
Formally Secure Compilation
of Unsafe Low-level Components

Cătălin Hrițcu

Inria Paris, Prosecco team

1

https://secure-compilation.github.io

https://secure-compilation.github.io/

Collaborators

Cătălin
Hrițcu

Marco
Stronati

Arthur
Azevedo

de Amorim

Ana Nora
Evans

Andrew
Tolmach

Benjamin
Pierce

Théo
Laurent

Boris
EngCarmine

Abate

Inria Paris CMU U. Virginia U. Trento Paris 7 ENS Paris Portland State UPenn MPI-SWS

Yannis
Juglaret Guglielmo

Fachini

Deepak
Garg Marco

Patrignani

2

Rob
Blanco

Devastating low-level vulnerabilities

3

Devastating low-level vulnerabilities

• Inherently insecure C/C++-like languages

– type and memory unsafe:
e.g. any buffer overflow is catastrophic

3

Devastating low-level vulnerabilities

• Inherently insecure C/C++-like languages

– type and memory unsafe:
e.g. any buffer overflow is catastrophic

– root cause, but challenging to fix:

• efficiency

• precision

• scalability

• backwards compatibility

• deployment

3

Practical mitigation: compartmentalization

4

Practical mitigation: compartmentalization

• Main idea:

– break up security-critical C applications into
mutually distrustful components running with
least privilege & interacting via strictly enforced interfaces

4

Practical mitigation: compartmentalization

• Main idea:

– break up security-critical C applications into
mutually distrustful components running with
least privilege & interacting via strictly enforced interfaces

• Strong security guarantees & interesting attacker model

– "a vulnerability in one component should not immediately

destroy the security of the whole application"

4

Practical mitigation: compartmentalization

• Main idea:

– break up security-critical C applications into
mutually distrustful components running with
least privilege & interacting via strictly enforced interfaces

• Strong security guarantees & interesting attacker model

– "a vulnerability in one component should not immediately

destroy the security of the whole application"

– "components can be compromised by buffer overflows"

4

Practical mitigation: compartmentalization

• Main idea:

– break up security-critical C applications into
mutually distrustful components running with
least privilege & interacting via strictly enforced interfaces

• Strong security guarantees & interesting attacker model

– "a vulnerability in one component should not immediately

destroy the security of the whole application"

– "components can be compromised by buffer overflows"

– "each component should be protected from all the others"

4

Practical mitigation: compartmentalization

• Main idea:

– break up security-critical C applications into
mutually distrustful components running with
least privilege & interacting via strictly enforced interfaces

• Strong security guarantees & interesting attacker model

– "a vulnerability in one component should not immediately

destroy the security of the whole application"

– "components can be compromised by buffer overflows"

– "each component should be protected from all the others"

4

Goal 1: Formalize this

Goal 2: Build secure compilation chains

5

Goal 2: Build secure compilation chains

• Add components to C

– interacting only via strictly enforced interfaces

5

Goal 2: Build secure compilation chains

• Add components to C

– interacting only via strictly enforced interfaces

• Enforce "component C" abstractions:

– component separation, call-return discipline, ...

5

Goal 2: Build secure compilation chains

• Add components to C

– interacting only via strictly enforced interfaces

• Enforce "component C" abstractions:

– component separation, call-return discipline, ...

• Secure compilation chain:

– compiler, linker, loader, runtime, system, hardware

5

Goal 2: Build secure compilation chains

• Add components to C

– interacting only via strictly enforced interfaces

• Enforce "component C" abstractions:

– component separation, call-return discipline, ...

• Secure compilation chain:

– compiler, linker, loader, runtime, system, hardware

• Use efficient enforcement mechanisms:
– OS processes (all web browsers) — WebAssembly (web browsers)

– software fault isolation (SFI) — capability machines

– hardware enclaves (SGX) — tagged architectures

5

Goal 2: Build secure compilation chains

• Add components to C

– interacting only via strictly enforced interfaces

• Enforce "component C" abstractions:

– component separation, call-return discipline, ...

