
Formally Secure Compilation

Cătălin Hrițcu

Inria Paris

1

https://secure-compilation.github.io

of Unsafe Low-level Components

https://secure-compilation.github.io/

Collaborators

Cătălin
Hrițcu

Marco
Stronati

Arthur
Azevedo

de Amorim

Ana Nora
Evans

Deepak
Garg Marco

Patrignani
Andrew
Tolmach

Benjamin
Pierce

Guglielmo
Fachini

Théo
Laurent

Yannis
JuglaretCarmine

Abate

Computers are insecure

• devastating low-level vulnerabilities

• inherently insecure low-level languages
– memory unsafe: any buffer overflow is catastrophic

– root cause, but challenging to fix: efficiency, precision,
scalability, backwards compatibility, deployment

• compartmentalization, a strong practical defense

– practically deployed low-level protection mechanisms
• process-level privilege separation (all web browsers)

• software fault isolation (SFI, Google Native Client)

• hardware enclaves (Intel SGX, ARM TrustZone)

3

Zoo

Zoo ... with very dangerous beasts

Zoo ... with very dangerous beasts

(source: Jurassic Island: The Dinosaur Zoo) 6

Compartmentalization
for unsafe, low-level languages

• Add components to C-like language

– interacting only via strictly enforced interfaces

• Secure compilation chain

– use compartmentalization to efficiently enforce:

component separation, call and return discipline, ...

• Interesting attacker model

– mutual distrust, dynamic compromise, least privilege

• each component should be protected from all the others until it

becomes compromised (by exhibiting undefined behavior) and

starts attacking the remaining uncompromised components

Goal: Formalize this

Goal: Build this

7

Formally secure compilation

high-level
attacker

low-level
attacker

source

target

compiler

Benefit: sound security reasoning in the source language
forget about compilation chain (linker, loader, runtime)
forget that libraries are written in a lower-level language

secure

secure

program behavior

program behavior

compiler
correctness

(e.g. CompCert)

holy grail of preserving security all the way down

secure
compilation

component

component

not
enough

no extra powerprotected e.g. arbitrary machine code
e.g. compromised C code

e.g. safe C code

Fully abstract compilation

9

high-level
attacker

low-level
attacker

1st high-level
component

1st compiled
component

high-level
attacker

low-level
attacker

2nd high-level
component

2nd compiled
component

≁
high-level
attacker∃

low-level
attacker∃

⇒

.

. ≁

compiler compiler

Issues: (1) hard to realistically and efficiently achieve
(2) challenging to prove at scale
(3) not intuitive to most security people
(4) doesn't quite work for unsafe languages

(preservation of observational equivalence)

Our new target: Robust compilation

robust trace property preservation
(robust = in adversarial context)

gives up on confidentiality
(relational/hyper properties)

intuition:

– stronger than compiler correctness

– seems weaker than full abstraction
+ compiler correctness

less extensional than FA

10

high-level
attacker

low-level
attacker

high-level
component

compiled
component

high-level
attacker
causing t

∃

low-level
attacker
causing t

∃

.

.

compiler

∀(bad, attack) trace t

Advantages: easier to realistically achieve and prove
useful: preservation of invariants and other integrity properties
works for unsafe languages (supporting dynamic compromise)

⇒

Mutually distrustful components

11

i1 i2 i3 i4 i5

C1 C2 C3 C4 C5↓ ↓ ↓ ↓ ↓

i1 i2 i3 i4 i5

C1 A2 C3 A4 A5

↯ ↯ ↯

∀compromise scenarios. ∀ (bad, attack) traces t.

[Beyond Good and Evil - Juglaret, Hrițcu, et al, CSF’16]

⇓ t

⇓ t

Limitation: static compromise
C1 and C3 fully defined

∃ high-level attack from some fully defined A2, A4, A5

∃ low-level attack from compromised C2↓, C4↓, C5↓

C1 and C3 can get guarantees only if they are perfectly secure
(i.e. fully defined = do not exhibit undefined behavior in any context)

This is the most we were able to do for full abstraction!

Static compromise not good enough
neither C1 not C2 are fully defined

yet C1 is protected until calling C1.parse

and C2 can't actually be compromised

Dynamic compromise

[When Good Components Go Bad - Fachini, Stronati, Hrițcu, et al]

i1 i2 i3

C0 C1 C2

∃ a dynamic compromise scenario explaining t in source language
for instance ∃[A1,A2] leading to the following compromise sequence:

↓ ↓ ↓ ⇓ t

i1 i2 i3

C0 C1 C2
⇓ m1;Undef(C1)

↯
(0)

(1)
i1 i2 i3

C0 A1 C2
⇓ m2;Undef(C2)

↯

(2)
i1 i2 i3

C0 A1 A2
⇓ t

≤

≤

13

Trace is very helpful
- detect undefined behavior
- rewind execution

Now we know what these words mean!

Mutual distrust

Dynamic compromise

Least privilege

C1 A2 C3 A4 A5

C0 A1 C2 ⇓ m2; Undef(C2)
↯

i1 i2 i3

C0 A1 C2

14

(at least in the setting of compartmentalization for unsafe, low-level languages)

Beyond trace properties

[Robust Hyperproperty Preservation for Secure Compilation - Garg, Hrițcu, et al]

back-translating contexts
∀P∀Ct∃Cs∀t...

back-translating
finite trace prefixes
∀P∀Ct∀t∃Cs...

Legend
(Trace) property = set of traces
Hyperproperty = set of sets of traces

Building and verifying realistic secure
compartmentalizing compilation chains

Vision for ...

(i.e. mostly vaporware at this point)

Goal: achieving secure compilation at scale

17

miTLS*

CompSec+

KremSec

memory safe
C component

protecting component boundaries

legacy C
component

CompSec

ASM
component

Low* language
(safe C subset in F*)

C language
+ components
+ memory safety

ASM language
(RISC-V + micro-policies)

protecting higher-level abstractions

Protecting component boundaries

• Add mutually distrustful components to C

– interacting only via strictly enforced interfaces

• CompCert-based compilation chain

– propagate interface information to produced binary

• Micro-policy simultaneously enforcing
– component separation

– type-safe procedure call and return discipline

• Software fault isolation fallback

– when tagged hardware support not available

• Good progress on this but in much simplified setting
18

Protecting higher-level abstractions

19

• Low*: enforcing specifications in C

– some can be turned into contracts, checked

dynamically; micro-policies can speed this up too

• Limits of purely-dynamic enforcement

– functional purity, termination, relational reasoning

– push these limits further and

combine with static analysis

BACKUP SLIDES

20

Broad view on secure compilation

• Different security goals / attacker models
– Fully abstract compilation and variants,

robust compilation, noninterference preservation, ...

• Different enforcement mechanisms
– reference monitors, secure hardware, static analysis,

software rewriting, randomization, ...

• Different proof techniques
– (bi)simulation, logical relations, multi-language

semantics, embedded interpreters, ...

21

