Formally Secure Compilation
of Unsafe Low-level Components

Catalin Hritcu

Inria Paris

https://secure-compilation.github.io

https://secure-compilation.github.io/

Parcurs profesional

2001 - 2005 - Infoiasi - student la licenta
2005 - 2011 - Saarland University - MSc & PhD

2011 - 2013 - U. of Pennsylvania - PostDoc
cu Benjamin Pierce, DARPA CRASH/SAFE

2013 - acum - Inria Paris - Cercetator
2017 - 2021 - ERC Starting Grant SECOMP - P|
2017 - 2020 - DARPA SSITH/HOPE - coPI

Computers are insecure

* devastating low-level vulnerabilities
* teasing out 2 important security problems:

1. inherently insecure low-level languages

— memory unsafe: any buffer overflow can be catastrophic
allowing remote attackers to gain complete control

2. unsafe interaction with unsafe code

— even code written in safer languages
has to interoperate with unsafe code

— unsafe interaction: safety guarantees lost

e programming languages, compilers,
and hardware architectures

— designed in an era of scarce hardware resources

— too often trade off security for efficiency
* the world has changed (2017 vs 1972%*)

— security matters, hardware resources abundant
— time to revisit some tradeoffs

* “ ..the number of UNIX installations has grown to 10, with more expected...”
-- Dennis Ritchie and Ken Thompson, June 1972 4

Key enabler: Micro-Policies

software-defined, hardware-accelerated, tag-based monitoring

|
pc tpc mem/[0] tmO
ro tr0 —>| “store r0 r1” tml
rl trl mem|[2] tm2
>l mem|3] tm3
tpc “ tr0 “ trl = tm3 “ tml

store

S\ Ve ——

allow

atigpyptopped!

software monitor’s decision is hardware cached

rite)

5

* |low level + fine grained: unbounded per-word
metadata, checked & propagated on each instruction

* flexible: tags and monitor defined by software

—

e efficient: software decisions hardware cached Si)EC'

:/g)bpressive: complex policies for secure compilation

4 4
* secure and simple enough to verify security in Coq LJ

* real: FPGA implementation on top of RISC-V
DRAPER DULVER

MICROSYSTEMS

o Way beyond MPX,
Expressiveness € =2t

.+ information flow control (IFC) [POPL'14] _
° monitor self-protection Verified ®
. protected compartments (in Coq) -j)é
:e dynamic sealing [Oakland’15]

::* heap memory safety
. i+ code-data separation
::e control-flow integrity (CFI)

* taint tracking Evaluated

S (<10% runtime overhead)

: [ASPLOS’15]
SO, et fobetediosss SR k

Micro-Policies Project

Formal methods & architecture & systems
Previous: DARPA CRASH/SAFE (2011-2014)
Current: DARPA SSITH/HOPE (2017-2020)
Pls:

— Draper Labs: Arun Thomas, Chris Casinghino

— Dover Microsystems: Greg Sullivan
— DornerWorks: Nathan Studer, David Johnson

— UPenn: André DeHon, Benjamin Pierce

— Inria Paris: Catalin Hritcu

— Portland State: Andrew Tolmach
— MIT: Howie Shrobe

DRAPER DLCVER

MICROSYSTEMS

ERC SECOMP Grand Challenge
(2017-2021)

Use micro-policies to build the first efficient formally
secure compilers for realistic programming languages

1. Provide secure semantics for low-level languages

— C with protected components and memory safety

2. Enforce secure interoperability with unsafe code

— ASM, C, and Low*
[= safe C subset embedded in F* for verification]

Goal: achieving secure compilation at scale

Low™* language
(safe C subset in F*)

C language
+ components
+ memory safety

ASM language
(RISC-V + micro-policies)

P L P

[miTLS*

KremSec

memory safe
C component

legacy C)
component

CompSec*

CompSec

A 4

A 4 A 4

[

T e

7

g

ASM
component

]

———

10

-

Formally Secure Compilation
of Unsafe Low-level Components

Collaborators

che il buon
cioccolato &
solo svizzero ?