• Secure compilation chain:

– compiler, linker, loader, runtime, system, hardware

• Use efficient enforcement mechanisms:
– OS processes (all web browsers) — WebAssembly (web browsers)

– software fault isolation (SFI) — capability machines

– hardware enclaves (SGX) — tagged architectures

• Practical need for all this
– e.g. crypto libraries/protocols ... verified (HACL*/miTLS*) or not

5

Goal 1: Formalizing the security of
compartmentalizing compilation

6

Goal 1: Formalizing the security of
compartmentalizing compilation

C

ASM

compiler

program trace

program trace

compiler
correctness

(e.g. CompCert)

6

Goal 1: Formalizing the security of
compartmentalizing compilation

C

ASM

compiler

program trace

program trace

compiler
correctness

(e.g. CompCert)

component

component

6

Goal 1: Formalizing the security of
compartmentalizing compilation

malicious
components

C

ASM

compiler

program trace

program trace

compiler
correctness

(e.g. CompCert)

component

component

not
enough

e.g. compromised ASM
obtained from C

6

Goal 1: Formalizing the security of
compartmentalizing compilation

well-defined C
components

malicious
components

C

ASM

compiler

program trace

program trace

compiler
correctness

(e.g. CompCert)

secure
compilation

component

component

not
enough

e.g. compromised ASM
obtained from C

6

Goal 1: Formalizing the security of
compartmentalizing compilation

well-defined C
components

malicious
components

C

ASM

compiler

program trace

program trace

compiler
correctness

(e.g. CompCert)

secure
compilation

component

component

not
enough

no extra powerprotected e.g. compromised ASM
obtained from C

6

Goal 1: Formalizing the security of
compartmentalizing compilation

well-defined C
components

C

Benefit: sound security reasoning
in the source language

secure

secure

program trace

program trace

compiler
correctness

(e.g. CompCert)

secure
compilation

component

not
enough

6

Fully abstract compilation

7

low-level
attacker

1st high-level
component

1st compiled
component

low-level
attacker∃ .

compiler

preservation of observational equivalence

Fully abstract compilation

7

low-level
attacker

1st high-level
component

1st compiled
component

low-level
attacker

2nd high-level
component

2nd compiled
component

low-level
attacker∃ . ≁

compiler compiler

preservation of observational equivalence

Fully abstract compilation

7

high-level
attacker

low-level
attacker

1st high-level
component

1st compiled
component

high-level
attacker

low-level
attacker

2nd high-level
component

2nd compiled
component

≁
high-level
attacker∃

low-level
attacker∃

.

. ≁

compiler compiler

preservation of observational equivalence

Fully abstract compilation

7

high-level
attacker

low-level
attacker

1st high-level
component

1st compiled
component

high-level
attacker

low-level
attacker

2nd high-level
component

2nd compiled
component

≁
high-level
attacker∃

low-level
attacker∃

.

. ≁

compiler compiler

preservation of observational equivalence

Undefined behavior
#include <string.h>

int main (int argc, char **argv) {

char c[12];

strcpy(c, argv[1]);

return 0;

}

Undefined behavior
#include <string.h>

int main (int argc, char **argv) {

char c[12];

strcpy(c, argv[1]);

return 0;

}

$ gcc target.c
$./a.out haha

Buffer overflow

Undefined behavior
#include <string.h>

int main (int argc, char **argv) {

char c[12];

strcpy(c, argv[1]);

return 0;

}

$ gcc target.c
$./a.out haha
$./a.out hahahahahahahahahaha
zsh: segmentation fault (core dumped)

Buffer overflow

Undefined behavior
#include <string.h>

int main (int argc, char **argv) {

char c[12];

strcpy(c, argv[1]);

return 0;

}

$ gcc target.c
$./a.out haha
$./a.out hahahahahahahahahaha
zsh: segmentation fault (core dumped)
$./exploit.sh | a.out

Buffer overflow

Undefined behavior
#include <string.h>

int main (int argc, char **argv) {

char c[12];

strcpy(c, argv[1]);

return 0;

}

$ gcc target.c
$./a.out haha
$./a.out hahahahahahahahahaha
zsh: segmentation fault (core dumped)
$./exploit.sh | a.out

Buffer overflow

Source reasoning vs undefined behavior

• Source reasoning

= We want to reason formally about security
with respect to source language semantics

Source reasoning vs undefined behavior

• Source reasoning

= We want to reason formally about security
with respect to source language semantics

• Undefined behavior

= can't be expressed at all by source language semantics!

