
Cătălin Hrițcu, Inria Paris

Devising formal methods

• clear attacker models

• program verification tools

• bug finding techniques

Solving security problems

• programming securely
with cryptography

• stopping web attacks

• building secure systems

Developing practical tools and systems

• F*, miTLS, HACL*, ProVerif, CryptoVerif,
ProScript, CryptoCat, QuickChick, ...

Our research
λ

2

Finding attacks in TLS

3

Researchers

4

Karthik Bhargavan Bruno Blanchet Harry Halpin

Cătălin Hrițcu Graham Steel

5

PhD Students (4)
Benjamin Beurdeuche
Nadim Kobeissi
Kenji Maillard
Jean Karim Zinzindohoue

Interns (4)
Victor Dumitrescu
Guglielmo Fachini
Natalia Kulatova
Théo Laurent

PostDocs (2)
Danel Ahman
Marco Stronati

Visitors (3)
David Baelde (ENS Cachan)
Ana Nora Evans (Univ of Virginia)
David Evans (Univ of Virginia)

Researchers (6)
Karthik Bhargavan
Bruno Blanchet
Harry Halpin
Cătălin Hriţcu
Graham Steel
Christine Rizkallah

Engineers (2)
Tomer Libal
Marc Sylvestre

Current team

Diverse and international Our working language is English

Collaborators at Microsoft Research, UPenn, MIT, Northeastern,
Portland State, IMDEA, Imperial, UCL, ...

11 nationalities

Use formal methods to achieve
security of critical software

• HTTPS stack (miTLS, Everest)

• Modern cryptographic library (HACL*)

• Secure messaging app (CryptoCat, NEXTLEAP)

• Web browser core (CIRCUS)

• Compilers & monitors (Micro-Policies, SECOMP)

• TCP/IP network stack ...

6

Tools for analyzing abstract models
of crypto protocols

• ProVerif

– symbolic model (Dolev-Yao)

– fully automatic, efficient, precise, produces attack traces

– wide range of crypto primitives and properties

• CryptoVerif

– computational model

– semi-automatic: sequence of crypto games

– exact security: bound on attack probability

• Recent case studies: TLS 1.2 & 1.3, Signal, ARINC823

– upcoming TLS 1.3: big redesign, new hope for verification

7

From verifying protocol models
to actual implementations

• Protocol models
– capture core behavior: succinct, abstract, high-level

– great for finding logical flaws [3Shake] and incorrect
use of crypto [Lucky13] early in the protocol design phase

– e.g. TLS 1.2 & 1.3 in ~1000 lines of ProVerif (best paper at Oakland'17)

• Protocol implementations
– large software projects: interoperable, efficient

– concrete packet formats, multiple protocol modes

– support legacy ciphersuites, complex APIs, composable subprotocols

– more attacks: message parsing [HeartBleed], state machine [FREAK]

8

• Verified reference
implementation of TLS 1.2 & 1.3

• Microsoft Research and Inria

• Built on top of our HACL* crypto library

– verified and faster than OpenSSL libcrypto and Sodium

• Towards a verified HTTPS stack (Project Everest)

9

HTTPS ecosystem critical, complex

TLS

X.509

HTTPS

RSA SHA

ECDH

Network buffers

Untrusted network (TCP, UDP, …)

Crypto Algorithms

4Q

Services & Applications

ASN.1
Certification

Authority

ServersClients

IIS ApacheSkype NginxEdge cURL WebKit

Buffer overflows
Incorrect state machines
Lax certificate parsing
Weak or poorly implemented crypto
Side channels

Informal security goals
Dangerous APIs
Flawed standards

OpenSSL, SChannel, NSS, …
Still patched every month!

HTTPS ecosystem critical, complex

TLS

X.509

HTTPS

RSA SHA
ECD

H

Network buffers

Untrusted network (TCP, UDP, …)

Crypto Algorithms

4Q

Services & Applications

ASN.1
Certification

Authority

ServersClients

IIS ApacheSkype NginxEdge cURL WebKit

and broken

Project Everest Goals

TLS

X.509

HTTPS

RSA SHA
ECD

H

Network buffers

Untrusted network (TCP, UDP, …)

Crypto Algorithms

4Q

Services & Applications

ASN.1
Certification

Authority

ServersClients

IIS ApacheSkype NginxEdge cURL WebKit

Everest stack verified with

• Functional programming language

– like OCaml, F#, Haskell, …

– extracted to OCaml or F# by default

– subset of F* compiled to efficient C code

• Semi-automated verification using SMT

– like Dafny, FramaC, Why3, …

• Interactive verification using dependent types

– like Coq, Lean, Agda, …

13

Is verified code secure in practice?

14

F* C/C++

compiled F* compiled C/C++

ASM

compiled ASM

Insecure interoperability

Everest HTTPS
30.000 LOC

Web browser/server
2.000.000+ LOC

OK we can verify this OoopsUnsafe languages

Secure compilation

• Secure interoperability with lower-level code

– component separation, call and return discipline, types, ...

• Dynamic enforcement, but at what cost?

– in software, 10x? 100x? 1000x?

• Micro-policies

– new tagged hardware architecture

– associates large metadata tag to each word

– efficiently propagates and checks tags; hw caching

– dynamic monitoring: software defined, very flexible,
fine-grained (words, instructions), fast …

– … average 10% runtime overhead for complex policies!
15

Use formal methods to achieve
security of critical software

• HTTPS stack (miTLS, Everest)

• Modern cryptographic library (HACL*)

• Secure messaging app (CryptoCat, NEXTLEAP)

• Web browser/server core (CIRCUS)

• Compilers & monitors (Micro-Policies, SECOMP)

• TCP/IP network stack ...

16

