
Formally Secure Compilation

Cătălin Hrițcu

Inria Paris

1

https://secure-compilation.github.io

of Unsafe Low-level Components

https://secure-compilation.github.io/

Parcurs profesional

• 2001 - 2005 - Infoiași - student la licență

• 2005 - 2011 - Saarland University - MSc & PhD

• 2011 - 2013 - U. of Pennsylvania - PostDoc
cu Benjamin Pierce, DARPA CRASH/SAFE

• 2013 - acum - Inria Paris - Cercetător

• 2017 - 2021 - ERC Starting Grant SECOMP - PI

• 2017 - 2020 - DARPA SSITH/HOPE - coPI

Computers are insecure

• devastating low-level vulnerabilities

• teasing out 2 important security problems:

1. inherently insecure low-level languages

– memory unsafe: any buffer overflow can be catastrophic
allowing remote attackers to gain complete control

2. unsafe interaction with unsafe code

– even code written in safer languages
has to interoperate with unsafe code

– unsafe interaction: safety guarantees lost

3

How did we get here?

• programming languages, compilers,
and hardware architectures

– designed in an era of scarce hardware resources

– too often trade off security for efficiency

• the world has changed (2017 vs 1972*)

– security matters, hardware resources abundant

– time to revisit some tradeoffs

4

* “...the number of UNIX installations has grown to 10, with more expected...”
-- Dennis Ritchie and Ken Thompson, June 1972

tpc’ tm3’

Key enabler: Micro-Policies

5

pc tpc

r0 tr0

r1 tr1

mem[0] tm0

“store r0 r1” tm1

mem[2] tm2

mem[3] tm3

tpc tr0 tr1 tm3 tm1

monitor
allow

tpc’ tm3’

tpc

tr0

tr1

tm1

store

software monitor’s decision is hardware cached

software-defined, hardware-accelerated, tag-based monitoring

disallow
policy violation stopped!

(e.g. out of bounds write)

tm3

tm3≠

tm3

=

• low level + fine grained: unbounded per-word
metadata, checked & propagated on each instruction

• flexible: tags and monitor defined by software

• efficient: software decisions hardware cached

• expressive: complex policies for secure compilation

• secure and simple enough to verify security in Coq

• real: FPGA implementation on top of RISC-V

6

Micro-policies are cool!

• information flow control (IFC)

• monitor self-protection

• protected compartments

• dynamic sealing

• heap memory safety

• code-data separation

• control-flow integrity (CFI)

• taint tracking

• ...

Expressiveness

7

Verified
(in Coq)

Evaluated
(<10% runtime overhead)

[Oakland’15]

[POPL’14]

[ASPLOS’15]

Way beyond MPX,
SGX, SSM, etc

• Formal methods & architecture & systems

• Previous: DARPA CRASH/SAFE (2011-2014)

• Current: DARPA SSITH/HOPE (2017-2020)

• PIs:

– Draper Labs: Arun Thomas, Chris Casinghino

– Dover Microsystems: Greg Sullivan

– DornerWorks: Nathan Studer, David Johnson

– UPenn: André DeHon, Benjamin Pierce

– Inria Paris: Cătălin Hrițcu

– Portland State: Andrew Tolmach

– MIT: Howie Shrobe

Micro-Policies Project

8

ERC SECOMP Grand Challenge

Use micro-policies to build the first efficient formally

secure compilers for realistic programming languages

9

1. Provide secure semantics for low-level languages

– C with protected components and memory safety

2. Enforce secure interoperability with unsafe code

– ASM, C, and Low*

[= safe C subset embedded in F* for verification]

(2017-2021)

Goal: achieving secure compilation at scale

10

miTLS*

CompSec+

KremSec

memory safe
C component

protecting component boundaries

legacy C
component

CompSec

ASM
component

Low* language
(safe C subset in F*)

C language
+ components
+ memory safety

ASM language
(RISC-V + micro-policies)

Formally Secure Compilation
of Unsafe Low-level Components

Collaborators

Cătălin
Hrițcu

Marco
Stronati

Arthur
Azevedo

de Amorim

Ana Nora
Evans

Deepak
Garg Marco

Patrignani
Andrew
Tolmach

Benjamin
Pierce

Guglielmo
Fachini

Théo
Laurent

Yannis
JuglaretCarmine

Abate

Inria Paris CMU U. Virginia ENS Paris UPenn Portland State MPI-SWS U. Trento

Compartmentalization
for unsafe, low-level languages

• Add components to C-like language

– interacting only via strictly enforced interfaces

• Secure compilation chain

– use low-level security mechanisms to efficiently enforce:

component separation, call and return discipline, ...

• Interesting attacker model

– mutual distrust, dynamic compromise, least privilege

• e.g. dynamic compromise = "each component should be protected

from all the others until it becomes compromised and starts

attacking the remaining uncompromised components"

Goal: Formalize this

Goal: Build this

13

Formally secure compilation

high-level
attacker

low-level
attacker

source

target

compiler

Benefit: sound security reasoning in the source language
forget about compilation chain (linker, loader, runtime)
forget that libraries are written in a lower-level language

secure

secure

program behavior

program behavior

compiler
correctness

(e.g. CompCert)

holy grail of preserving security all the way down

secure
compilation

component

component

not
enough

no extra powerprotected e.g. arbitrary machine code
e.g. compromised C code

e.g. safe C code

Fully abstract compilation

15

high-level
attacker

low-level
attacker

1st high-level
component

1st compiled
component

high-level
attacker

low-level
attacker

2nd high-level
component

2nd compiled
component

≁
high-level
attacker∃

low-level
attacker∃

.