Source reasoning vs undefined behavior

• Source reasoning

= We want to reason formally about security
with respect to source language semantics

• Undefined behavior

= can't be expressed at all by source language semantics!

• Problem: observational equivalence
doesn't work with undefined behavior!?

– int buf[5]; buf[42] ~? int buf[5]; buf[43]

Source reasoning vs undefined behavior

• Source reasoning

= We want to reason formally about security
with respect to source language semantics

• Undefined behavior

= can't be expressed at all by source language semantics!

• Problem: observational equivalence
doesn't work with undefined behavior!?

– int buf[5]; buf[42] ~? int buf[5]; buf[43]

• Can we somehow avoid undefined behavior?

Full abstraction for mutually distrustful components

i1 i2 i3 i4 i5

C1 C2 C3 C4 C5↓ ↓ ↓ ↓ ↓

∀compromise scenarios.

[Beyond Good and Evil - Juglaret, Hrițcu, Azevedo de Amorim, Eng, Pierce, CSF’16]

if C1, C3, D1, D3 fully defined and

∃ low-level attack from compromised C2↓, C4↓, C5↓

≁
i1 i2 i3 i4 i5

D1 C2 D3 C4 C5↓ ↓ ↓ ↓ ↓

https://arxiv.org/abs/1602.04503

Full abstraction for mutually distrustful components

i1 i2 i3 i4 i5

C1 C2 C3 C4 C5↓ ↓ ↓ ↓ ↓

i1 i2 i3 i4 i5

C1 A2 C3 A4 A5

∀compromise scenarios.

[Beyond Good and Evil - Juglaret, Hrițcu, Azevedo de Amorim, Eng, Pierce, CSF’16]

if C1, C3, D1, D3 fully defined and

∃ high-level attack from some fully defined A2, A4, A5

∃ low-level attack from compromised C2↓, C4↓, C5↓

≁

≁

i1 i2 i3 i4 i5

D1 A2 D3 A4 A5

i1 i2 i3 i4 i5

D1 C2 D3 C4 C5↓ ↓ ↓ ↓ ↓

https://arxiv.org/abs/1602.04503

Full abstraction for mutually distrustful components

i1 i2 i3 i4 i5

C1 C2 C3 C4 C5↓ ↓ ↓ ↓ ↓

i1 i2 i3 i4 i5

C1 A2 C3 A4 A5

∀compromise scenarios.

[Beyond Good and Evil - Juglaret, Hrițcu, Azevedo de Amorim, Eng, Pierce, CSF’16]

if C1, C3, D1, D3 fully defined and

∃ high-level attack from some fully defined A2, A4, A5

∃ low-level attack from compromised C2↓, C4↓, C5↓

Limitation: static compromise model: C1, C3, D1, D3 get guarantees only if perfectly safe
(i.e. fully defined = do not exhibit undefined behavior in any context)

≁

≁

i1 i2 i3 i4 i5

D1 A2 D3 A4 A5

i1 i2 i3 i4 i5

D1 C2 D3 C4 C5↓ ↓ ↓ ↓ ↓

https://arxiv.org/abs/1602.04503

Full abstraction for mutually distrustful components

i1 i2 i3 i4 i5

C1 C2 C3 C4 C5↓ ↓ ↓ ↓ ↓

i1 i2 i3 i4 i5

C1 A2 C3 A4 A5

∀compromise scenarios.

[Beyond Good and Evil - Juglaret, Hrițcu, Azevedo de Amorim, Eng, Pierce, CSF’16]

if C1, C3, D1, D3 fully defined and

∃ high-level attack from some fully defined A2, A4, A5

∃ low-level attack from compromised C2↓, C4↓, C5↓

Limitation: static compromise model: C1, C3, D1, D3 get guarantees only if perfectly safe
(i.e. fully defined = do not exhibit undefined behavior in any context)

This is the most we were able to achieve on top of full abstraction!