le plus
petit
cirque

du monde

Catalin Marco Guglielmo Arthur Ana Nora Théo

Hritcu Stronati Fachini Azevedo Evans Laurent
de Amorim

CARMINE

\ Yannis
Marco Carmine Andrew Benjamin Juglaret
Patrignani Abate Tolmach Pierce

Inria Paris CMU U. Virginia ENS Paris UPenn Portland State MPI-SWS U. Trento

Compartmentalization =

PROGRAMMING

for unsafe, low-level |anguages CANGUAGE

G N N S NN NN NN NN N N RN RN RN N N SN SN SN SN SN SN NN BN SN S RN R R N N N SN SN SN SN SN NN NN SN S RN RN N N N N SN SN SN SN NN NN S S S SN N N N N SN S SN SN S S S Ay,

 Add components to C-like language

N

— interacting only via strictly enforced interfaces

——————————————— —

e Secure compilation chain Goal: Build this JL
— use low-level security mechanisms to efficiently enforce: !
\ component separation, call and return discipline, ... J

——
——

* Interesting attacker model Goal: Formalize this

— mutual distrust, dynamic compromise, least privilege

* e.g. dynamic compromise = "each component should be protected
from all the others until it becomes compromised and starts
attacking the remaining uncompromised components"

N N S RN NN S RN N N SN SN NN SN SN S SN SN NN NN S SN N N NN SN NN SN RN S N SN S SN S SN SN N S S NN S RN SN N SN N NN S RN S N N S R S N S N S

o ——————————— —
i —— -

Formally secure compilation
holy grail of preserving security all the way down

--
* .

5 N e.g. safe C code
program behavior source high-level : secure
: | component attacker :

compiler | not . 4
correctness | enough A secure

(e.g. CompCert) compiler - compilation
~ - ~N
[target %_) low-level
program behavior component attacker secure
L protected no extra power e.g. arbitrary machine code

e.g. compromised C code

Benefit: sound security reasoning in the source language
forget about compilation chain (linker, loader, runtime)

. forget that libraries are written in a lower-level language

Fully abstract compilation

preservation of observational equivalence

-
3 high-level [1st high-leve%_) high-level
attacker , || component attacker
N A
compiler E
f

3 low-level
attacker _

15t compiled
component

_

low-level
attacker

+

'

[

2"d high-leve
componen

S

high-level
attacker

compiler

[

2"d compiled I i
t

componen

low-level
attacker

15

Undefined behavior

#include <string.h>
int main (int argc, char **argv)

{
char c[12];
strcpy(c, argv[l]);
return 0;

}

Buffer overflow

$ gcc target.c -fno-stack-protector
$./a.out haha

$./a.out hahahahahahahahahaha
zsh: segmentation fault (core dumped)

Source reasoning vs undefined behavior

Source reasoning

= We want to reason formally about security
with respect to source language semantics

Undefined behavior
= can't be expressed at all by source language semantics!

Observational equivalence doesn't work with
undefined behavior!?

— 1int buf[5]; buf[42] ~ int buf[5]; buf[43]?
Can we somehow avoid undefined behavior?

Full abstraction
with mutually distrustful components

Ycompromise scenarios.
3 high-level attack from some fully defined A,, A,, A

I Iy Ig I Iy Ig
O‘MOO O‘m\..‘ O‘m\..‘ -‘ ' O‘m\..‘ O‘m\..‘ O‘m\..‘
P Ay Ay A P Ay Ay P A
" ’0 " ’0 " ’0 " ’0 " ’0 " ’0

0...-“¢ 0...-“¢ 0...-“¢ 0...-“¢ 0...-“¢ 0...-“¢

if C,, C5, D,, D; fully defined and
3 low-level attack from compromised G\, Cl,C \l,

‘me‘ ‘QMO 0
@ 3 szl/; 3 szl/; 5\1,;

