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Computers are insecure

* devastating low-level vulnerabilities

* inherently insecure low-level languages
— memory unsafe: any buffer overflow is catastrophic PROGRANING

— root cause, but challenging to fix: efficiency, precision,
scalability, backwards compatibility, deployment

* compartmentalization, a strong practical defense
— practically deployed low-level protection mechanisms

» process-level privilege separation (all web browsers)

» software fault isolation (SFI, Google Native Client)
* hardware enclaves (Intel SGX, ARM TrustZone)
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00 ... with very dangerous beasts




Zoo ... with very dangerous beasts

(source: Jurassic Island: The Dinosaur Zoo)
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Compartmentalization

for unsafe, low-level languages e

 Add components to C-like language \

— interacting only via strictly enforced interfaces

e Secure compilation chain Goal: Build this

— use compartmentalization to efficiently enforce:
component separation, call and return discipline, ... /

——————————————————————————————————————————————————————————————————————
——————————————————————————————————————————————————————————————————————————

— mutual distrust, dynamic compromise, least privilege

* each component should be protected from all the others until it
becomes compromised (by exhibiting undefined behavior) and
starts attacking the remaining uncompromised components

—————————————————————————————————————————————————————————————————————————
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" Interesting attacker model  Goal: Formalize this
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Formally secure compilation

holy grail of preserving security all the way down

------------------------------------------------------------
* .

5 N e.g. safe C code
program behavior source high-level : secure
: | component attacker :

compiler | not . 4
correctness | enough A secure

(e.g. CompCert) compiler - compilation
~ - ~N
[ target %_) low-level
program behavior component attacker secure
L protected no extra power e.g. arbitrary machine code

e.g. compromised C code

Benefit: sound security reasoning in the source language
forget about compilation chain (linker, loader, runtime)

. forget that libraries are written in a lower-level language




Fully abstract compilation

(preservation of observational equivalence)
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Issues: (1) hard to realistically and efficiently achieve
(2) challenging to prove at scale
(3) not intuitive to most security people
(4) doesn't quite work for unsafe languages



Our new target: Robust compilation
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robust trace property preservation
(robust = in adversarial context)

gives up on confidentiality
(relational/hyper properties)
intuition:

— stronger than compiler correctness
— seems weaker than full abstraction

+ compiler correctness

less extensional than FA

Advantages: easier to realistically achieve and prove
useful: preservation of invariants and other integrity properties
works for unsafe languages (supporting dynamic compromise)
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Mutually distrustful components

‘v’compromise scenarios. V (bad, attack) traces t.

3 high-level attack from some fully defined A,, A, A.
Ut

Limitation: static compromlse

C, and C; fully defined
3 low-level attack from compromised C,{,, C,{ , Cc

AAAMA
clelelel ¥

C, and C; can get guarantees onIy if they are perfectly secure
(i.e. fully defined = do not exhibit undefined behavior in any context)

This is the most we were able to do for full abstraction!
[Beyond Good and Evil - Juglaret, Hritcu, et al, CSF’16] 1



Static compromise not good enough

neither C, not C, are fully defined

component Cg {
yet C, is protected until calling C,.parse

export valid;
valid(data) { ... }
1 and C, can't actually be compromised
component C; {
import E.read, Cy.init,
main() {
Co.init ();
x := E.read();
y := Ci1.parse(x); // (V1) can UNDEF if x is malformed

Co .process;

Co.process(x,y);

}
parse(x) { ... }

}

component Co {
import E.write, Cp.valid;
export init, process;
init() { ... }

process(x,y) { ... } //(Va) can UNDEF if not initialized



v  Dynamic compromise

» 3 a dynamic compromise scenario explaining t in source language
for instance 3[A,A,] leading to the following compromise sequence:

A A A
(0) Q U m;Undef(C,)
A
AT
(1) e % :_écz';u m,;Undef(C,)

- rewind execution

IA
: : Trace is very helpful
(2) o\ [ - detect undefined behavior
elolon

[When Good Components Go Bad - Fachini, Stronati, Hritcu, et al]
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Now we know what these words mean!

(at least in the setting of compartmentalization for unsafe, low-level languages)
Mutual distrust @ LA, @ LA LA
Dynamic compromise LA i,‘\(zcz ;U my; Undef(C,))
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Least privilege



Beyond trace properties

Robust Hyperproperty Legend

Preser‘vatmn (Trace) property = set of traces

Hyperproperty = set of sets of traces

. Robust Subset-Closed

VPYCACVt... ~

Robust Hypersafety back-translating

Preservation finite trace prefixes
Robust K-Subset-Closed ‘ VF)VC’(V':3 CS' -
Hyperproperty Preservation —————__ Robust K-Hypersafety

‘ Preservation

Robust 2-Subset-Closed ‘

Hyperproperty Preservation | Robust 2-Hypersafety
\ Preservation

Robust Property
Preservation

\

Robust Safety
Preservation

[Robust Hyperproperty Preservation for Secure Compilation - Garg, Hritcu, et al]



Building and verifying realistic secure
compartmentalizing compilation chains



Goal: achieving secure compilation at scale

——————————————————————————————————————————————
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@»tecting component boundaries

* Add mutually distrustful components to C
— interacting only via strictly enforced interfaces

 CompCert-based compilation chain
— propagate interface information to produced binary

* Micro-policy simultaneously enforcing

— component separation

— type-safe procedure call and return discipline

* Software fault isolation fallback
— when tagged hardware support not available

* Good progress on this but in much simplified setting



%tecting higher-level abstractions
* Low™: enforcing specifications in C

ﬁ — some can be turned into contracts, checked
dynamically; micro-policies can speed this up too

* Limits of purely-dynamic enforcement
— functional purity, termination, relational reasoning

— push these limits further and
combine with static analysis
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BACKUP SLIDES



Broad view on secure compilation

 Different security goals / attacker models

— Fully abstract compilation and variants,
robust compilation, noninterference preservation, ...

 Different enforcement mechanisms

— reference monitors, secure hardware, static analysis,
software rewriting, randomization, ...

e Different proof techniques

— (bi)simulation, logical relations, multi-language
semantics, embedded interpreters, ...
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