≁

≁

i1 i2 i3 i4 i5

D1 A2 D3 A4 A5

i1 i2 i3 i4 i5

D1 C2 D3 C4 C5↓ ↓ ↓ ↓ ↓

https://arxiv.org/abs/1602.04503

Static compromise not good enough

Static compromise not good enough
neither C1 not C2 are fully defined

Static compromise not good enough
neither C1 not C2 are fully defined

yet C1 is protected until calling C1.parse

Static compromise not good enough
neither C1 not C2 are fully defined

yet C1 is protected until calling C1.parse

and C2 can't actually be compromised

We build instead on Robust Compilation

12

low-level
attacker

high-level
component

compiled
component

low-level
attacker
causing t

∃ .

compiler

∀(bad attack) trace t

We build instead on Robust Compilation

12

high-level
attacker

low-level
attacker

high-level
component

compiled
component

high-level
attacker
causing t

∃

low-level
attacker
causing t

∃

.

.

compiler

∀(bad attack) trace t
⇒

We build instead on Robust Compilation

12

high-level
attacker

low-level
attacker

high-level
component

compiled
component

high-level
attacker
causing t

∃

low-level
attacker
causing t

∃

.

.

compiler

∀(bad attack) trace t
⇒

We build instead on Robust Compilation

12

high-level
attacker

low-level
attacker

high-level
component

compiled
component

high-level
attacker
causing t

∃

low-level
attacker
causing t

∃

.

.

compiler

∀(bad attack) trace t
⇒

We build instead on Robust Compilation

robust trace property preservation
(robust = in adversarial context)

12

high-level
attacker

low-level
attacker

high-level
component

compiled
component

high-level
attacker
causing t

∃

low-level
attacker
causing t

∃

.

.

compiler

∀(bad attack) trace t
⇒

We build instead on Robust Compilation

robust trace property preservation
(robust = in adversarial context)

intuition:
– stronger than compiler correctness

(i.e. trace property preservation)

12

high-level
attacker

low-level
attacker

high-level
component

compiled
component

high-level
attacker
causing t

∃

low-level
attacker
causing t

∃

.

.

compiler

∀(bad attack) trace t
⇒

We build instead on Robust Compilation

robust trace property preservation
(robust = in adversarial context)

intuition:
– stronger than compiler correctness

(i.e. trace property preservation)

– confidentiality not preserved
(i.e. no hyperproperties)

12

high-level
attacker

low-level
attacker

high-level
component

compiled
component

high-level
attacker
causing t

∃

low-level
attacker
causing t

∃

.

.

compiler

∀(bad attack) trace t
⇒

We build instead on Robust Compilation

robust trace property preservation
(robust = in adversarial context)

intuition:
– stronger than compiler correctness

(i.e. trace property preservation)

– confidentiality not preserved
(i.e. no hyperproperties)

– less extensional than fully
abstract compilation

12

high-level
attacker

low-level
attacker

high-level
component

compiled
component

high-level
attacker
causing t

∃

low-level
attacker
causing t

∃

.

.

compiler

∀(bad attack) trace t
⇒

We build instead on Robust Compilation

robust trace property preservation
(robust = in adversarial context)

intuition:
– stronger than compiler correctness

(i.e. trace property preservation)

– confidentiality not preserved
(i.e. no hyperproperties)

– less extensional than fully
abstract compilation

12

high-level
attacker

low-level
attacker

high-level
component

compiled
component

high-level
attacker
causing t

∃

low-level
attacker
causing t

∃

.

.

compiler

∀(bad attack) trace t

Advantages: easier to realistically achieve and prove at scale

useful: preservation of invariants and other integrity properties

more intuitive to security people (generalizes to hyperproperties!)

⇒

We build instead on Robust Compilation

robust trace property preservation
(robust = in adversarial context)

intuition:
– stronger than compiler correctness

(i.e. trace property preservation)

– confidentiality not preserved
(i.e. no hyperproperties)

– less extensional than fully
abstract compilation

12

high-level
attacker

low-level
attacker

high-level
component

compiled
component

high-level
attacker
causing t

∃

low-level
attacker
causing t

∃

.