Limitation: static compromise model: C,, C;, D,, D; get guarantees only if perfectly safe
(i.e. fully defined = do not exhibit undefined behavior in any context)

This is the most we were able to achieve for full abstraction!
[Beyond Good and Evil - Juglaret, Hritcu, et al, CSF’16]

Static compromise not good enough

neither C; not C, are fully defined

component Cg '{ yet C, is protected until calling C,.parse
export valid;

valid(data) { ... } and C, can't actually be compromised

}

component C; {
import E.read, Cy.init,
main() {
Co.init ();
x := E.read();
y := Ci1.parse(x); // (V1) can UNDEF if x is malformed

Co.process(x,y);

Co .process;

}
parse(x) { ... }

}

component Co {
import E.write, Cp.valid;
export init, process;

init() { ... }
process(x,y) { } //(Va2) can UNDEF if not initialized

New secure compilation criterion:
Robust Compilation

V(bad, attack) trace t

3 high-level
attacker

causing t

-

|

high-level
component

_

~N

high-level
attacker

'ﬂ* compiler

3 low-level
attacker

causing t

(

[

compiled
component

........}
\

low-level
attacker

robust trace property preservation
(robust = in adversarial context)

intuition:

— stronger than compiler correctness

— seems weaker than full abstraction
+ compiler correctness

less extensional than full abstraction

Advantages: easier to realistically achieve and prove at scale
useful: preservation of invariants and other integrity properties
more intuitive to security people (generalizes to hyperproperties!)
extends to unsafe languages (supporting dynamic compromise)

20

Dynamic compromise Ut

» 3 a dynamic compromise scenario explaining t in source language
for instance 3[A,A,] leading to the following compromise sequence:

A A A
(0) Q U m;Undef(C,)
A
AT
(1) e % :_écz';u m,;Undef(C,)

- rewind execution

IA
: : Trace is very helpful
(2) o\ [- detect undefined behavior
OloIoN

[When Good Components Go Bad - Fachini, Stronati, Hritcu, et al]

Now we know what these words mean!

(at least in the setting of compartmentalization for unsafe low-level languages)
Mutual distrust @ LA, @ LA A
Dynamic compromise LA ::"\‘zcz ;U my; Undef(C,))
ATara
Least privilege e LA LG

[When Good Components Go Bad - Fachini, Stronati, Hritcu, et al]

Simple Secure Compilation Chain

)
Verlfled lr) [Compartmentalized] Buffers, procedures, components
L] — -"

unsafe source ¥ | interacting via strictly enforced interfaces :

S Compartmentalized Simple RISC abstract machine with D
abstract machine ¥ [b yild-in compartmentalization Pl
: 1 1software fault isolation :

Mlcro-p.ollc Stand:':\rd fallback

machine ¢ machine

: Tag-based reference monitor enforcing: Inline reference monitor enforcing:
= - component separation - component separation
- procedure call and return discipline - procedure call and return discipline

——

Systematically tested (with QuickChick) #<==

Beyond trace properties

Robust Hyperproperty Legend

Preser‘vatmn (Trace) property = set of traces

Hyperproperty = set of sets of traces

. Robust Subset-Closed

VPYCACVt... ~

Robust Hypersafety back-translating

Preservation finite trace prefixes
Robust K-Subset-Closed ‘ VF)VC’(V':3 CS' -
Hyperproperty Preservation —————__ Robust K-Hypersafety

‘ Preservation

Robust 2-Subset-Closed ‘

Hyperproperty Preservation | Robust 2-Hypersafety
\ Preservation

Robust Property
Preservation

\

Robust Safety
Preservation

[Robust Hyperproperty Preservation for Secure Compilation - Garg, Hritcu, et al]

Compartmentalization mechanisms

e

y 3

e practically deployed ones
— process-level privilege separation (all web browsers)
— software fault isolation (SFI, Google Native Client)
— hardware enclaves (Intel SGX, ARM TrustZone)

* and more on drawing boards:
— WebAssembly (WASM)
— capability machines (CHERI)
— tagged architectures (micro-policies)

