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Devastating low-level vulnerabilities

• Inherently insecure C/C++-like languages

– type and memory unsafe:
e.g. any buffer overflow is catastrophic

– root cause, but challenging to fix:

• efficiency

• precision

• scalability

• backwards compatibility

• deployment
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Goal 2: Build secure compilation chains

• Add components to C

– interacting only via strictly enforced interfaces

• Enforce "component C" abstractions:

– component separation, call-return discipline, ...

• Secure compilation chain:

– compiler, linker, loader, runtime, system, hardware

• Use efficient enforcement mechanisms:
– OS processes (all web browsers) — WebAssembly (web browsers)

– software fault isolation (SFI) — capability machines

– hardware enclaves (SGX) — tagged architectures

• Practical need for all this
– e.g. crypto libraries/protocols ... verified (HACL*/miTLS*) or not
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Source reasoning vs undefined behavior

• Source reasoning

= We want to reason formally about security
with respect to source language semantics

• Undefined behavior

= can't be expressed at all by source language semantics!

• Problem: observational equivalence
doesn't work with undefined behavior!?

– int buf[5]; buf[42] ~? int buf[5]; buf[43]

• Can we somehow avoid undefined behavior?
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if C1, C3, D1, D3 fully defined and

∃ high-level attack from some fully defined A2, A4, A5

∃ low-level attack from compromised C2↓, C4↓, C5↓

Limitation: static compromise model: C1, C3, D1, D3 get guarantees only if perfectly safe
(i.e. fully defined = do not exhibit undefined behavior in any context)

This is the most we were able to achieve on top of full abstraction!
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Static compromise not good enough
neither C1 not C2 are fully defined

yet C1 is protected until calling C1.parse

and C2 can't actually be compromised
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Restricting undefined behavior

• Mutually-distrustful components
– restrict spatial scope of undefined behavior

• Dynamic compromise
– restrict temporal scope of undefined behavior

– undefined behavior = observable trace event

– effects of undefined behavior
shouldn't percolate before earlier observable events
• careful with code motion, backwards static analysis, ...

– CompCert already offers this saner temporal model

– GCC and LLVM currently violate this model
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Now we know what these words mean!

Mutual distrust

Dynamic compromise

Static privilege

C1 A2 C3 A4 A5

C0 A1 C2 ⇓ m2; Undef(C2)
↯

i0 i1 i2

C0 A1 C2

(at least in the setting of compartmentalization for unsafe low-level languages)
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(program rewriting, shadow call stack)
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Tag-based reference monitor enforcing:
- component separation
- procedure call and return discipline
(linear capabilities / linear entry points)

(mostly)

Verified
(in Coq)

Systematically tested (with QuickChick) 16
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• Scale up secure compilation to more of C

– first step: allow pointer passing (capabilities)

• Verify compartmentalized applications

– put the source-level reasoning principles to work

• Extend all this to dynamic component creation

• ... and dynamic privileges: capabilities, HBAC, ...

• Achieve confidentiality (hypersafety) preservation

– in a realistic attacker model with side-channels

• Devise scalable proof techniques for
(hyper)liveness preservation (possible?)

17



Grand Challenge

Build the first efficient formally secure compilers for 

realistic programming languages

18



Grand Challenge

Build the first efficient formally secure compilers for 

realistic programming languages

18

1. Provide secure semantics for low-level languages

– C with protected components and memory safety



Grand Challenge

Build the first efficient formally secure compilers for 

realistic programming languages
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1. Provide secure semantics for low-level languages

– C with protected components and memory safety

2. Enforce secure interoperability with unsafe code

– ASM, C, and Low*

[= safe C subset embedded in F* for verification]
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miTLS*
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KremSec
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C component

protecting component boundaries

legacy C 
component

CompSec

ASM 
component

Low* language
(safe C subset in F*)

C language
+ components
+ memory safety

ASM language
(RISC-V + micro-policies)

protecting higher-level abstractions
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[Robust Hyperproperty Preservation for Secure Compilation - Garg, Hrițcu, Patrignani, et al]

https://arxiv.org/abs/1710.07309
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Beyond robust safety preservation
Legend  Trace property = set of traces
Hyperproperty = set of sets of traces
Rel. Hyperprop. = set of sets of (t, P)

back-translating
finite trace prefixes
∀P∀CT∀m≤t∃CS...

back-translating
contexts & progs
∀P∀CT∃CS∀t...

[Robust Hyperproperty Preservation for Secure Compilation - Garg, Hrițcu, Patrignani, et al]

back-translating
contexts

∀CT∃CS∀P∀t...

back-translating
finite sets of
finite trace prefixes
∀k∀P1..Pk∀CT

∀m1..mk ∃CS...

https://arxiv.org/abs/1710.07309
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• Working on it!

– team at Inria Paris: Rob Blanco (PostDoc),
Carmine Abate (Intern), Jérémy Thibault (Intern) 

– collaborators at UPenn, MPI-SWS, MSR, Draper, Portland, ...

• We're hiring!

– Interns, PhD students, PostDocs, Researchers

• Open to new collaborations

• Building a community

– Workshop on Principles of Secure Compilation (PriSC) @ POPL

– Dagstuhl Seminar on Secure Compilation in May


