
What is secure compilation?
Security goals and attacker models

Cătălin Hrițcu

Inria Paris

1



What is secure compilation?

Devising "more secure" compilation chains

Compiler can play an important role ...

... but so can the linker, loader, runtime, 
operating system, hardware, ...

... and various security enforcement mechanisms

2



Many enforcement mechanisms

 safer languages (RUST, WASM)

 static analysis & verification

 program transformation & 
instrumentation (SFI)

 information flow control
(static, dynamic, hybrid)

 dynamic monitors

 memory protection
(virtual memory, MPX, SSM)

 enclaves (SGX, TrustZone)

 capability machines (CHERI)

 tagged hardware (MicroPolicies)

Security is hard to enforce, so we will
discuss a lot about how in this seminar

(including on Wednesday afternoon)

3



What are we trying to enforce?

Against what kinds of attacks?

diverse security goals

diverse attacker models

4



Safety in theory

Security goal:

• Memory safety
– spatial and temporal memory 

violations lead to safe behavior 
(e.g. exception, termination)

• Type safety
– e.g. invalid casts are safe

• Less/no "undefined behavior"

Attacker model:

• Malicious inputs
– tries to exploit lack of safety to 

take full control, mess with your 
data, obtain secrets, ...

5

in theory



6



Safety in practice

Security goal:

• Make exploits more difficult

• Control-flow integrity

• Data-flow integrity

• Code-pointer integrity

• Stack protection

• Probabilistic guarantees
(by randomization)

• ...

Attacker model:

1. Attacker sends inputs
– exploiting safety vulnerability

2. Attacker can access memory
– contiguous write, 

– arbitrary read, ...

... tries to:
– inject code or behavior,

– mess with your data,

– leak secrets, ...

7



Safety in practice

Security goal:

• Limit attack damage
– only to the compromise of

the components encountering 
undefined behavior
(compartmentalization)

Attacker model:

1. Attacker sends inputs
– exploiting safety vulnerability

2. Attacker can access memory
– contiguous write, 

– arbitrary read, ...

... tries to:
– inject code or behavior,

– mess with your data,

– leak secrets, ...

8



Still, what are we trying to enforce?

9

Security goal:

• Integrity / encapsulation
– code, data, invariants

• Confidentiality
– secrets don't get leaked

• Availability
– no crashes or hangs (liveness)

Attacker model:

• Malicious/compromised code
– component, library, plugin, host

• Passive/active observer
– outputs, time, side-channels, ...

• Malicious inputs



10



11



12



Source-level security reasoning

• Frequent goal in formally secure compilation:

Reason about security in the source language

(or "the safe part" of the source language)

– without needing to worry about compilation chain

• No "low-level" attacks

• Watertight source language abstractions

13



Source-level security reasoning

Preserving security of source programs

– trace properties (safety, liveness)

– hyperproperties (noninterference)

– relational (hyper)properties (obs. equivalence)

... against low-level attacks from

– malicious "context" (host, library, plugin)

– compromised components

– powerful observer (e.g. measuring time)

14



What is secure compilation?

1. Making the source language safer and
making it easier to express security intent

2. Making exploits more difficult

3. Enabling source-level security reasoning

15



Backup questions

Enabling source-level security reasoning

1. How to relate source-target traces?

2. Does the attacker/context need to be 
represented as a program?

Deepak has more ...

16


