
Cătălin Hrițcu, Inria Paris



Devising formal methods

• clear attacker models

• program verification tools

• bug finding techniques

Solving security problems

• programming securely
with cryptography

• stopping web attacks

• building secure systems

Developing practical tools and systems

• F*, miTLS, HACL*, ProVerif, CryptoVerif, 
ProScript, CryptoCat, QuickChick, ...

Our research
λ
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Finding attacks in TLS
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Current team

Diverse and international Our working language is English

Collaborators at Microsoft Research, UPenn, MIT, Northeastern,
Portland State, IMDEA, Imperial, UCL, ...
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Use formal methods to achieve 
security of critical software 

• HTTPS stack (miTLS, Everest)

• Modern cryptographic library (HACL*)

• Secure messaging app (CryptoCat, NEXTLEAP)

• Web browser core (CIRCUS)

• Compilers & monitors (Micro-Policies, SECOMP)

• TCP/IP network stack ...
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Tools for analyzing abstract models 
of crypto protocols

• ProVerif

– symbolic model (Dolev-Yao)

– fully automatic, efficient, precise, produces attack traces

– wide range of crypto primitives and properties

• CryptoVerif

– computational model

– semi-automatic: sequence of crypto games

– exact security: bound on attack probability

• Recent case studies: TLS 1.2 & 1.3, Signal, ARINC823

– upcoming TLS 1.3: big redesign, new hope for verification
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From verifying protocol models
to actual implementations

• Protocol models
– capture core behavior: succinct, abstract, high-level 

– great for finding logical flaws [3Shake] and incorrect
use of crypto [Lucky13] early in the protocol design phase

– e.g. TLS 1.2 & 1.3 in ~1000 lines of ProVerif (best paper at Oakland'17)

• Protocol implementations
– large software projects: interoperable, efficient

– concrete packet formats, multiple protocol modes

– support legacy ciphersuites, complex APIs, composable subprotocols

– more attacks: message parsing [HeartBleed], state machine [FREAK]

8



• Verified reference
implementation of TLS 1.2 & 1.3

• Microsoft Research and Inria

• Built on top of our HACL* crypto library

– verified and faster than OpenSSL libcrypto and Sodium

• Towards a verified HTTPS stack (Project Everest)

9



HTTPS ecosystem critical, complex
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Buffer overflows
Incorrect state machines
Lax certificate parsing
Weak or poorly implemented crypto
Side channels

Informal security goals
Dangerous APIs
Flawed standards

OpenSSL, SChannel, NSS, …
Still patched every month!

HTTPS ecosystem critical, complex

***

TLS

X.509

HTTPS

RSA SHA
ECD

H

Network buffers

Untrusted network (TCP, UDP, …)

Crypto Algorithms

4Q

Services & Applications

ASN.1
Certification 

Authority

ServersClients

IIS ApacheSkype NginxEdge cURL WebKit

and broken



Project Everest Goals
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Everest stack verified with 

• Functional programming language

– like OCaml, F#, Haskell, …

– extracted to OCaml or F# by default

– subset of F* compiled to efficient C code

• Semi-automated verification using SMT

– like Dafny, FramaC, Why3, …

• Interactive verification using dependent types

– like Coq, Lean, Agda, …
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Is verified code secure in practice?
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F* C/C++

compiled F* compiled C/C++

ASM

compiled ASM

Insecure interoperability

Everest HTTPS
30.000 LOC

Web browser/server
2.000.000+ LOC

OK we can verify this OoopsUnsafe languages



Secure compilation

• Secure interoperability with lower-level code

– component separation, call and return discipline, types, ...

• Dynamic enforcement, but at what cost?

– in software, 10x? 100x? 1000x?

• Micro-policies

– new tagged hardware architecture

– associates large metadata tag to each word

– efficiently propagates and checks tags; hw caching

– dynamic monitoring: software defined, very flexible,
fine-grained (words, instructions), fast …

– … average 10% runtime overhead for complex policies!
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Use formal methods to achieve 
security of critical software 

• HTTPS stack (miTLS, Everest)

• Modern cryptographic library (HACL*)

• Secure messaging app (CryptoCat, NEXTLEAP)

• Web browser/server core (CIRCUS)

• Compilers & monitors (Micro-Policies, SECOMP)

• TCP/IP network stack ...
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