.

compiler

∀(bad attack) trace t

Advantages: easier to realistically achieve and prove at scale

useful: preservation of invariants and other integrity properties

more intuitive to security people (generalizes to hyperproperties!)

extends to unsafe languages, supporting dynamic compromise

⇒

Dynamic compromise

[When Good Components Go Bad - Fachini, Stronati, Hrițcu, et al]

https://arxiv.org/abs/1802.00588

↓

Dynamic compromise

[When Good Components Go Bad - Fachini, Stronati, Hrițcu, et al]

i0 i1 i2

C0 C1 C2↓ ↓ ↓ ⇓ t

https://arxiv.org/abs/1802.00588

↓
Dynamic compromise

[When Good Components Go Bad - Fachini, Stronati, Hrițcu, et al]

i0 i1 i2

C0 C1 C2

∃ a dynamic compromise scenario explaining t in source language

↓

↓

↓ ⇓ t

https://arxiv.org/abs/1802.00588

↓

Dynamic compromise

[When Good Components Go Bad - Fachini, Stronati, Hrițcu, et al]

i0 i1 i2

C0 C1 C2

∃ a dynamic compromise scenario explaining t in source language
for instance leading to the following compromise sequence:

↓ ↓ ↓ ⇓ t

i0 i1 i2

C0 C1 C2
⇓ m1;Undef(C1)

↯
(0)

https://arxiv.org/abs/1802.00588

↓
Dynamic compromise

[When Good Components Go Bad - Fachini, Stronati, Hrițcu, et al]

i0 i1 i2

C0 C1 C2

∃ a dynamic compromise scenario explaining t in source language
for instance leading to the following compromise sequence:

↓

↓

↓ ⇓ t

i0 i1 i2

C0 C1 C2
⇓ m1;Undef(C1)

↯
(0)

(1)
i0 i1 i2

C0 A1 C2
⇓ m2;Undef(C2)

↯
≤

∃A1.

https://arxiv.org/abs/1802.00588

↓

Dynamic compromise

[When Good Components Go Bad - Fachini, Stronati, Hrițcu, et al]

i0 i1 i2

C0 C1 C2

∃ a dynamic compromise scenario explaining t in source language
for instance leading to the following compromise sequence:

↓ ↓ ↓ ⇓ t

i0 i1 i2

C0 C1 C2
⇓ m1;Undef(C1)

↯
(0)

(1)
i0 i1 i2

C0 A1 C2
⇓ m2;Undef(C2)

↯

(2)
i0 i1 i2

C0 A1 A2
⇓ t

≤

≤

∃A1.

∃A2.

https://arxiv.org/abs/1802.00588

↓
Dynamic compromise

[When Good Components Go Bad - Fachini, Stronati, Hrițcu, et al]

i0 i1 i2

C0 C1 C2

∃ a dynamic compromise scenario explaining t in source language
for instance leading to the following compromise sequence:

↓

↓

↓ ⇓ t

i0 i1 i2

C0 C1 C2
⇓ m1;Undef(C1)

↯
(0)

(1)
i0 i1 i2

C0 A1 C2
⇓ m2;Undef(C2)

↯

(2)
i0 i1 i2

C0 A1 A2
⇓ t

≤

≤

∃A1.

∃A2.

https://arxiv.org/abs/1802.00588

↓

Dynamic compromise

[When Good Components Go Bad - Fachini, Stronati, Hrițcu, et al]

i0 i1 i2

C0 C1 C2

∃ a dynamic compromise scenario explaining t in source language
for instance leading to the following compromise sequence:

↓ ↓ ↓ ⇓ t

i0 i1 i2

C0 C1 C2
⇓ m1;Undef(C1)

↯
(0)

(1)
i0 i1 i2

C0 A1 C2
⇓ m2;Undef(C2)

↯

(2)
i0 i1 i2

C0 A1 A2
⇓ t

≤

≤

Trace is very helpful
- detect undefined behavior
- rewind execution

∃A1.

∃A2.

https://arxiv.org/abs/1802.00588

Restricting undefined behavior

• Mutually-distrustful components
– restrict spatial scope of undefined behavior

Restricting undefined behavior

• Mutually-distrustful components
– restrict spatial scope of undefined behavior

• Dynamic compromise
– restrict temporal scope of undefined behavior

Restricting undefined behavior

• Mutually-distrustful components
– restrict spatial scope of undefined behavior

• Dynamic compromise
– restrict temporal scope of undefined behavior

– undefined behavior = observable trace event

– effects of undefined behavior
shouldn't percolate before earlier observable events
• careful with code motion, backwards static analysis, ...

