
trace t∀

target
context
trace t

∀

.

.

compiler

∀source component.
∀π trace property.

⇒

⇝t⇒ t∈π

property-based characterization

⇝t⇒ t∈π

property-free characterization

⇔

⇝t

⇝t

preservation of robust satisfaction how one can prove it

Robust Trace Property Preservation

10

source
context

target
context

source
component

compiled
component

source
context∃

target
context∃

.

.

compiler

∀source component.
∀(bad attack) trace t.

⇒

source
context

target
context

source
component

compiled
component

source
context
trace t∀

target
context
trace t

∀

.

.

compiler

∀source component.
∀π trace property.

⇒

⇝t⇒ t∈π

property-based characterization

⇝t⇒ t∈π

property-free characterization

⇔

⇝t

⇝t

back-
translation

preservation of robust satisfaction how one can prove it

11

11

back-translating
prog & context & trace
∀P∀CT∀t∃CS...

11

back-translating
finite trace prefixes
∀P∀CT∀m≤t∃CS...

back-translating
prog & context & trace
∀P∀CT∀t∃CS...

11

back-translating
finite trace prefixes
∀P∀CT∀m≤t∃CS...

back-translating
finite sets of
finite trace prefixes
∀k∀P1..Pk∀CT

∀m1..mk ∃CS...

back-translating
prog & context & trace
∀P∀CT∀t∃CS...

11

back-translating
finite trace prefixes
∀P∀CT∀m≤t∃CS...

back-translating
prog & context

∀P∀CT∃CS∀t...

back-translating
contexts

∀CT∃CS∀P∀t...

back-translating
finite sets of
finite trace prefixes
∀k∀P1..Pk∀CT

∀m1..mk ∃CS...

back-translating
prog & context & trace
∀P∀CT∀t∃CS...

Results
• Mapped the space of secure compilation criteria

based on robust "property" preservation

12

Results
• Mapped the space of secure compilation criteria

based on robust "property" preservation

– Property-free characterizations and implications in Coq

12

Results
• Mapped the space of secure compilation criteria

based on robust "property" preservation

– Property-free characterizations and implications in Coq

– Separation results (e.g. robust safety/liveness preservation
strictly weaker than robust trace property preservation)

12

Results
• Mapped the space of secure compilation criteria

based on robust "property" preservation

– Property-free characterizations and implications in Coq

– Separation results (e.g. robust safety/liveness preservation
strictly weaker than robust trace property preservation)

– Surprising collapse between preserving all hyperproperties
and preserving just hyperliveness

12

Results
• Mapped the space of secure compilation criteria

based on robust "property" preservation

– Property-free characterizations and implications in Coq

– Separation results (e.g. robust safety/liveness preservation
strictly weaker than robust trace property preservation)

– Surprising collapse between preserving all hyperproperties
and preserving just hyperliveness

• Showed that even strongest criterion is achievable

– for simple translation from a statically to a dynamically typed
language with first-order functions and I/O

12

Some open problems

• Practically achieving secure interoperability
with lower-level code

13

Some open problems

• Practically achieving secure interoperability
with lower-level code

– More realistic languages and secure compilation chains

13

Some open problems

• Practically achieving secure interoperability
with lower-level code

– More realistic languages and secure compilation chains

– Achieve noninterference preservation
in realistic attacker model with side-channels

13

Some open problems

• Practically achieving secure interoperability
with lower-level code

– More realistic languages and secure compilation chains

– Achieve noninterference preservation
in realistic attacker model with side-channels

– Efficient enforcement mechanisms

13

Some open problems

• Practically achieving secure interoperability
with lower-level code

– More realistic languages and secure compilation chains

– Achieve noninterference preservation
in realistic attacker model with side-channels

– Efficient enforcement mechanisms

• Scalable proof techniques for other criteria

– (hyper)liveness preservation (possible?)

13

Some open problems

• Practically achieving secure interoperability
with lower-level code

– More realistic languages and secure compilation chains

– Achieve noninterference preservation
in realistic attacker model with side-channels

– Efficient enforcement mechanisms

• Scalable proof techniques for other criteria

– (hyper)liveness preservation (possible?)

• Nontrivial relation between source and target traces

13

Where is full abstraction?

14

Where is full abstraction?

14

with internal
nondeterminism

Where is full abstraction?

14

with internal
nondeterminism

without internal
nondeterminism

Where is full abstraction?

14

with internal
nondeterminism

without internal
nondeterminism

+what extra assumptions?
compiler correctness enough??

???

