
When Good Components Go Bad

What are the security guarantees
of compartmentalization?

Cătălin Hrițcu (Inria Paris)

HOPE Project



Devastating low-level vulnerabilities

• Languages like C/C++ sacrifice security for efficiency

– type and memory unsafe:

• e.g. any buffer overflow is catastrophic

– root cause, working on fixes,
but it's challenging:

• efficiency

• precision

• scalability

• backwards compatibility

• deployment

2



Compartmentalization = Practical mitigation

• Main idea:

– break up security-critical applications
into mutually distrustful components
with clearly specified privileges

• Enforce components can only interact in a safe way:

– component separation, call-return discipline, ...

• ... by building secure compilation chain:

– compiler, linker, loader, runtime, system, hardware

• ... targeting various mechanisms:
– tagged architecture (micro-policies) — software fault isolation (SFI)

– hardware enclaves (SGX) — capability machines (CHERI)

3



What are the security guarantees
of compartmentalization?

4



Challenge

• Source reasoning

= want compartmentalization to enable reasoning formally 
about security with respect to source language semantics

• Undefined behavior

= can't be expressed at all by source language semantics!

• Many different examples in a usual C compiler

– out of bounds array accesses

– use after frees and double frees

– invalid unchecked casts

– (often even) signed integer overflows,

– ...

5



Restricting undefined behavior

• Limit spatial scope of undefined behavior

– mutually-distrustful components

• each component protected from all the others,
in particular from already compromised components

• Limit temporal scope of undefined behavior

– dynamic compromise

• each component gets guarantees
as long as it has not encountered undefined behavior

• i.e. the mere existence of vulnerabilities doesn't
immediately make a component compromised

6



i0 i1 i2

C0 C1 C2

∃ a dynamic compromise scenario explaining t in source language
... for instance:

↓ ↓ ↓ ⇝ t

i0 i1 i2

C0 C1 C2
⇝* m1;Undef(C1)

↯
(0)

(1)
i0 i1 i2

C0 A1 C2
⇝* m2;Undef(C2)

↯

(2)
i0 i1 i2

C0 A1 A2
⇝ t

≤
 

≤
 

∃A1.

∃A2.

∀attack trace t, if then

7When Good Components Go Bad (arXiv:1802.00588)

https://arxiv.org/abs/1802.00588


Compartmentalized 
unsafe source

Compartmentalized 
abstract machine

Buffers, procedures, components
interacting via strictly enforced interfaces

Micro-policy 
machine

Bare-bone
machine

Simple RISC abstract machine with

build-in compartmentalization

software fault isolation

(mostly)

Verified
in Coq

Systematically tested (with QuickChick)

Building secure compilation chain

8When Good Components Go Bad (arXiv:1802.00588)

https://arxiv.org/abs/1802.00588