Restricting undefined behavior

• Mutually-distrustful components
– restrict spatial scope of undefined behavior

• Dynamic compromise
– restrict temporal scope of undefined behavior

– undefined behavior = observable trace event

– effects of undefined behavior
shouldn't percolate before earlier observable events
• careful with code motion, backwards static analysis, ...

– CompCert already offers this saner temporal model

Restricting undefined behavior

• Mutually-distrustful components
– restrict spatial scope of undefined behavior

• Dynamic compromise
– restrict temporal scope of undefined behavior

– undefined behavior = observable trace event

– effects of undefined behavior
shouldn't percolate before earlier observable events
• careful with code motion, backwards static analysis, ...

– CompCert already offers this saner temporal model

– GCC and LLVM currently violate this model

Now we know what these words mean!

Mutual distrust C1 A2 C3 A4 A5

(at least in the setting of compartmentalization for unsafe low-level languages)

Now we know what these words mean!

Mutual distrust

Dynamic compromise

C1 A2 C3 A4 A5

C0 A1 C2 ⇓ m2; Undef(C2)
↯

(at least in the setting of compartmentalization for unsafe low-level languages)

Now we know what these words mean!

Mutual distrust

Dynamic compromise

Static privilege

C1 A2 C3 A4 A5

C0 A1 C2 ⇓ m2; Undef(C2)
↯

i0 i1 i2

C0 A1 C2

(at least in the setting of compartmentalization for unsafe low-level languages)

Towards Secure Compilation Chain
Compartmentalized

unsafe source

Compartmentalized
abstract machine

Micro-policy
machine

16

Towards Secure Compilation Chain
Compartmentalized

unsafe source

Compartmentalized
abstract machine

Buffers, procedures, components
interacting via strictly enforced interfaces

Micro-policy
machine

16

Towards Secure Compilation Chain
Compartmentalized

unsafe source

Compartmentalized
abstract machine

Buffers, procedures, components
interacting via strictly enforced interfaces

Micro-policy
machine

Simple RISC abstract machine with

build-in compartmentalization

16

Towards Secure Compilation Chain
Compartmentalized

unsafe source

Compartmentalized
abstract machine

Buffers, procedures, components
interacting via strictly enforced interfaces

Micro-policy
machine

Simple RISC abstract machine with

build-in compartmentalization

Tag-based reference monitor enforcing:
- component separation
- procedure call and return discipline
(linear capabilities / linear entry points)

16

Towards Secure Compilation Chain
Compartmentalized

unsafe source

Compartmentalized
abstract machine

Buffers, procedures, components
interacting via strictly enforced interfaces

Micro-policy
machine

Bare-bone
machine

Simple RISC abstract machine with

build-in compartmentalization

Inline reference monitor enforcing:
- component separation
- procedure call and return discipline
(program rewriting, shadow call stack)

software fault isolation

Tag-based reference monitor enforcing:
- component separation
- procedure call and return discipline
(linear capabilities / linear entry points)

16

Towards Secure Compilation Chain
Compartmentalized

unsafe source

Compartmentalized
abstract machine

Buffers, procedures, components
interacting via strictly enforced interfaces

Micro-policy
machine

Bare-bone
machine

Simple RISC abstract machine with

build-in compartmentalization

Inline reference monitor enforcing:
- component separation
- procedure call and return discipline
(program rewriting, shadow call stack)

software fault isolation

Tag-based reference monitor enforcing:
- component separation
- procedure call and return discipline
(linear capabilities / linear entry points)

(mostly)

Verified
(in Coq)

16

Towards Secure Compilation Chain
Compartmentalized

unsafe source

Compartmentalized
abstract machine

Buffers, procedures, components
interacting via strictly enforced interfaces

Micro-policy
machine

Bare-bone
machine

Simple RISC abstract machine with

build-in compartmentalization

Inline reference monitor enforcing:
- component separation
- procedure call and return discipline
(program rewriting, shadow call stack)

software fault isolation

Tag-based reference monitor enforcing:
- component separation
- procedure call and return discipline
(linear capabilities / linear entry points)

(mostly)

Verified
(in Coq)

Systematically tested (with QuickChick) 16

Next steps towards making this practical

17

Next steps towards making this practical

• Scale up secure compilation to more of C

– first step: allow pointer passing (capabilities)