When Good Components Go Bad
Secure Compilation Despite Dynamic Compromise

Part 2 of 2

15
https://arxiv.org/abs/1802.00588

https://arxiv.org/abs/1802.00588

Collaborators for Part 2

Cătălin
Hrițcu

Marco
Stronati

Arthur
Azevedo

de Amorim

Ana Nora
Evans

Andrew
Tolmach

Benjamin
Pierce

Théo
Laurent

Carmine
Abate

Inria Paris CMU U. Virginia U. Trento Paris 7 ENS Paris Portland State UPenn

Yannis
Juglaret

Guglielmo
Fachini

16

Rob
Blanco

Undefined behavior
#include <string.h>

int main (int argc, char **argv) {

char c[12];

strcpy(c, argv[1]);

return 0;

}

17

Undefined behavior
#include <string.h>

int main (int argc, char **argv) {

char c[12];

strcpy(c, argv[1]);

return 0;

}

$ gcc target.c
$./a.out haha

Buffer overflow

17

Undefined behavior
#include <string.h>

int main (int argc, char **argv) {

char c[12];

strcpy(c, argv[1]);

return 0;

}

$ gcc target.c
$./a.out haha
$./a.out hahahahahahahahahaha
zsh: segmentation fault (core dumped)

Buffer overflow

17

Undefined behavior
#include <string.h>

int main (int argc, char **argv) {

char c[12];

strcpy(c, argv[1]);

return 0;

}

$ gcc target.c
$./a.out haha
$./a.out hahahahahahahahahaha
zsh: segmentation fault (core dumped)
$./exploit.sh | a.out

Buffer overflow

17

Undefined behavior
#include <string.h>

int main (int argc, char **argv) {

char c[12];

strcpy(c, argv[1]);

return 0;

}

$ gcc target.c
$./a.out haha
$./a.out hahahahahahahahahaha
zsh: segmentation fault (core dumped)
$./exploit.sh | a.out

Buffer overflow

17

Practical mitigation: compartmentalization

18

Practical mitigation: compartmentalization

• Main idea:

– break up security-critical C applications into
mutually distrustful components with clearly specified
privileges & interacting via strictly enforced interfaces

18

Practical mitigation: compartmentalization

• Main idea:

– break up security-critical C applications into
mutually distrustful components with clearly specified
privileges & interacting via strictly enforced interfaces

• Strong security guarantees & interesting attacker model

– "a vulnerability in one component does not immediately

destroy the security of the whole application"

18

Practical mitigation: compartmentalization

• Main idea:

– break up security-critical C applications into
mutually distrustful components with clearly specified
privileges & interacting via strictly enforced interfaces

• Strong security guarantees & interesting attacker model

– "a vulnerability in one component does not immediately

destroy the security of the whole application"

– "each component is protected from all the others"

18

Practical mitigation: compartmentalization

• Main idea:

– break up security-critical C applications into
mutually distrustful components with clearly specified
privileges & interacting via strictly enforced interfaces

• Strong security guarantees & interesting attacker model

– "a vulnerability in one component does not immediately

destroy the security of the whole application"

– "each component is protected from all the others"

– "each components receives guarantees as long as

it has not encountered undefined behavior"

18

Practical mitigation: compartmentalization

• Main idea:

– break up security-critical C applications into
mutually distrustful components with clearly specified
privileges & interacting via strictly enforced interfaces

• Strong security guarantees & interesting attacker model

– "a vulnerability in one component does not immediately

destroy the security of the whole application"

– "each component is protected from all the others"

– "each components receives guarantees as long as

it has not encountered undefined behavior"

18

Goal 1: Formalize this

Goal 2: Build secure compilation chains

19

Goal 2: Build secure compilation chains

• Add components to C

– interacting only via strictly enforced interfaces

19

Goal 2: Build secure compilation chains

• Add components to C

– interacting only via strictly enforced interfaces

• Enforce "component C" abstractions:

– component separation, call-return discipline, ...

19

Goal 2: Build secure compilation chains

• Add components to C

– interacting only via strictly enforced interfaces

• Enforce "component C" abstractions:

– component separation, call-return discipline, ...

• Secure compilation chain:

– compiler, linker, loader, runtime, system, hardware

19

Goal 2: Build secure compilation chains

• Add components to C

– interacting only via strictly enforced interfaces

• Enforce "component C" abstractions:

– component separation, call-return discipline, ...