. ≁

compiler compiler

preservation of observational equivalence

Undefined behavior

#include <string.h>

int main (int argc, char **argv)

{

char c[12];

strcpy(c, argv[1]);

return 0;

}

$ gcc target.c -fno-stack-protector
$./a.out haha
$./a.out hahahahahahahahahaha
zsh: segmentation fault (core dumped)

Buffer overflow

Source reasoning vs undefined behavior

• Source reasoning

= We want to reason formally about security
with respect to source language semantics

• Undefined behavior

= can't be expressed at all by source language semantics!

• Observational equivalence doesn't work with
undefined behavior!?

– int buf[5]; buf[42] ~ int buf[5]; buf[43]?

• Can we somehow avoid undefined behavior?

Full abstraction
with mutually distrustful components

18

i1 i2 i3 i4 i5

C1 C2 C3 C4 C5↓ ↓ ↓ ↓ ↓

i1 i2 i3 i4 i5

C1 A2 C3 A4 A5

∀compromise scenarios.

[Beyond Good and Evil - Juglaret, Hrițcu, et al, CSF’16]

if C1, C3, D1, D3 fully defined and

∃ high-level attack from some fully defined A2, A4, A5

∃ low-level attack from compromised C2↓, C4↓, C5↓

Limitation: static compromise model: C1, C3, D1, D3 get guarantees only if perfectly safe
(i.e. fully defined = do not exhibit undefined behavior in any context)

This is the most we were able to achieve for full abstraction!

≁

≁

i1 i2 i3 i4 i5

D1 A2 D3 A4 A5

i1 i2 i3 i4 i5

D1 C2 D3 C4 C5↓ ↓ ↓ ↓ ↓

Static compromise not good enough
neither C1 not C2 are fully defined

yet C1 is protected until calling C1.parse

and C2 can't actually be compromised

New secure compilation criterion:
Robust Compilation

robust trace property preservation
(robust = in adversarial context)

intuition:
– stronger than compiler correctness

– seems weaker than full abstraction
+ compiler correctness

less extensional than full abstraction

20

high-level
attacker

low-level
attacker

high-level
component

compiled
component

high-level
attacker
causing t

∃

low-level
attacker
causing t

∃

.

.

compiler

∀(bad, attack) trace t

Advantages: easier to realistically achieve and prove at scale
useful: preservation of invariants and other integrity properties
more intuitive to security people (generalizes to hyperproperties!)
extends to unsafe languages (supporting dynamic compromise)

⇒

Dynamic compromise

[When Good Components Go Bad - Fachini, Stronati, Hrițcu, et al]

i1 i2 i3

C0 C1 C2

∃ a dynamic compromise scenario explaining t in source language
for instance ∃[A1,A2] leading to the following compromise sequence:

↓ ↓ ↓ ⇓ t

i1 i2 i3

C0 C1 C2
⇓ m1;Undef(C1)

↯
(0)

(1)
i1 i2 i3

C0 A1 C2
⇓ m2;Undef(C2)

↯

(2)
i1 i2 i3

C0 A1 A2
⇓ t

≤

≤

Trace is very helpful
- detect undefined behavior
- rewind execution

Now we know what these words mean!

Mutual distrust

Dynamic compromise

Least privilege

C1 A2 C3 A4 A5

C0 A1 C2 ⇓ m2; Undef(C2)
↯

i1 i2 i3

C0 A1 C2

(at least in the setting of compartmentalization for unsafe low-level languages)

[When Good Components Go Bad - Fachini, Stronati, Hrițcu, et al]

Simple Secure Compilation Chain

Compartmentalized
unsafe source

Compartmentalized
abstract machine

Buffers, procedures, components
interacting via strictly enforced interfaces

Micro-policy
machine

Standard
machine

Simple RISC abstract machine with

build-in compartmentalization

Inline reference monitor enforcing:
- component separation
- procedure call and return discipline

software fault isolation

Tag-based reference monitor enforcing:
- component separation
- procedure call and return discipline

Verified
(in Coq)

Systematically tested (with QuickChick)

fallback

Beyond trace properties

[Robust Hyperproperty Preservation for Secure Compilation - Garg, Hrițcu, et al]

back-translating contexts
∀P∀Ct∃Cs∀t...

back-translating
finite trace prefixes
∀P∀Ct∀t∃Cs...

Legend
(Trace) property = set of traces
Hyperproperty = set of sets of traces

Compartmentalization mechanisms

• practically deployed ones

– process-level privilege separation (all web browsers)

– software fault isolation (SFI, Google Native Client)

– hardware enclaves (Intel SGX, ARM TrustZone)

• and more on drawing boards:

– WebAssembly (WASM)

– capability machines (CHERI)

– tagged architectures (micro-policies)

25