17

Next steps towards making this practical

• Scale up secure compilation to more of C

– first step: allow pointer passing (capabilities)

• Verify compartmentalized applications

– put the source-level reasoning principles to work

17

Next steps towards making this practical

• Scale up secure compilation to more of C

– first step: allow pointer passing (capabilities)

• Verify compartmentalized applications

– put the source-level reasoning principles to work

• Extend all this to dynamic component creation

17

Next steps towards making this practical

• Scale up secure compilation to more of C

– first step: allow pointer passing (capabilities)

• Verify compartmentalized applications

– put the source-level reasoning principles to work

• Extend all this to dynamic component creation

• ... and dynamic privileges: capabilities, HBAC, ...

17

Next steps towards making this practical

• Scale up secure compilation to more of C

– first step: allow pointer passing (capabilities)

• Verify compartmentalized applications

– put the source-level reasoning principles to work

• Extend all this to dynamic component creation

• ... and dynamic privileges: capabilities, HBAC, ...

• Achieve confidentiality (hypersafety) preservation

– in a realistic attacker model with side-channels

17

Next steps towards making this practical

• Scale up secure compilation to more of C

– first step: allow pointer passing (capabilities)

• Verify compartmentalized applications

– put the source-level reasoning principles to work

• Extend all this to dynamic component creation

• ... and dynamic privileges: capabilities, HBAC, ...

• Achieve confidentiality (hypersafety) preservation

– in a realistic attacker model with side-channels

• Devise scalable proof techniques for
(hyper)liveness preservation (possible?)

17

Grand Challenge

Build the first efficient formally secure compilers for

realistic programming languages

18

Grand Challenge

Build the first efficient formally secure compilers for

realistic programming languages

18

1. Provide secure semantics for low-level languages

– C with protected components and memory safety

Grand Challenge

Build the first efficient formally secure compilers for

realistic programming languages

18

1. Provide secure semantics for low-level languages

– C with protected components and memory safety

2. Enforce secure interoperability with unsafe code

– ASM, C, and Low*

[= safe C subset embedded in F* for verification]

Goal: achieve secure compilation at scale

19

miTLS*
Low* language

(safe C subset in F*)

C language
+ components
+ memory safety

Goal: achieve secure compilation at scale

19

miTLS*

KremSec

Low* language
(safe C subset in F*)

C language
+ components
+ memory safety

Goal: achieve secure compilation at scale

19

miTLS*

KremSec

memory safe
C component

Low* language
(safe C subset in F*)

C language
+ components
+ memory safety

Goal: achieve secure compilation at scale

19

miTLS*

KremSec

memory safe
C component

Low* language
(safe C subset in F*)

C language
+ components
+ memory safety

Goal: achieve secure compilation at scale

19

miTLS*

CompSec+

KremSec

memory safe
C component

Low* language
(safe C subset in F*)

C language
+ components
+ memory safety

ASM language
(RISC-V + micro-policies)

Goal: achieve secure compilation at scale

19

miTLS*

CompSec+

KremSec

memory safe
C component

legacy C
component

CompSec

ASM
component

Low* language
(safe C subset in F*)

C language
+ components
+ memory safety

ASM language
(RISC-V + micro-policies)

Goal: achieve secure compilation at scale

19

miTLS*

CompSec+

KremSec

memory safe
C component

protecting component boundaries

legacy C
component

CompSec

ASM
component

Low* language
(safe C subset in F*)

C language
+ components
+ memory safety

ASM language
(RISC-V + micro-policies)

Goal: achieve secure compilation at scale

19

miTLS*

CompSec+

KremSec

memory safe
C component

protecting component boundaries

legacy C
component

CompSec

ASM
component

Low* language
(safe C subset in F*)

C language
+ components
+ memory safety

ASM language
(RISC-V + micro-policies)

Goal: achieve secure compilation at scale

19

miTLS*

CompSec+

KremSec

memory safe
C component

protecting component boundaries

legacy C
component

CompSec

ASM
component

Low* language
(safe C subset in F*)

C language
+ components
+ memory safety

ASM language
(RISC-V + micro-policies)

Goal: achieve secure compilation at scale

19

miTLS*

CompSec+

KremSec

memory safe
C component

protecting component boundaries

legacy C
component

CompSec

ASM
component

Low* language
(safe C subset in F*)