• Secure compilation chain:

– compiler, linker, loader, runtime, system, hardware

• Use efficient enforcement mechanisms:
– OS processes (all web browsers) — WebAssembly (web browsers)

– software fault isolation (SFI) — capability machines

– hardware enclaves (SGX) — tagged architectures

19

Goal 1: Formalizing the security of
compartmentalizing compilation

20

Restricting undefined behavior

• Mutually-distrustful components
– restrict spatial scope of undefined behavior

21

Restricting undefined behavior

• Mutually-distrustful components
– restrict spatial scope of undefined behavior

• Dynamic compromise
– restrict temporal scope of undefined behavior

21

Restricting undefined behavior

• Mutually-distrustful components
– restrict spatial scope of undefined behavior

• Dynamic compromise
– restrict temporal scope of undefined behavior

– undefined behavior = observable trace event

– effects of undefined behavior
shouldn't percolate before earlier observable events
• careful with code motion, backwards static analysis, ...

21

Restricting undefined behavior

• Mutually-distrustful components
– restrict spatial scope of undefined behavior

• Dynamic compromise
– restrict temporal scope of undefined behavior

– undefined behavior = observable trace event

– effects of undefined behavior
shouldn't percolate before earlier observable events
• careful with code motion, backwards static analysis, ...

– CompCert already offers this saner temporal model

21

Restricting undefined behavior

• Mutually-distrustful components
– restrict spatial scope of undefined behavior

• Dynamic compromise
– restrict temporal scope of undefined behavior

– undefined behavior = observable trace event

– effects of undefined behavior
shouldn't percolate before earlier observable events
• careful with code motion, backwards static analysis, ...

– CompCert already offers this saner temporal model

– GCC and LLVM currently violate this model

21

Dynamic compromise

• each component gets guarantees as long as it
has not encountered undefined behavior

22

Dynamic compromise

• each component gets guarantees as long as it
has not encountered undefined behavior

• a component only loses guarantees after an
attacker discovers and exploits a vulnerability

22

Dynamic compromise

• each component gets guarantees as long as it
has not encountered undefined behavior

• a component only loses guarantees after an
attacker discovers and exploits a vulnerability

• the mere existence of vulnerabilities doesn't
immediately make a component compromised

22

i0 i1 i2

C0 C1 C2↓ ↓ ↓ ⇝ tIf then

23

i0 i1 i2

C0 C1 C2

∃ a dynamic compromise scenario explaining t in source language

↓ ↓ ↓ ⇝ tIf then

23

i0 i1 i2

C0 C1 C2

∃ a dynamic compromise scenario explaining t in source language
for instance leading to the following compromise sequence:

↓ ↓ ↓ ⇝ t

i0 i1 i2

C0 C1 C2
⇝* m1;Undef(C1)

↯
(0)

If then

23

i0 i1 i2

C0 C1 C2

∃ a dynamic compromise scenario explaining t in source language
for instance leading to the following compromise sequence:

↓ ↓ ↓ ⇝ t

i0 i1 i2

C0 C1 C2
⇝* m1;Undef(C1)

↯
(0)

(1)
i0 i1 i2

C0 A1 C2
⇝* m2;Undef(C2)

↯
≤

∃A1.

If then

23

i0 i1 i2

C0 C1 C2

∃ a dynamic compromise scenario explaining t in source language
for instance leading to the following compromise sequence:

↓ ↓ ↓ ⇝ t

i0 i1 i2

C0 C1 C2
⇝* m1;Undef(C1)

↯
(0)

(1)
i0 i1 i2

C0 A1 C2
⇝* m2;Undef(C2)

↯

(2)
i0 i1 i2

C0 A1 A2
⇝ t

≤

≤

∃A1.

∃A2.

If then

23

i0 i1 i2

C0 C1 C2

∃ a dynamic compromise scenario explaining t in source language
for instance leading to the following compromise sequence:

↓ ↓ ↓ ⇝ t

i0 i1 i2

C0 C1 C2
⇝* m1;Undef(C1)

↯
(0)

(1)
i0 i1 i2

C0 A1 C2
⇝* m2;Undef(C2)

↯

(2)
i0 i1 i2

C0 A1 A2
⇝ t

≤

≤

Trace is very helpful
- detect undefined behavior
- rewind execution

∃A1.

∃A2.

If then

23

Now we know what these words mean!

Mutual distrust C1 A2 C3 A4 A5

(at least in the setting of compartmentalization for unsafe low-level languages)

24

Now we know what these words mean!

Mutual distrust

Dynamic compromise

C1 A2 C3 A4 A5

C0 A1 C2 ⇓m2; Undef(C2)
↯

(at least in the setting of compartmentalization for unsafe low-level languages)

24

Now we know what these words mean!

Mutual distrust

Dynamic compromise

Static privilege

C1 A2 C3 A4 A5

C0 A1 C2 ⇓m2; Undef(C2)
↯

i0 i1 i2

C0 A1 C2

(at least in the setting of compartmentalization for unsafe low-level languages)

24

Goal 2: Towards building
secure compilation chains

25

Compartmentalized
unsafe source

Compartmentalized
abstract machine

Micro-policy
machine

26

Compartmentalized
unsafe source

Compartmentalized
abstract machine

Buffers, procedures, components
interacting via strictly enforced interfaces

Micro-policy
machine

26

Compartmentalized
unsafe source

Compartmentalized
abstract machine

Buffers, procedures, components
interacting via strictly enforced interfaces

Micro-policy
machine

Simple RISC abstract machine with

build-in compartmentalization

26

Compartmentalized
unsafe source

Compartmentalized
abstract machine

Buffers, procedures, components
interacting via strictly enforced interfaces

Micro-policy
machine

Simple RISC abstract machine with

build-in compartmentalization

Tag-based reference monitor enforcing:
- component separation
- procedure call and return discipline
(linear capabilities / linear entry points)

26

Compartmentalized
unsafe source

Compartmentalized
abstract machine

Buffers, procedures, components
interacting via strictly enforced interfaces

Micro-policy
machine

Bare-bone
machine

Simple RISC abstract machine with

build-in compartmentalization

Inline reference monitor enforcing:
- component separation
- procedure call and return discipline
(program rewriting, shadow call stack)

software fault isolation

Tag-based reference monitor enforcing:
- component separation
- procedure call and return discipline
(linear capabilities / linear entry points)

26

Compartmentalized
unsafe source

Compartmentalized
abstract machine

Buffers, procedures, components
interacting via strictly enforced interfaces

Micro-policy
machine

Bare-bone
machine

Simple RISC abstract machine with

build-in compartmentalization

Inline reference monitor enforcing:
- component separation
- procedure call and return discipline
(program rewriting, shadow call stack)

software fault isolation

Tag-based reference monitor enforcing:
- component separation
- procedure call and return discipline
(linear capabilities / linear entry points)

(mostly)

Verified
in Coq

26

Compartmentalized
unsafe source

Compartmentalized
abstract machine

Buffers, procedures, components
interacting via strictly enforced interfaces

Micro-policy
machine

Bare-bone
machine

Simple RISC abstract machine with

build-in compartmentalization

Inline reference monitor enforcing:
- component separation
- procedure call and return discipline
(program rewriting, shadow call stack)

software fault isolation

Tag-based reference monitor enforcing:
- component separation
- procedure call and return discipline
(linear capabilities / linear entry points)

(mostly)

Verified
in Coq

Systematically tested (with QuickChick)

26

Making this more practical ... next steps:

27

Making this more practical ... next steps:

• Scale up to more of C
– first step: allow pointer passing (capabilities)

27

Making this more practical ... next steps:

• Scale up to more of C
– first step: allow pointer passing (capabilities)

• Verify compartmentalized applications
– put the source-level reasoning principles to work

27

Making this more practical ... next steps:

• Scale up to more of C
– first step: allow pointer passing (capabilities)

• Verify compartmentalized applications
– put the source-level reasoning principles to work

• Extend all this to dynamic component creation

27

Making this more practical ... next steps:

• Scale up to more of C
– first step: allow pointer passing (capabilities)

• Verify compartmentalized applications
– put the source-level reasoning principles to work

• Extend all this to dynamic component creation

• ... and dynamic privileges:
– capabilities, dynamic interfaces, HBAC, ...

27

Making this more practical ... next steps:

• Scale up to more of C
– first step: allow pointer passing (capabilities)

• Verify compartmentalized applications
– put the source-level reasoning principles to work

• Extend all this to dynamic component creation

• ... and dynamic privileges:
– capabilities, dynamic interfaces, HBAC, ...

• Support other enforcement mechanisms (back ends)

27

Making this more practical ... next steps:

• Scale up to more of C
– first step: allow pointer passing (capabilities)

• Verify compartmentalized applications
– put the source-level reasoning principles to work

• Extend all this to dynamic component creation

• ... and dynamic privileges:
– capabilities, dynamic interfaces, HBAC, ...

• Support other enforcement mechanisms (back ends)

• Measure & lower overhead
27

Wrapping up

• Secure interoperability with lower-level code

– exploring a continuum, security vs efficiency tradeoff

• Secure compilation despite dynamic compromise

– restrict scope of undefined behavior

• spatially to the component that caused it

• temporally by treating UB as an observable trace event

28

Wrapping up

• Secure interoperability with lower-level code

– exploring a continuum, security vs efficiency tradeoff

• Secure compilation despite dynamic compromise

– restrict scope of undefined behavior

• spatially to the component that caused it

• temporally by treating UB as an observable trace event

• We're hiring!