C language
+ components
+ memory safety

ASM language
(RISC-V + micro-policies)

protecting higher-level abstractions

Beyond robust safety preservation
Legend Trace property = set of traces
Hyperproperty = set of sets of traces

Beyond robust safety preservation
Legend Trace property = set of traces
Hyperproperty = set of sets of traces

[Robust Hyperproperty Preservation for Secure Compilation - Garg, Hrițcu, Patrignani, et al]

https://arxiv.org/abs/1710.07309

Beyond robust safety preservation
Legend Trace property = set of traces
Hyperproperty = set of sets of traces

back-translating
finite trace prefixes
∀P∀CT∀m≤t∃CS...

[Robust Hyperproperty Preservation for Secure Compilation - Garg, Hrițcu, Patrignani, et al]

https://arxiv.org/abs/1710.07309

Beyond robust safety preservation
Legend Trace property = set of traces
Hyperproperty = set of sets of traces

back-translating
finite trace prefixes
∀P∀CT∀m≤t∃CS...

[Robust Hyperproperty Preservation for Secure Compilation - Garg, Hrițcu, Patrignani, et al]

back-translating
finite sets of
finite trace prefixes
∀k∀P1..Pk∀CT

∀m1..mk ∃CS...

https://arxiv.org/abs/1710.07309

Beyond robust safety preservation
Legend Trace property = set of traces
Hyperproperty = set of sets of traces

back-translating
finite trace prefixes
∀P∀CT∀m≤t∃CS...

back-translating
contexts & progs
∀P∀CT∃CS∀t...

[Robust Hyperproperty Preservation for Secure Compilation - Garg, Hrițcu, Patrignani, et al]

back-translating
finite sets of
finite trace prefixes
∀k∀P1..Pk∀CT

∀m1..mk ∃CS...

https://arxiv.org/abs/1710.07309

Beyond robust safety preservation
Legend Trace property = set of traces
Hyperproperty = set of sets of traces
Rel. Hyperprop. = set of sets of (t, P)

back-translating
finite trace prefixes
∀P∀CT∀m≤t∃CS...

back-translating
contexts & progs
∀P∀CT∃CS∀t...

[Robust Hyperproperty Preservation for Secure Compilation - Garg, Hrițcu, Patrignani, et al]

back-translating
contexts

∀CT∃CS∀P∀t...

back-translating
finite sets of
finite trace prefixes
∀k∀P1..Pk∀CT

∀m1..mk ∃CS...

https://arxiv.org/abs/1710.07309

Most of this is either work in progress
... or wild speculation ... but ...

Most of this is either work in progress
... or wild speculation ... but ...

• Working on it!

– team at Inria Paris: Rob Blanco (PostDoc),
Carmine Abate (Intern), Jérémy Thibault (Intern)

– collaborators at UPenn, MPI-SWS, MSR, Draper, Portland, ...

Most of this is either work in progress
... or wild speculation ... but ...

• Working on it!

– team at Inria Paris: Rob Blanco (PostDoc),
Carmine Abate (Intern), Jérémy Thibault (Intern)

– collaborators at UPenn, MPI-SWS, MSR, Draper, Portland, ...

• We're hiring!

– Interns, PhD students, PostDocs, Researchers

Most of this is either work in progress
... or wild speculation ... but ...

• Working on it!

– team at Inria Paris: Rob Blanco (PostDoc),
Carmine Abate (Intern), Jérémy Thibault (Intern)

– collaborators at UPenn, MPI-SWS, MSR, Draper, Portland, ...

• We're hiring!

– Interns, PhD students, PostDocs, Researchers

• Open to new collaborations

Most of this is either work in progress
... or wild speculation ... but ...

• Working on it!

– team at Inria Paris: Rob Blanco (PostDoc),
Carmine Abate (Intern), Jérémy Thibault (Intern)

– collaborators at UPenn, MPI-SWS, MSR, Draper, Portland, ...

• We're hiring!

– Interns, PhD students, PostDocs, Researchers

• Open to new collaborations

• Building a community

– Workshop on Principles of Secure Compilation (PriSC) @ POPL

– Dagstuhl Seminar on Secure Compilation in May