– PostDocs, Young Researchers, Interns, PhD students

28

BACKUP SLIDES

29

More goals of secure compilation

• Enabling source-level security reasoning

• Making the source language safer

– memory and type safety, less/no undefined behavior

• Making it easier to express security intent

– marking secrets, specifying security properties

• Making exploits more difficult

– CFI, CPI, stack protection, randomization, diversity

30

Micro-Policies

31

software-defined, hardware-accelerated, tag-based monitoring

Micro-Policies

31

pc

r0

r1

mem[0]

“store r0 r1”

mem[2]

mem[3]

software-defined, hardware-accelerated, tag-based monitoring

Micro-Policies

31

pc tpc

r0 tr0

r1 tr1

mem[0] tm0

“store r0 r1” tm1

mem[2] tm2

mem[3] tm3

tpc

tr0

tr1

tm1

software-defined, hardware-accelerated, tag-based monitoring

Micro-Policies

31

pc tpc

r0 tr0

r1 tr1

mem[0] tm0

“store r0 r1” tm1

mem[2] tm2

mem[3] tm3

tpc tr0 tr1 tm3 tm1

monitor

store

software-defined, hardware-accelerated, tag-based monitoring

tpc’ tm3’

Micro-Policies

31

pc tpc

r0 tr0

r1 tr1

mem[0] tm0

“store r0 r1” tm1

mem[2] tm2

mem[3] tm3

tpc tr0 tr1 tm3 tm1

monitor
allow

store

software-defined, hardware-accelerated, tag-based monitoring

=

tpc’ tm3’

Micro-Policies

31

pc tpc

r0 tr0

r1 tr1

mem[0] tm0

“store r0 r1” tm1

mem[2] tm2

mem[3] tm3

tpc tr0 tr1 tm3 tm1

monitor
allow

tpc’

tm3’

store

software-defined, hardware-accelerated, tag-based monitoring

=

tpc’ tm3’

Micro-Policies

31

pc tpc

r0 tr0

r1 tr1

mem[0] tm0

“store r0 r1” tm1

mem[2] tm2

mem[3] tm3

tpc tr0 tr1 tm3 tm1

monitor
allow

tpc’

tm3’

store

software monitor’s decision is hardware cached

software-defined, hardware-accelerated, tag-based monitoring

=

Micro-Policies

31

pc tpc

r0 tr0

r1 tr1

mem[0] tm0

“store r0 r1” tm1

mem[2] tm2

mem[3] tm3

tpc tr0 tr1 tm3 tm1

monitor

store

software-defined, hardware-accelerated, tag-based monitoring

disallow
policy violation stopped!

(e.g. out of bounds write)

tm3≠

tm3

=

Micro-policies are cool!

• low level + fine grained: unbounded per-word metadata,
checked & propagated on each instruction

32

Micro-policies are cool!

• low level + fine grained: unbounded per-word metadata,
checked & propagated on each instruction

• flexible: tags and monitor defined by software

• efficient: software decisions hardware cached

• expressive: complex policies for secure compilation

• secure and simple enough to verify security in Coq

• real: FPGA implementation on top of RISC-V
32

Micro-policies are cool!

• low level + fine grained: unbounded per-word metadata,
checked & propagated on each instruction

• flexible: tags and monitor defined by software

• efficient: software decisions hardware cached

• expressive: complex policies for secure compilation

• secure and simple enough to verify security in Coq

• real: FPGA implementation on top of RISC-V
32

• information flow control (IFC)

Expressiveness

33

[POPL’14]

• information flow control (IFC)

• monitor self-protection

• protected compartments

• dynamic sealing

• heap memory safety

• code-data separation

• control-flow integrity (CFI)

• taint tracking

• ...

Expressiveness

33

[POPL’14]

• information flow control (IFC)

• monitor self-protection

• protected compartments

• dynamic sealing

• heap memory safety

• code-data separation

• control-flow integrity (CFI)

• taint tracking

• ...

Expressiveness

33

Verified
(in Coq)

[Oakland’15]

[POPL’14]

• information flow control (IFC)

• monitor self-protection

• protected compartments

• dynamic sealing

• heap memory safety

• code-data separation

• control-flow integrity (CFI)

• taint tracking

Expressiveness

Verified
(in Coq)

Evaluated
(<10% runtime overhead)

[Oakland’15]

[POPL’14]

[ASPLOS’15]

